1
|
Inocencio I, Rai A, Donner D, Greening DW. The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome. Proteomics 2025; 25:e202400320. [PMID: 39790063 PMCID: PMC11962585 DOI: 10.1002/pmic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules. This surfaceome comprises to 216 cardiac cell-specific surface proteins, including 29 proteins reported in cardiomyocytes (CXADR, CACNA1C), 12 in cardiac fibroblasts (ITGA8, COL3A1) and 63 in multiple cardiac cell types (ICAM1, SLC3A2, CDH2). Further, this surfaceome comprises to 53 proteins enriched in heart tissue compared to other tissues in humans and implicated in cardiac cell signalling networks involving cardiomyopathy (CDH2, DTNA, PTKP2, SNTA1, CAM, K2D/B), cardiac muscle contraction and development (ENG, SNTA1, SGCG, MYPN), calcium ion binding (SGCA, MASP1, THBS4, FBLN2, GSN) and cell metabolism (SDHA, NUDFS1, GYS1, ACO2, IDH2). This method offers a powerful tool for dissecting the molecular landscape of the coronary artery accessible heart cell surfaceome, its role in maintaining cardiac and vascular function, and potential molecular leads for studying cardiac cell interactions and systemic delivery to the neo-native heart.
Collapse
Affiliation(s)
- Iasmin Inocencio
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
| | - Alin Rai
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Daniel Donner
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Cekuc MS, Ergul YS, Pius AK, Meagan M, Shinohara I, Murayama M, Susuki Y, Ma C, Morita M, Chow SKH, Bunnell BA, Lin H, Gao Q, Goodman SB. Metformin Modulates Cell Oxidative Stress to Mitigate Corticosteroid-Induced Suppression of Osteogenesis in a 3D Model. J Inflamm Res 2024; 17:10383-10396. [PMID: 39654863 PMCID: PMC11625639 DOI: 10.2147/jir.s498888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Background Corticosteroids provide well-established therapeutic benefits; however, they are also accompanied by adverse effects on bone. Metformin is a widely used medication for managing type 2 diabetes mellitus. Recent studies have highlighted additional therapeutic benefits of metformin, particularly concerning bone health and oxidative stress. Objective This research investigates the effects of prednisolone on cellular metabolic functions and bone formation using a 3D in vitro model. Then, we demonstrate the potential therapeutic effects of metformin on oxidative stress and the formation of calcified matrix due to corticosteroids. Methods Human mesenchymal stem cells (MSCs) and macrophages were cultured in a 3D GelMA scaffold and stimulated with prednisolone, with and without metformin. The adverse effects of prednisolone and metformin's therapeutic effect(s) were assessed by analyzing cell viability, osteogenesis markers, bone mineralization, and inflammatory markers. Oxidative stress was measured by evaluating reactive oxygen species (ROS) levels and ATP production. Results Prednisolone exhibited cytotoxic effects, reducing the viability of MSCs and macrophages. Lower osteogenesis potential was also detected in the MSC group. Metformin positively affected cell functions, including enhanced osteoblast activity and increased bone mineralization. Furthermore, metformin effectively reduced oxidative stress, as evidenced by decreased ROS levels and increased ATP production. These findings indicate that metformin protects against oxidative damage, thus supporting osteogenesis. Conclusion Metformin exhibits promising therapeutic potential beyond its role in diabetes management. The capacity to alleviate oxidative stress highlights the potential of metformin in supporting bone formation in inflammatory environments.
