1
|
von Kügelgen I. Pharmacological characterization of P2Y receptor subtypes - an update. Purinergic Signal 2024; 20:99-108. [PMID: 37697211 PMCID: PMC10997570 DOI: 10.1007/s11302-023-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
2
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Gough LA, Sparks SA, McNaughton LR, Higgins MF, Newbury JW, Trexler E, Faghy MA, Bridge CA. A critical review of citrulline malate supplementation and exercise performance. Eur J Appl Physiol 2021; 121:3283-3295. [PMID: 34417881 PMCID: PMC8571142 DOI: 10.1007/s00421-021-04774-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
As a nitric oxide (NO) enhancer, citrulline malate (CM) has recently been touted as a potential ergogenic aid to both resistance and high-intensity exercise performance, as well as the recovery of muscular performance. The mechanism has been associated with enhanced blood flow to active musculature, however, it might be more far-reaching as either ammonia homeostasis could be improved, or ATP production could be increased via greater availability of malate. Moreover, CM might improve muscle recovery via increased nutrient delivery and/or removal of waste products. To date, a single acute 8 g dose of CM on either resistance exercise performance or cycling has been the most common approach, which has produced equivocal results. This makes the effectiveness of CM to improve exercise performance difficult to determine. Reasons for the disparity in conclusions seem to be due to methodological discrepancies such as the testing protocols and the associated test–retest reliability, dosing strategy (i.e., amount and timing), and the recent discovery of quality control issues with some manufacturers stated (i.e., citrulline:malate ratios). Further exploration of the optimal dose is therefore required including quantification of the bioavailability of NO, citrulline, and malate following ingestion of a range of CM doses. Similarly, further well-controlled studies using highly repeatable exercise protocols with a large aerobic component are required to assess the mechanisms associated with this supplement appropriately. Until such studies are completed, the efficacy of CM supplementation to improve exercise performance remains ambiguous.
Collapse
Affiliation(s)
- Lewis A Gough
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK.
| | - S Andy Sparks
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | | | - Josh W Newbury
- Research Centre for Life and Sport Science (CLaSS), Human Performance and Health Research Group, Birmingham City University, Birmingham, UK
| | | | - Mark A Faghy
- Human Sciences Research Centre, University of Derby, Derby, UK
| | - Craig A Bridge
- Sports Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| |
Collapse
|
4
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
6
|
Woods LT, Jasmer KJ, Muñoz Forti K, Shanbhag VC, Camden JM, Erb L, Petris MJ, Weisman GA. P2Y 2 receptors mediate nucleotide-induced EGFR phosphorylation and stimulate proliferation and tumorigenesis of head and neck squamous cell carcinoma cell lines. Oral Oncol 2020; 109:104808. [PMID: 32540611 PMCID: PMC7736485 DOI: 10.1016/j.oraloncology.2020.104808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess functional expression of the P2Y2 nucleotide receptor (P2Y2R) in head and neck squamous cell carcinoma (HNSCC) cell lines and define its role in nucleotide-induced epidermal growth factor receptor (EGFR) transactivation. The use of anti-EGFR therapeutics to treat HNSCC is hindered by intrinsic and acquired drug resistance. Defining novel pathways that modulate EGFR signaling could identify additional targets to treat HNSCC. MATERIALS AND METHODS In human HNSCC cell lines CAL27 and FaDu and the mouse oral cancer cell line MOC2, P2Y2R contributions to extracellular nucleotide-induced changes in intracellular free Ca2+ concentration and EGFR and extracellular signal-regulated kinase (ERK1/2) phosphorylation were determined using the ratiometric Ca2+ indicator fura-2 and immunoblot analysis, respectively. Genetic knockout of P2Y2Rs using CRISPR technology or pharmacological inhibition with P2Y2R-selective antagonist AR-C118925 defined P2Y2R contributions to in vivo tumor growth. RESULTS P2Y2R agonists UTP and ATP increased intracellular Ca2+ levels and ERK1/2 and EGFR phosphorylation in CAL27 and FaDu cells, responses that were inhibited by AR-C118925 or P2Y2R knockout. P2Y2R-mediated EGFR phosphorylation was also attenuated by inhibition of the adamalysin family of metalloproteases or Src family kinases. P2Y2R knockout reduced UTP-induced CAL27 cell proliferation in vitro and significantly reduced CAL27 and FaDu tumor xenograft volume in vivo. In a syngeneic mouse model of oral cancer, AR-C118925 administration reduced MOC2 tumor volume. CONCLUSION P2Y2Rs mediate HNSCC cell responses to extracellular nucleotides and genetic or pharmacological blockade of P2Y2R signaling attenuates tumor cell proliferation and tumorigenesis, suggesting that the P2Y2R represents a novel therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kevin Muñoz Forti
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Vinit C Shanbhag
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Laurie Erb
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA; Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65211-7310 USA
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA.
