1
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
2
|
Kawata M, Luziga C, Miyata H, Sugiura T, Wada N. Differential expression of myosin heavy chain isoforms type II in skeletal muscles of polar and black bears. Anat Histol Embryol 2022; 52:363-372. [PMID: 36471656 DOI: 10.1111/ahe.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
In this study, the pattern of myosin heavy chain (MHC) isoforms expression in skeletal muscles of the trunk, forelimb and hindlimb in Polar Bear (PB) Ursus maritimus; American Black Bear (AmBB), Ursus americanus and Asian Black Bear (AsBB), Ursus thibetanus was analysed by immunohistochemistry and SDS-PAGE. Results showed that slow (MHC-I) and fast (MHC-II) isoforms exist in muscles of bears. Type II fibres were classified further into Type IIa and IIx in PB but not in AsBB and AmBB. The distribution of Type I and Type II fibres in the trunk, forelimb and hindlimb varied based on muscle type and animal species. The proportions of Type I fibres formed approximately one-third of muscle composition in PB (trunk, 32.0%; forelimb, 34.7%; hindlimb, 34.5%) and a half in both AsBB and AmBB whereas Type IIa and IIx formed approximately two-third in PB (trunk, 68.0%; forelimb, 65.3%; hindlimb, 65.5%) and a half of Type II in both AmBB and AsBB. PB is a good swimmer, lives in Arctic Ocean on slippery ice catching aquatic mammals such as seals and is larger in size compared to the medium sized AmBB (living in forest) and AsBB (arboreal). The results suggest that in bears, there is greater diversity in MHC isoforms II, being expressed in selected fast contracting skeletal muscles in response to variety of environments, weight bearing and locomotion.
Collapse
Affiliation(s)
- Mutsumi Kawata
- The United Veterinary Graduated School, Yamaguchi University, Yamaguchi City, Japan
| | - Claudius Luziga
- Department of Veterinary Anatomy and Pathology, College of Veterinary and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takao Sugiura
- Laboratory of Biomechanics and Physiology, Faculty of Liberal Arts, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Wada
- Department of System Physiology, Yamaguchi University, Yamaguchi City, Japan
| |
Collapse
|
3
|
Vignier N, Chatzifrangkeskou M, Pinton L, Wioland H, Marais T, Lemaitre M, Le Dour C, Peccate C, Cardoso D, Schmitt A, Wu W, Biferi MG, Naouar N, Macquart C, Beuvin M, Decostre V, Bonne G, Romet-Lemonne G, Worman HJ, Tedesco FS, Jégou A, Muchir A. The non-muscle ADF/cofilin-1 controls sarcomeric actin filament integrity and force production in striated muscle laminopathies. Cell Rep 2021; 36:109601. [PMID: 34433058 PMCID: PMC8411111 DOI: 10.1016/j.celrep.2021.109601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Thibaut Marais
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UMS28, Phénotypage du Petit Animal, Paris, France
| | - Caroline Le Dour
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Cécile Peccate
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Déborah Cardoso
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Alain Schmitt
- Université de Paris, INSERM, CNRS, Institut Cochin, 75005 Paris, France
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Maria-Grazia Biferi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Naïra Naouar
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Coline Macquart
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Maud Beuvin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Valérie Decostre
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | | | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; The Francis Crick Institute, London, UK
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
| |
Collapse
|
4
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
5
|
Ferry A, Messéant J, Parlakian A, Lemaitre M, Roy P, Delacroix C, Lilienbaum A, Hovhannisyan Y, Furling D, Klein A, Li Z, Agbulut O. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse. J Physiol 2020; 598:3667-3689. [PMID: 32515007 DOI: 10.1113/jp279282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix. Deletion of the desmin gene in mdx mice [double knockout (DKO) mice] induces marked muscle weakness and fatigue resistance compared to mdx mice. Muscle fragility (higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice. By contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy. Desmin cDNA transfer with adeno-associated virus in newborn mdx mice reduced muscle weakness. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic muscle. ABSTRACT Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by dystrophin deficiency. Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix that contributes to muscle function. In the present study, we attempted to provide further insight into the roles of desmin, for which the expression is increased in the muscle from the mouse mdx DMD model. We show that a deletion of the desmin gene (Des) in mdx mice [double knockout (DKO) mice, mdx:desmin-/-] induces a marked muscle weakness; namely, a reduced absolute maximal force production and increased fatigue compared to that in mdx mice. Fragility (i.e. higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice, despite the promotion of supposedly less fragile muscle fibres in DKO mice, and this worsening of fragility was related to a decreased muscle excitability. Moreover, in contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy, as indicated by smaller and fewer fibres, with a reduced percentage of centronucleated fibres, potentially explaining the severe muscle weakness. Notably, Desmin cDNA transfer with adeno-associated virus in newborn mdx mice improved specific maximal force normalized to muscle weight. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic mdx mice, which differ, at least in part, from those observed in healthy muscle.