Collapse
Affiliation(s)
- Mehmet Sertac Cekuc
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Yasemin Sude Ergul
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexa K Pius
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Makarcyzk Meagan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Issei Shinohara
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Masatoshi Murayama
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Yosuke Susuki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Chao Ma
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Mayu Morita
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Simon Kwoon-Ho Chow
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qi Gao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Stuart B Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| |
Collapse
|
3
|
Gómez-Del Arco P, Isern J, Jimenez-Carretero D, López-Maderuelo D, Piñeiro-Sabarís R, El Abdellaoui-Soussi F, Torroja C, Vera-Pedrosa ML, Grima-Terrén M, Benguria A, Simón-Chica A, Queiro-Palou A, Dopazo A, Sánchez-Cabo F, Jalife J, de la Pompa JL, Filgueiras-Rama D, Muñoz-Cánoves P, Redondo JM. The G4 resolvase Dhx36 modulates cardiomyocyte differentiation and ventricular conduction system development. Nat Commun 2024; 15:8602. [PMID: 39366945 PMCID: PMC11452623 DOI: 10.1038/s41467-024-52809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes. Dhx36 deficiency directly influences cardiomyocyte gene networks by disrupting the resolution of promoter G-quadruplexes in key cardiac genes, impacting cardiomyocyte differentiation and CCS morphogenesis, and ultimately leading to dilated cardiomyopathy and atrioventricular block. These findings further identify crucial genes and pathways that regulate the development and function of the VCS/Purkinje fiber (PF) network.
Collapse
Affiliation(s)
- Pablo Gómez-Del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain.
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Joan Isern
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Linarejos Vera-Pedrosa
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mercedes Grima-Terrén
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Antonio Queiro-Palou
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- University of Michigan, Ann Arbor, MI, USA
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Filgueiras-Rama
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pura Muñoz-Cánoves
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA.
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF)/CIBERNED, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Murugesan P, Zhang Y, Huang Y, Chenggong Zong N, Youn JY, Chen W, Wang C, Loscalzo J, Cai H. Reversal of Pulmonary Hypertension in a Human-Like Model: Therapeutic Targeting of Endothelial DHFR. Circ Res 2024; 134:351-370. [PMID: 38299369 PMCID: PMC10880947 DOI: 10.1161/circresaha.123.323090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and elevated mean pulmonary arterial pressure, resulting in right heart failure. METHODS Here, we show that direct targeting of the endothelium to uncouple eNOS (endothelial nitric oxide synthase) with DAHP (2,4-diamino 6-hydroxypyrimidine; an inhibitor of GTP cyclohydrolase 1, the rate-limiting synthetic enzyme for the critical eNOS cofactor tetrahydrobiopterin) induces human-like, time-dependent progression of PH phenotypes in mice. RESULTS Critical phenotypic features include progressive elevation in mean pulmonary arterial pressure, right ventricular systolic blood pressure, and right ventricle (RV)/left ventricle plus septum (LV+S) weight ratio; extensive vascular remodeling of pulmonary arterioles with increased medial thickness/perivascular collagen deposition and increased expression of PCNA (proliferative cell nuclear antigen) and alpha-actin; markedly increased total and mitochondrial superoxide production, substantially reduced tetrahydrobiopterin and nitric oxide bioavailabilities; and formation of an array of human-like vascular lesions. Intriguingly, novel in-house generated endothelial-specific dihydrofolate reductase (DHFR) transgenic mice (tg-EC-DHFR) were completely protected from the pathophysiological and molecular features of PH upon DAHP treatment or hypoxia exposure. Furthermore, DHFR overexpression with a pCMV-DHFR plasmid transfection in mice after initiation of DAHP treatment completely reversed PH phenotypes. DHFR knockout mice spontaneously developed PH at baseline and had no additional deterioration in response to hypoxia, indicating an intrinsic role of DHFR deficiency in causing PH. RNA-sequencing experiments indicated great similarity in gene regulation profiles between the DAHP model and human patients with PH. CONCLUSIONS Taken together, these results establish a novel human-like murine model of PH that has long been lacking in the field, which can be broadly used for future mechanistic and translational studies. These data also indicate that targeting endothelial DHFR deficiency represents a novel and robust therapeutic strategy for the treatment of PH.