| |
Collapse
|
7
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
9
|
Woods LT, Camden JM, Khalafalla MG, Petris MJ, Erb L, Ambrus JL, Weisman GA. P2Y 2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis 2018; 24:761-771. [PMID: 29297959 DOI: 10.1111/odi.12823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Interleukin-14α-transgenic (IL-14αTG) mice develop an autoimmune exocrinopathy with characteristics similar to Sjögren's syndrome, including sialadenitis and hyposalivation. The P2Y2 receptor (P2Y2 R) for extracellular ATP and UTP is upregulated during salivary gland inflammation (i.e., sialadenitis) where it regulates numerous inflammatory responses. This study investigated the role of P2Y2 Rs in autoimmune sialadenitis in the IL-14αTG mouse model of Sjögren's syndrome. MATERIALS AND METHODS IL-14αTG mice were bred with P2Y2 R-/- mice to generate IL-14αTG × P2Y2 R-/- mice. P2Y2 R expression, lymphocytic focus scores, B- and T-cell accumulation, and lymphotoxin-α expression were evaluated in the submandibular glands (SMG) along with carbachol-stimulated saliva secretion in IL-14αTG, IL-14αTG × P2Y2 R-/- , and C57BL/6 control mice at 9 and 12 months of age. RESULTS Genetic ablation of P2Y2 Rs in IL-14αTG mice significantly reduced B and T lymphocyte infiltration of SMGs. However, reduced sialadenitis did not restore saliva secretion in IL-14αTG × P2Y2 R-/- mice. Decreased sialadenitis in IL-14αTG × P2Y2 R-/- mice correlated with decreased lymphotoxin-α levels, a critical proinflammatory cytokine associated with autoimmune pathology in IL-14αTG mice. CONCLUSIONS The results of this study suggest that P2Y2 Rs contribute to the development of salivary gland inflammation in IL-14αTG mice and may also contribute to autoimmune sialadenitis in humans.
Collapse
Affiliation(s)
- L T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - M J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - L Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - J L Ambrus
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - G A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Khalafalla FG, Greene S, Khan H, Ilves K, Monsanto MM, Alvarez R, Chavarria M, Nguyen J, Norman B, Dembitsky WP, Sussman MA. P2Y 2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling. Circ Res 2017; 121:1224-1236. [PMID: 28923792 DOI: 10.1161/circresaha.117.310812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Autologous stem cell therapy using human c-Kit+ cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. OBJECTIVE To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y2 nucleotide receptor (P2Y2R) activated by extracellular ATP and UTP molecules released following injury/stress. METHODS AND RESULTS c-Kit+ hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y2R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y2R. Mechanistically, P2Y2R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. CONCLUSIONS Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y2R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y2R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF.
Collapse
Affiliation(s)
- Farid G Khalafalla
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Steven Greene
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Hashim Khan
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kelli Ilves
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Megan M Monsanto
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Roberto Alvarez
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Monica Chavarria
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Jonathan Nguyen
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Benjamin Norman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Walter P Dembitsky
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Mark A Sussman
- From the SDSU Heart Research Institute, San Diego State University, CA (F.G.K., S.G., H.K., K.I., M.M.M., R.A., M.C., J.N., B.N., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.).
| |
Collapse
|
11
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
12
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
13
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|