Collapse
Affiliation(s)
- Arnaud Ferry
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France.,Université de Paris, Institut des Sciences du Sport Santé de Paris, UFRSTAPS, Paris, France
| | - Julien Messéant
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Pauline Roy
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Clément Delacroix
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denis Furling
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Arnaud Klein
- Sorbonne Université, Centre de recherche en myologie, INSERM U974, Institut de Myologie, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
6
|
Komiya Y, Kobayashi C, Uchida N, Otsu S, Tanio T, Yokoyama I, Nagasao J, Arihara K. Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Anim Sci J 2019; 90:1018-1025. [PMID: 31132809 DOI: 10.1111/asj.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation-induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif-containing 63) expression up-regulated by denervation treatment, and this was due to decreased tumor necrosis factor-alpha (TNF-α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF-α production during muscle atrophy induced by sciatic nerve denervation in mice.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Chiaki Kobayashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoyasu Uchida
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shohei Otsu
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tatsuki Tanio
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Nagasao
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
7
|
Kawao N, Moritake A, Tatsumi K, Kaji H. Roles of Irisin in the Linkage from Muscle to Bone During Mechanical Unloading in Mice. Calcif Tissue Int 2018; 103:24-34. [PMID: 29332162 DOI: 10.1007/s00223-018-0387-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 01/03/2023]
Abstract
Mechanical unloading induces disuse muscle atrophy and bone loss, but the details in mechanism involved in those pathophysiological conditions are not fully understood. Interaction between muscle and bone has been recently noted. Here, we investigated the roles of humoral factors linking muscle to bone during mechanical unloading using mice with hindlimb unloading (HU) and sciatic neurectomy (SNX). HU and SNX reduced muscle volume surrounding the tibia, tissue weights of soleus and gastrocnemius muscle, and trabecular bone mineral density (BMD) in the tibia of mice. Among humoral factors linking muscle to bone, HU and SNX reduced fibronectin type III domain-containing 5 (FNDC5) mRNA levels in the soleus muscle of mice. Simple regression analysis revealed that FNDC5 mRNA levels in the soleus muscle were positively related to trabecular BMD in the tibia of control and HU mice as well as sham and SNX mice. Moreover, FNDC5 mRNA levels were negatively correlated with receptor activator of nuclear factor-κB ligand (RANKL) mRNA levels in the tibia of control and HU mice. Irisin, a product of FNDC5, suppressed osteoclast formation from mouse bone marrow cells and RANKL mRNA levels in primary osteoblasts. FNDC5 mRNA levels elevated by fluid shear stress were antagonized by bone morphogenetic protein (BMP) and phosphatidylinositol 3-kinase (PI3K) signaling inhibitors in myoblastic C2C12 cells. In conclusion, the present study first showed that mechanical unloading reduces irisin expression in the skeletal muscle of mice presumably through BMP and PI3K pathways. Irisin might be involved in muscle/bone relationships regulated by mechanical stress in mice.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Akihiro Moritake
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan.