Collapse
Affiliation(s)
- Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Yuanli Huang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Nobel Chenggong Zong
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| | - Wenhui Chen
- Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (W.C., C.W.)
| | - Chen Wang
- Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (W.C., C.W.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (P.M., Y.Z., Y.H., N.C.Z., J.Y.Y., H.C.)
| |
Collapse
|
5
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Murugesan P, Zhang Y, Youn JY, Cai H. Novel and robust treatment of pulmonary hypertension with netrin-1 and netrin-1-derived small peptides. Redox Biol 2022; 55:102348. [PMID: 35830752 PMCID: PMC9287481 DOI: 10.1016/j.redox.2022.102348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/07/2022] Open
Abstract
Limited medical therapies have been implemented for the treatment of the devastating cardiorespiratory disease of pulmonary hypertension (PH) while none of which is sufficiently effective to stop or regress development of PH. We have previously shown that netrin-1, an axon-guiding protein during development, protects against ischemia reperfusion injury induced myocardial infarction via modest and stable production of nitric oxide (NO) and attenuation of oxidative stress. Since NO deficiency and oxidative stress-mediated vascular remodeling play important roles in the pathogenesis of PH, our present study investigated therapeutic effects on PH of netrin-1 and its derived small peptides. Infused into mice for 3 weeks during exposure to hypoxia, netrin-1 and netrin-1 derived small peptides V1, V2 or V3 substantially alleviated pathophysiological and molecular features of PH, as indicated by abrogated increases in mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), attenuated right ventricular hypertrophy, diminished vascular remodeling of medial thickening and upregulation in smooth muscle alpha-actin (SMA) and proliferative cell nuclear antigen (PCNA), and alleviated perivascular and peribronchial fibrosis reflected by collagen deposition. NO bioavailability was substantially improved by treatment with netrin-1 and netrin-1 derived small peptides, while hypoxia induced increases in total superoxide production and eNOS uncoupling activity were all attenuated. These dual mechanisms of increasing NO bioavailability and decreasing oxidative stress at the same time, underlie robust protective effects on PH of netrin-1 and its derived small peptides, which are different from existing medications that primarily target NO signaling alone. Our data for the first time demonstrate intriguing findings that netrin-1 and netrin-1 derived small peptides can be used as novel and robust therapeutics for the treatment of PH.
Collapse
Affiliation(s)
- Priya Murugesan
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, United States.
| |
Collapse
|
7
|
Signaling Pathways Involved in Myocardial Ischemia-Reperfusion Injury and Cardioprotection: A Systematic Review of Transcriptomic Studies in Sus scrofa. J Cardiovasc Dev Dis 2022; 9:jcdd9050132. [PMID: 35621843 PMCID: PMC9145716 DOI: 10.3390/jcdd9050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial damage in acute myocardial infarctions (AMI) is primarily the result of ischemia−reperfusion injury (IRI). Recognizing the timing of transcriptional events and their modulation by cardioprotective strategies is critical to address the pathophysiology of myocardial IRI. Despite the relevance of pigs for translational studies of AMI, only a few have identified how transcriptomic changes shape cellular signaling pathways in response to injury. We systematically reviewed transcriptomic studies of myocardial IRI and cardioprotection in Sus scrofa. Gene expression datasets were analyzed for significantly enriched terms using the Enrichr analysis tool, and statistically significant results (adjusted p-values of <0.05) for Signaling Pathways, Transcription Factors, Molecular Functions, and Biological Processes were compared between eligible studies to describe how these dynamic changes transform the myocardium from an injured and inflamed tissue into a scar. Then, we address how cardioprotective interventions distinctly modulate the myocardial transcriptome and discuss the implications of uncovering gene regulatory networks for cardiovascular pathologies and translational applications.
Collapse
|
8
|
Liu L, Liu KJ, Cao JB, Yang J, Yu HL, He XX, He ZX, Zhu XJ. A Novel Netrin-1-Derived Peptide Enhances Protection against Neuronal Death and Mitigates of Intracerebral Hemorrhage in Mice. Int J Mol Sci 2021; 22:ijms22094829. [PMID: 34063230 PMCID: PMC8125294 DOI: 10.3390/ijms22094829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
It has been reported that Netrin-1 is involved in neuroprotection following injury to the central nervous system. However, the minimal functional domain of Netrin-1 which can preserve the neuroprotection but avoid the major side effects of Netrin remains elusive. Here, we investigated the neuroprotective effect of a peptide E1 derived from Netrin-1′s EGF3 domain (residues 407–422). We found that it interacts with deleted colorectal carcinoma (DCC) to activate focal adhesion kinase phosphorylation exhibiting neuroprotection. The administration of the peptide E1 was able to improve functional recovery through reduced apoptosis in an experimental murine model of intracerebral hemorrhage (ICH). In summary, we reveal a functional sequence of Netrin-1 that is involved in the recovery process after ICH and identify a candidate peptide for the treatment of ICH.
