1
|
Mishima H, Ando S, Kuzuhara H, Yamamura A, Kondo R, Suzuki Y, Imaizumi Y, Yamamura H. Melatonin inhibits voltage-gated potassium K V4.2 channels and negatively regulates melatonin secretion in rat pineal glands. Am J Physiol Cell Physiol 2024; 327:C1023-C1034. [PMID: 39159388 DOI: 10.1152/ajpcell.00664.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.
Collapse
Affiliation(s)
- Hiroki Mishima
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shunsuke Ando
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hibiki Kuzuhara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
2
|
Ando S, Mizutani H, Muramatsu M, Hagihara Y, Mishima H, Kondo R, Suzuki Y, Imaizumi Y, Yamamura H. Involvement of small-conductance Ca2+-activated K+ (SKCa2) channels in spontaneous Ca2+ oscillations in rat pinealocytes. Biochem Biophys Res Commun 2022; 615:157-162. [DOI: 10.1016/j.bbrc.2022.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
3
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
4
|
Serotonin modulates melatonin synthesis as an autocrine neurotransmitter in the pineal gland. Proc Natl Acad Sci U S A 2021; 118:2113852118. [PMID: 34675083 DOI: 10.1073/pnas.2113852118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 01/23/2023] Open
Abstract
The pineal gland secretes melatonin principally at night. Regulated by norepinephrine released from sympathetic nerve terminals, adrenergic receptors on pinealocytes activate aralkylamine N-acetyltransferase that converts 5-hydroxytryptamine (5-HT, serotonin) to N-acetylserotonin, the precursor of melatonin. Previous studies from our group and others reveal significant constitutive secretion of 5-HT from pinealocytes. Here, using mass spectrometry, we demonstrated that the 5-HT is secreted primarily via a decynium-22-sensitive equilibrative plasma membrane monoamine transporter instead of by typical exocytotic quantal secretion. Activation of the endogenous 5-HT receptors on pinealocytes evoked an intracellular Ca2+ rise that was blocked by RS-102221, an antagonist of 5-HT2C receptors. Applied 5-HT did not evoke melatonin secretion by itself, but it did potentiate melatonin secretion evoked by submaximal norepinephrine. In addition, RS-102221 reduced the norepinephrine-induced melatonin secretion in strips of pineal gland, even when no exogenous 5-HT was added, suggesting that the 5-HT that is constitutively released from pinealocytes accumulates enough in the tissue to act as an autocrine feedback signal sensitizing melatonin release.
Collapse
|
5
|
Matta C, Lewis R, Fellows C, Diszhazi G, Almassy J, Miosge N, Dixon J, Uribe MC, May S, Poliska S, Barrett-Jolley R, Fodor J, Szentesi P, Hajdú T, Keller-Pinter A, Henslee E, Labeed FH, Hughes MP, Mobasheri A. Transcriptome-based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from late-stage osteoarthritic cartilage. J Cell Physiol 2021; 236:7421-7439. [PMID: 34008188 DOI: 10.1002/jcp.30413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher Fellows
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gyula Diszhazi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Janos Almassy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicolai Miosge
- Department of Prosthodontics, Tissue Regeneration Work Group, Georg August University, Göttingen, Germany
| | - James Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Marcos C Uribe
- The Nottingham Arabidopsis Stock Centre (NASC), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Sean May
- The Nottingham Arabidopsis Stock Centre (NASC), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Janos Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Erin Henslee
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Michael P Hughes
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Abstract
Melatonin (Mel) promotes sleep through G protein-coupled receptors. However, the downstream molecular target(s) is unknown. We identified the Caenorhabditis elegans BK channel SLO-1 as a molecular target of the Mel receptor PCDR-1-. Knockout of pcdr-1, slo-1, or homt-1 (a gene required for Mel synthesis) causes substantially increased neurotransmitter release and shortened sleep duration, and these effects are nonadditive in double knockouts. Exogenous Mel inhibits neurotransmitter release and promotes sleep in wild-type (WT) but not pcdr-1 and slo-1 mutants. In a heterologous expression system, Mel activates the human BK channel (hSlo1) in a membrane-delimited manner in the presence of the Mel receptor MT1 but not MT2 A peptide acting to release free Gβγ also activates hSlo1 in a MT1-dependent and membrane-delimited manner, whereas a Gβλ inhibitor abolishes the stimulating effect of Mel. Our results suggest that Mel promotes sleep by activating the BK channel through a specific Mel receptor and Gβλ.
Collapse
|
7
|
Yin H, Zhang X, Li K, Li Z, Yang Z. Effects of miR-200b-3p inhibition on the TRPC6 and BK Ca channels of podocytes. Arch Biochem Biophys 2018; 653:80-89. [PMID: 29958896 DOI: 10.1016/j.abb.2018.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Transient receptor potential canonical 6 (TRPC6) and large-conductance Ca2+-activated K+ channels (BKCa), two of the key ion channels for blood filtration function of podocytes, have been implicated in the pathogenesis of kidney diseases. Moreover, it has been reported that miR-200 b plays an important role in regulating the biological processes of podocytes. In this study, we aimed to examine whether there was a relationship between miR-200 b-3p and the two ion channels. It was suggested that miR-200 b-3p down-regulation inhibited the currents of TRPC6 and BKCa channels. It also showed that miR-200 b-3p inhibition reduced the levels of protein expression and mRNA transcription of TRPC6 and BKCa channels. Moreover, the down-regulation of miR-200 b-3p resulted in the decrease of the intracellular Ca2+ concentration. It was also suggested that the decrease of BKCa currents resulting from miR-200 b-3p inhibition could be regulated by TRPC6 channels. TRPC6 blockage also inhibited BKCa currents and reduced the level of BKCa expression. These results together suggested that miR-200 b-3p inhibition reduced the currents of TRPC6, which led to the decrease of intracellular Ca2+ concentration. The decrease of Ca2+ source required for BKCa activation may result in the inhibition of BKCa currents.