| |
Collapse
|
8
|
Wang S, Seaberg B, Paez-Colasante X, Rimer M. Defective Acetylcholine Receptor Subunit Switch Precedes Atrophy of Slow-Twitch Skeletal Muscle Fibers Lacking ERK1/2 Kinases in Soleus Muscle. Sci Rep 2016; 6:38745. [PMID: 27934942 PMCID: PMC5146667 DOI: 10.1038/srep38745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Bonnie Seaberg
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Ximena Paez-Colasante
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
9
|
Baumann CW, Liu HM, Thompson LV. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality. PLoS One 2016; 11:e0160839. [PMID: 27513942 PMCID: PMC4981385 DOI: 10.1371/journal.pone.0160839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle’s intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6–8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling.
Collapse
Affiliation(s)
- Cory W. Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Haiming M. Liu
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - LaDora V. Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cattin ME, Ferry A, Vignaud A, Mougenot N, Jacquet A, Wahbi K, Bertrand AT, Bonne G. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscul Disord 2016; 26:490-9. [DOI: 10.1016/j.nmd.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
|
11
|
Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep 2015; 5:17535. [PMID: 26657343 PMCID: PMC4675991 DOI: 10.1038/srep17535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023] Open
Abstract
Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.
Collapse
|
12
|
Roseno SL, Davis PR, Bollinger LM, Powell JJS, Witczak CA, Brault JJ. Short-term, high-fat diet accelerates disuse atrophy and protein degradation in a muscle-specific manner in mice. Nutr Metab (Lond) 2015; 12:39. [PMID: 26539241 PMCID: PMC4632408 DOI: 10.1186/s12986-015-0037-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A short-term high-fat diet impairs mitochondrial function and the ability of skeletal muscle to respond to growth stimuli, but it is unknown whether such a diet alters the ability to respond to atrophy signals. The purpose of this study was to determine whether rapid weigh gain induced by a high-fat (HF) diet accelerates denervation-induced muscle atrophy. METHODS Adult, male mice (C57BL/6) were fed a control or HF (60 % calories as fat) diet for 3 weeks (3wHF). Sciatic nerve was sectioned unilaterally for the final 5 or 14 days of the diet. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated in vitro to determine rates of protein degradation and subsequently homogenized for determination of protein levels of LC3, ubiquitination, myosin heavy chain (MHC) distribution, and mitochondrial subunits. RESULTS When mice were fed the 3wHF diet, whole-body fat mass more than doubled, but basal (innervated) muscle weights, rates of protein degradation, LC3 content, mitochondrial protein content, and myosin isoform distribution were not significantly different than with the control diet in either soleus or EDL. However in the 14 day denervated soleus, the 3wHF diet significantly augmented loss of mass, proteolysis rate, amount of the autophagosome marker LC3 II, and the amount of overall ubiquitination as compared to the control fed mice. On the contrary, the 3wHF diet had no significant effect in the EDL on amount of mass loss, proteolysis rate, LC3 levels, or ubiquitination. Fourteen days denervation also induced a loss of mitochondrial proteins in the soleus but not the EDL, regardless of the diet. CONCLUSIONS Taken together, a short-term, high-fat diet augments denervation muscle atrophy by induction of protein degradation in the mitochondria-rich soleus but not in the glycolytic EDL. These findings suggest that the denervation-induced loss of mitochondria and HF diet-induced impairment of mitochondrial function may combine to promote skeletal muscle atrophy.