Collapse
|
9
|
Abstract
Cardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.
Collapse
|
10
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
11
|
Zhang H, Vreeken D, Bruikman CS, van Zonneveld AJ, van Gils JM. Understanding netrins and semaphorins in mature endothelial cell biology. Pharmacol Res 2018; 137:1-10. [PMID: 30240825 DOI: 10.1016/j.phrs.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023]
Abstract
Netrins and semaphorins are known as neuronal guidance molecules that are important to the facilitate patterning of the nervous system in embryonic development. In recent years, their function has been broadened to guide development in other systems, including the vascular system, where netrins and semaphorins critically contribute to the development of the vascular system. Evidence is accumulating that these guidance cues are also of critical importance in the biology of the mature endothelium by regulating the maintenance of endothelial quiescence. Here we review our current insights into the roles of netrins and semaphorins in endothelial cell survival, self-renewing, barrier function, response to wall shear stress, and control of the vascular tone. We also provide suggestions for future research into the functions of netrins and semaphorins in mature endothelial cell biology.
Collapse
Affiliation(s)
- Huayu Zhang
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Dianne Vreeken
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Caroline S Bruikman
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Janine M van Gils
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
12
|
Zhang Y, Chen P, Di G, Qi X, Zhou Q, Gao H. Netrin-1 promotes diabetic corneal wound healing through molecular mechanisms mediated via the adenosine 2B receptor. Sci Rep 2018; 8:5994. [PMID: 29662125 PMCID: PMC5902612 DOI: 10.1038/s41598-018-24506-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Netrins are secreted chemoattractants with the roles in axon guidance, cell migration and epithelial plasticity. In the present study, we investigated the roles of netrin-1 in the regulation of corneal epithelial wound healing, inflammation response and nerve fiber regeneration in diabetic mice and cultured corneal epithelial cells. In diabetic mice, the expression of netrin-1 was decreased when compared with that of normal mice. Furthermore, high glucose blocked the wounding-induced up-regulation of netrin-1 expression in corneal epithelial cells. Exogenous netrin-1 promoted the corneal epithelial wound healing in diabetic mice, and facilitated the proliferation and migration by reactivating the phosphorylation of ERK and EGFR in high-glucose treated corneal epithelial cells. Moreover, netrin-1 decreased the neutrophil infiltration and promoted M2 macrophage transition, accompanied with the attenuated expression of pro-inflammatory factors in diabetic mouse corneal epithelium. The promotions of netrin-1 on corneal epithelial wound healing and inflammation resolution were mediated at least through the adenosine 2B receptor. In addition, netrin-1 promoted the regeneration of corneal nerve fibers that was impaired in diabetic mice. Taken together, netrin-1 regulates corneal epithelial wound healing, inflammation response and nerve fiber regeneration in diabetic mice, indicating the potential application for the therapy of diabetic keratopathy.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
13
|
Attenuation of neointimal formation with netrin-1 and netrin-1 preconditioned endothelial progenitor cells. J Mol Med (Berl) 2016; 95:335-348. [PMID: 28004124 DOI: 10.1007/s00109-016-1490-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Restenosis after angioplasty is a serious clinical problem that can result in re-occlusion of the coronary artery. Although current drug-eluting stents have proved to be more effective in reducing restenosis, they have drawbacks of inhibiting reendothelialization to promote thrombosis. New treatment options are in urgent need. We have shown that netrin-1, an axon-guiding protein, promotes angiogenesis and