Collapse
Affiliation(s)
- Hongqiang Yin
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaochen Zhang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhigui Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Yang X, Xu M, Huang G, Zhang C, Pang Y, Yang Z, Cheng Y. The Hyperglycemic Effect of Melatonin in the Chinese Mitten Crab, Eriocheir sinensis. Front Physiol 2018; 9:270. [PMID: 29618988 PMCID: PMC5871893 DOI: 10.3389/fphys.2018.00270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Melatonin has been identified in a variety of invertebrate species, but its function is not as well understood as in crustaceans. The effects of melatonin on hemolymph glucose levels and tissue carbohydrate metabolism in the Chinese mitten crab, Eriocheir sinensis, were fully investigated in this study. Moreover, whether the eyestalk (an important endocrine center in invertebrate species) involves in this process or not, also were clarified. Analysis revealed that eyestalk ablation, especially bilateral, caused a significant decrease in the hemolymph glucose level. Moreover, injection of melatonin induced hyperglycemia in a dose-dependent manner both in intact and ablated crabs. Based on the expression of CHH mRNA in the 10 different tissues, eyestalk, thoracic ganglion, intestinal tract and hemolymph were selected to estimate the effect of melatonin on the expression of CHH mRNA. Bilateral eyestalk ablation caused a significant increase in the expression of CHH mRNA in the thoracic ganglion, intestinal tract and hemolymph compared with the controls. In addition, injection of melatonin into intact or ablated crabs elevated the CHH mRNA level in the eyestalk, thoracic ganglion and intestinal tract tissues compared with controls. The hemolymph CHH mRNA after melatonin injection was elevated only in ablated crabs. Administration of melatonin resulted in a significant decrease in total carbohydrates and glycogen levels with an increase in phosphorylase activity levels in the hepatopancreas and muscle in intact and ablated crabs. Our findings demonstrated that melatonin can induce hyperglycemic effects in both intact and ablated crabs, suggesting that this effect is probably not mediated solely via eyestalk.
Collapse
Affiliation(s)
- Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Minjie Xu
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Genyong Huang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yangyang Pang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhigang Yang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Yamamura H, Nishimura K, Hagihara Y, Suzuki Y, Imaizumi Y. TMEM16A and TMEM16B channel proteins generate Ca 2+-activated Cl - current and regulate melatonin secretion in rat pineal glands. J Biol Chem 2017; 293:995-1006. [PMID: 29187602 DOI: 10.1074/jbc.ra117.000326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
Pinealocytes regulate circadian rhythm by synthesizing and secreting melatonin. These cells generate action potentials; however, the contribution of specific ion channels to melatonin secretion from pinealocytes remains unclear. In this study, the involvement and molecular identity of Ca2+-activated Cl- (ClCa) channels in the regulation of melatonin secretion were examined in rat pineal glands. Treatment with the ClCa channel blockers, niflumic acid or T16Ainh-A01, significantly reduced melatonin secretion in pineal glands. After pineal K+ currents were totally blocked under whole-cell patch clamp conditions, depolarization and subsequent repolarization induced a slowly activating outward current and a substantial inward tail current, respectively. Both of these current changes were dependent on intracellular Ca2+ concentration and inhibited by niflumic acid and T16Ainh-A01. Quantitative real-time PCR, Western blotting, and immunocytochemical analyses revealed that TMEM16A and TMEM16B were highly expressed in pineal glands. siRNA knockdown of TMEM16A and/or TMEM16B showed that both channels contribute to ClCa currents in pinealocytes. Conversely, co-expression of TMEM16A and TMEM16B channels or the expression of this tandem channel in HEK293 cells mimicked the electrophysiological characteristics of ClCa currents in pinealocytes. Moreover, bimolecular fluorescence complementation, FRET, and co-immunoprecipitation experiments suggested that TMEM16A and TMEM16B can form heteromeric channels, as well as homomeric channels. In conclusion, pineal ClCa channels are composed of TMEM16A and TMEM16B subunits, and these fluxes regulate melatonin secretion in pineal glands.
Collapse
Affiliation(s)
- Hisao Yamamura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kaori Nishimura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yumiko Hagihara
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuji Imaizumi
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
10
|
Mendoza-Vargas L, Báez-Saldaña A, Alvarado R, Fuentes-Pardo B, Flores-Soto E, Solís-Chagoyán H. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish. INVERTEBRATE NEUROSCIENCE 2017; 17:6. [PMID: 28540583 DOI: 10.1007/s10158-017-0199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.
Collapse
Affiliation(s)
- Leonor Mendoza-Vargas
- Departamento El Hombre Y Su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, CP 04960, Mexico, Mexico
| | - Armida Báez-Saldaña
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Nueva Sede, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Ramón Alvarado
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Beatriz Fuentes-Pardo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510, Mexico, Mexico
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, CP 14370, Mexico, D.F, Mexico.
| |
Collapse
|