Collapse
Affiliation(s)
- Steven L Roseno
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC USA ; Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC USA
| | - Patrick R Davis
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC USA ; Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC USA
| | - Lance M Bollinger
- Department of Kinesiology and Health Promotion, College of Education, University of Kentucky, Lexington, KY USA
| | - Jonathan J S Powell
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC USA ; Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC USA
| | - Carol A Witczak
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC USA ; Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC USA ; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, 27834 NC USA ; Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC USA
| | - Jeffrey J Brault
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC USA ; Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC USA ; Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, 27834 NC USA ; Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC USA
| |
Collapse
|
13
|
Rizzuto E, Pisu S, Musarò A, Del Prete Z. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis. Ann Biomed Eng 2015; 43:2196-206. [PMID: 25631208 PMCID: PMC4516896 DOI: 10.1007/s10439-015-1259-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1G93A transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1G93A animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1G93A neuromuscular junctions.
Collapse
Affiliation(s)
- Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy,
| | | | | | | |
Collapse
|
14
|
Li Z, Parlakian A, Coletti D, Alonso-Martin S, Hourdé C, Joanne P, Gao-Li J, Blanc J, Ferry A, Paulin D, Xue Z, Agbulut O. Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy. J Cell Sci 2014; 127:4589-601. [PMID: 25179606 DOI: 10.1242/jcs.143164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.
Collapse
Affiliation(s)
- Zhenlin Li
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Ara Parlakian
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Dario Coletti
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Sonia Alonso-Martin
- Sorbonne Universités, UPMC Univ-Paris 06, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris-France
| | - Christophe Hourdé
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Pierre Joanne
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Jacqueline Gao-Li
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Jocelyne Blanc
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ-Paris 06, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris-France
| | - Denise Paulin
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Zhigang Xue
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 8256/INSERM ERL U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Paris, F-75005 France
| |
Collapse
|
15
|
Mouisel E, Relizani K, Mille-Hamard L, Denis R, Hourdé C, Agbulut O, Patel K, Arandel L, Morales-Gonzalez S, Vignaud A, Garcia L, Ferry A, Luquet S, Billat V, Ventura-Clapier R, Schuelke M, Amthor H. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R444-54. [DOI: 10.1152/ajpregu.00377.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn −/− mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn −/− mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn−/− mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn −/− mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Collapse
Affiliation(s)
- Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (INSERM)/Paul Sabatier University, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
| | - Karima Relizani
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
| | | | - Raphaël Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Paris, France
| | - Christophe Hourdé
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Laboratory of Exercise Physiology, University of Savoie, Chambery, France
| | - Onnik Agbulut
- UPMC, Paris 06, Sorbonne Universités, UMR Centre National de la Recherche Scientifique (CNRS) Biological Adaptation and Ageing, Paris, France
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Ludovic Arandel
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Luis Garcia
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
- Laboratoire International Associé - Biothérapies Appliquées aux Handicaps Neuromusculaires, Centre Scientifique de Monaco, Monaco
| | - Arnaud Ferry
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Université Paris Descartes, Paris, France
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Paris, France
- CNRS, EAC 4413, Paris, France; and
| | | | | | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Amthor
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
- Laboratoire International Associé - Biothérapies Appliquées aux Handicaps Neuromusculaires, Centre Scientifique de Monaco, Monaco
| |
Collapse
|
16
|
Ferry A, Joanne P, Hadj-Said W, Vignaud A, Lilienbaum A, Hourdé C, Medja F, Noirez P, Charbonnier F, Chatonnet A, Chevessier F, Nicole S, Agbulut O, Butler-Browne G. Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscul Disord 2014; 24:960-72. [PMID: 25042397 DOI: 10.1016/j.nmd.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
Disease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation. However, the mechanisms of muscle weakness are not well known. Using murine models of amyotrophic lateral sclerosis (SOD1(G93A) transgenic mice), congenital myasthenic syndrome (AChE knockout mice and Musk(V789M/-) mutant mice), Schwartz-Jampel syndrome (Hspg2(C1532YNEO/C1532YNEO) mutant mice) and traumatic nerve injury (Neurotomized wild-type mice), we show that the reduced maximal activation capacity (the ability of the nerve to maximally activate the muscle) explains 52%, 58% and 100% of severe weakness in respectively SOD1(G93A), Neurotomized and Musk mice, whereas muscle atrophy only explains 37%, 27% and 0%. We also demonstrate that the impaired maximal activation capacity observed in SOD1, Neurotomized, and Musk mice is not highly related to Hdac4 gene upregulation. Moreover, in SOD1 and Neurotomized mice our results suggest LC3, Fn14, Bcl3 and Gadd45a as candidate genes involved in the maintenance of the severe atrophic state. In conclusion, our study indicates that muscle weakness can result from the triggering of different signaling pathways. This knowledge may be helpful in designing therapeutic strategies and finding new drug targets for amyotrophic lateral sclerosis, congenital myasthenic syndrome, Schwartz-Jampel syndrome and nerve injury.