cardioprotection via production of nitric oxide (NO). The present study examined whether and how netrin-1 attenuates neointimal formation in a femoral wire injury model. Infusion of netrin-1 into C57BL/6 mice markedly attenuated neointimal formation following wire injury of femoral arteries, measured by intimal to media ratio (from 1.94 ± 0.55 to 0.45 ± 0.86 at 4 weeks). Proliferation of VSMC in situ was largely reduced. This protective effect was absent in DCC+/- animals. NO production was increased by netrin-1 in both intact and injured femoral arteries, indicating netrin-1 stimulation of endogenous NO production from intact endothelium and remaining endothelial cells post-injury. VSMC migration was abrogated by netrin-1 via a NO/cGMP/p38 MAPK pathway, while timely EPC homing was induced. Injection of netrin-1 preconditioned wild-type EPCs, but not EPCs of DCC+/- animals, substantially attenuated neointimal formation. EPC proliferation, NO production, and resistance to oxidative stress induced apoptosis were augmented by netrin-1 treatment. In conclusion, our data for the first time demonstrate that netrin-1 is highly effective in reducing neointimal formation following vascular endothelial injury, which is dependent on DCC, and attributed to inhibition of VSMC proliferation and migration, as well as improved EPC function. These data may support usage of netrin-1 and netrin-1 preconditioned EPCs as novel therapies for post angioplasty restenosis. KEY MESSAGE Netrin-1 attenuates neointimal formation following post endothelial injury via DCC and NO. Netrin-1 inhibits VSMC proliferation in situ following endothelial injury. Netrin-1 inhibits VSMC migration via a NO/cGMP/p38 MAPK pathway. Netrin-1 augments proliferation of endothelial progenitor cells (EPCs) and EPC eNOS/NO activation. Netrin-1 enhances resistance of EPCs to oxidative stress, improving re-endothelialization following injury.
Collapse
|
14
|
Sun Y, Ye L, Jiang C, Jiang J, Hong H, Qiu L. Over-expression of HSPA12B protects mice against myocardium ischemic/reperfusion injury through a PPARγ-dependent PI3K/Akt/eNOS pathway. Am J Transl Res 2015; 7:2724-2737. [PMID: 26885270 PMCID: PMC4731670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Acute myocardial ischemia/reperfusion (MIR) injury leads to severe arrhythmias and a high lethality. We aim to determine the effect of heat shock protein A12B (HSPA12B), a newly discovered member of the Hsp70 family, on heart injury parameters following MIR surgery. We used HSPA12B transgenic mice to determine its effects on heart function parameters, infarct size and cellular apoptosis following MIR surgery. Proinflammatory cytokines, oxidative products and anti-oxidative enzymes in the myocardium were measured to evaluate the anti-inflammatory and anti-oxidative effects of HSPA12B over-expression. The role of PPARs/eNOS/PI3k/Akt pathway was investigated using their inhibitors. The alteration of hemodynamic parameters, histopathological, apoptotic and infarct size caused by MIR was greatly attenuated in HSPA12B over-expressed mice. HSPA12B also greatly mitigated the inflammatory response, demonstrated by the decrease in the levels of IL-1β, IL-6, TNF-a and MPO. Anti-oxidative enzymes (SOD, Catalase and GPx) were restored by HSPA12B; oxidative products (8-OHdG, MDA and protein carbonyl) were decreased. HSPA12B activated the PPARγ-dependent eNOS/PI3k/Akt pathway, and the influence of HSPA12B on cardiac function was reversed by the inhibitors of eNOS, PPARγ, Akt and PI3K. Our results present a novel signaling mechanism that HSPA12B protects MIR injury through a PPARγ-dependent PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Jun Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Haifa Hong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
15
|
Cui MZ. Potential therapeutics for myocardial ischemia-reperfusion injury. Focus on "Induction of cardioprotection by small netrin-1-derived peptides". Am J Physiol Cell Physiol 2015; 309:C97-9. [PMID: 26040896 DOI: 10.1152/ajpcell.00150.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|