Collapse
Affiliation(s)
- Arnaud Ferry
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France; Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France.
| | - Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Wahiba Hadj-Said
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alban Vignaud
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alain Lilienbaum
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Fadia Medja
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Philippe Noirez
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Biologie de la Nutrition EA 2498, Paris, France
| | - Frederic Charbonnier
- Université Paris Descartes, Sorbonne Paris Cité, CESeM, UMR 8194 CNRS, Paris F-75006, France
| | - Arnaud Chatonnet
- Universités Montpellier 1 et 2, INRA, UMR 866, Montpellier, France
| | - Frederic Chevessier
- Universitätsklinikum Erlangen, Neuropathologisches Institut, Erlangen, Germany
| | - Sophie Nicole
- Université Pierre et Marie Curie - Paris 6, INSERM U975, Centre de recherche de l'Institut Cerveau Moelle, CNRS UMR 7225, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| |
Collapse
|
17
|
Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet 2013; 23:1879-93. [DOI: 10.1093/hmg/ddt580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Broch-Lips M, Pedersen TH, Riisager A, Schmitt-John T, Nielsen OB. Neuro-muscular function in the wobbler murine model of primary motor neuronopathy. Exp Neurol 2013; 248:406-15. [DOI: 10.1016/j.expneurol.2013.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/16/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
19
|
Hourdé C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, Pannerec A, Hatem S, Butler-Browne G, Agbulut O, Ferry A. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1509-18. [PMID: 23465861 DOI: 10.1016/j.ajpath.2013.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022]
Abstract
It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart.
Collapse
Affiliation(s)
- Christophe Hourdé
- Institute of Myology, INSERM U974, CNRS UMR7215, UPMC UM76, Université Pierre et Marie Curie-Paris 6, Sorbonne Universities, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, Munnich A, Gourdon G. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 2012; 8:e1003043. [PMID: 23209425 PMCID: PMC3510028 DOI: 10.1371/journal.pgen.1003043] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3′UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes. Myotonic dystrophy type 1 (DM1) is caused by the abnormal expansion of a CTG repeat located in the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form toxic nuclear foci that affect other RNAs. DM1 involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice carrying the human DM1 locus and very large expansions >1,000 CTG (DMSXL mice). Here we described for the first time, the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. We also demonstrate that DMPK antisense transcripts are expressed in various tissues from DMSXL mice and human. Both sense and antisense transcripts form nuclear foci. DMSXL mice showed molecular DM1 features such as foci and mild splicing defects as well as muscles defects, reduced muscle strength, and lower motor performances. These mice recapitulate some molecular features of DM1 leading to physiological abnormalities. DMSXL are not only a tool to decipher various mechanisms involved in DM1 but also to test the preclinical impact of systemic therapeutic strategies.
Collapse
Affiliation(s)
- Aline Huguet
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadia Medja
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Annie Nicole
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Alban Vignaud
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Généthon, Evry, France
| | - Céline Guiraud-Dogan
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Arnaud Ferry
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Valérie Decostre
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Friedrich Metzger
- F. Hoffmann-La Roche, CNS Pharma Research and Development, Basel, Switzerland
| | - Andreas Hoeflich
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martin Baraibar
- UPMC Univ Paris 06, UM 76, Institut de Myologie and Inserm, U974 and CNRS, UMR7215, Paris, France
| | - Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jack Puymirat
- Human Genetics Research Unit, Laval University, Québec City, Québec, Canada
| | - Guillaume Bassez
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Denis Furling
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Arnold Munnich
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Gourdon
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Finanger Hedderick E, Marr TG, Lin BM, Hourdé C, Leinwand LA, Kuhl D, Föller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, Alvarez de la Rosa D, Lang F, Cohn RD. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 2012; 5:80-91. [PMID: 23161797 PMCID: PMC3569655 DOI: 10.1002/emmm.201201443] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022] Open
Abstract
Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
23
|
Absence of metabolic rate allometry in an ex vivo model of mammalian skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:157-62. [DOI: 10.1016/j.cbpa.2012.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Joanne P, Hourdé C, Ochala J, Caudéran Y, Medja F, Vignaud A, Mouisel E, Hadj-Said W, Arandel L, Garcia L, Goyenvalle A, Mounier R, Zibroba D, Sakamato K, Butler-Browne G, Agbulut O, Ferry A. Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle. PLoS One 2012; 7:e35346. [PMID: 22511986 PMCID: PMC3325198 DOI: 10.1371/journal.pone.0035346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Dystrophin contributes to force transmission and has a protein-scaffolding role for a variety of signaling complexes in skeletal muscle. In the present study, we tested the hypothesis that the muscle adaptive response following mechanical overloading (ML) would be decreased in MDX dystrophic muscle lacking dystrophin. We found that the gains in muscle maximal force production and fatigue resistance in response to ML were both reduced in MDX mice as compared to healthy mice. MDX muscle also exhibited decreased cellular and molecular muscle remodeling (hypertrophy and promotion of slower/oxidative fiber type) in response to ML, and altered intracellular signalings involved in muscle growth and maintenance (mTOR, myostatin, follistatin, AMPKα1, REDD1, atrogin-1, Bnip3). Moreover, dystrophin rescue via exon skipping restored the adaptive response to ML. Therefore our results demonstrate that the adaptive response in response to ML is impaired in dystrophic MDX muscle, most likely because of the dystrophin crucial role.
Collapse
Affiliation(s)
- Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Julien Ochala
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Yvain Caudéran
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Fadia Medja
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Alban Vignaud
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Etienne Mouisel
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Wahiba Hadj-Said
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Ludovic Arandel
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Luis Garcia
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Aurélie Goyenvalle
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Rémi Mounier
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Daria Zibroba
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kei Sakamato
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Hadj-Saïd W, Bangratz M, Vignaud A, Chatonnet A, Butler-Browne G, Nicole S, Agbulut O, Ferry A. Effect of locomotor training on muscle performance in the context of nerve-muscle communication dysfunction. Muscle Nerve 2012; 45:567-77. [DOI: 10.1002/mus.22332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Chakkalakal JV, Kuang S, Buffelli M, Lichtman JW, Sanes JR. Mouse transgenic lines that selectively label Type I, Type IIA, and Types IIX+B skeletal muscle fibers. Genesis 2012; 50:50-8. [PMID: 21898764 DOI: 10.1002/dvg.20794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/02/2011] [Accepted: 08/14/2011] [Indexed: 11/08/2022]
Abstract
Skeletal muscle fibers vary in contractile and metabolic properties. Four main fiber types are present in mammalian trunk and limb muscles; they are called I, IIA, IIX, and IIB, ranging from slowest- to fastest-contracting. Individual muscles contain stereotyped proportions of two or more fiber types. Fiber type is determined by a combination of nerve-dependent and -independent influences, leading to formation of "homogeneous motor units" in which all branches of a single motor neuron form synapses on fibers of a single type. Fiber type composition of muscles can be altered in adulthood by multiple factors including exercise, denervation, hormones, and aging. To facilitate analysis of muscle development, plasticity, and innervation, we generated transgenic mouse lines in which Type I, Type IIA, and Type IIX+B fibers can be selectively labeled with distinguishable fluorophores. We demonstrate their use for motor unit reconstruction and live imaging of nerve-dependent alterations in fiber type.
Collapse
|
27
|
Wagatsuma A, Kotake N, Mabuchi K, Yamada S. Expression of nuclear-encoded genes involved in mitochondrial biogenesis and dynamics in experimentally denervated muscle. J Physiol Biochem 2011; 67:359-70. [PMID: 21394548 DOI: 10.1007/s13105-011-0083-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/22/2011] [Indexed: 12/28/2022]
Abstract
The abundance, morphology, and functional properties of mitochondria become altered in response to denervation. To gain insight into the regulation of this process, mitochondrial enzyme activities and gene expression involved in mitochondrial biogenesis and dynamics in mouse gastrocnemius muscle was investigated. Sciatic nerve transactions were performed on mice, and then gastrocnemius muscles were isolated at days 5 and 30 after surgery. Muscle weight was decreased significantly by 15% and 62% at days 5 and 30 after surgery, respectively. The activity of citrate synthase, a marker of oxidative enzyme, was reduced significantly by 31% and 53% at days 5 and 30, respectively. Enzyme histochemical analysis revealed that subsarcolemmal mitochondria were largely lost than intermyofibrillar mitochondria at day 5, and this trend was further progressed at day 30 after surgery. Expression levels of peroxisome proliferator-activated receptor, γ coactivator 1 (PGC-1)α, estrogen-related receptor α (ERRα), and mitofusin 2 were down-regulated throughout the experimental period, whereas those of PGC-1β, PRC, nuclear respiratory factor (NRF)-1, NRF-2, TFAM, and Lon protease were down-regulated at day 30 after surgery. These results suggest that PGC-1α, ERRα, and mitofusin 2 may be important factors in the process of denervation-induced mitochondrial adaptation. In addition, other PGC-1 family of transcriptional coactivators and DNA binding transcription factors may also contribute to mitochondrial adaptation after early response to denervation.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
28
|
Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM, McNamara E, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. ACTA ACUST UNITED AC 2011; 134:1101-15. [PMID: 21303860 DOI: 10.1093/brain/awr004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of pathologically defined congenital myopathies. Most patients have dominant mutations and experience severe skeletal muscle weakness, dying within one year of birth. To determine mutant ACTA1 pathobiology, transgenic mice expressing ACTA1(D286G) were created. These Tg(ACTA1)(D286G) mice were less active than wild-type individuals. Their skeletal muscles were significantly weaker by in vitro analyses and showed various pathological lesions reminiscent of human patients, however they had a normal lifespan. Mass spectrometry revealed skeletal muscles from Tg(ACTA1)(D286G) mice contained ∼25% ACTA1(D286G) protein. Tg(ACTA1)(D286G) mice were crossed with hemizygous Acta1(+/-) knock-out mice to generate Tg(ACTA1)(D286G)(+/+).Acta1(+/-) offspring that were homozygous for the transgene and hemizygous for the endogenous skeletal muscle α-actin gene. Akin to most human patients, skeletal muscles from these offspring contained approximately equal proportions of ACTA1(D286G) and wild-type actin. Strikingly, the majority of these mice presented with severe immobility between postnatal Days 8 and 17, requiring euthanasia. Their skeletal muscles contained extensive structural abnormalities as identified in severely affected human patients, including nemaline bodies, actin accumulations and widespread sarcomeric disarray. Therefore we have created valuable mouse models, one of mild dominant ACTA1 disease [Tg(ACTA1)(D286G)], and the other of severe disease, with a dramatically shortened lifespan [Tg(ACTA1)(D286G)(+/+).Acta1(+/-)]. The correlation between mutant ACTA1 protein load and disease severity parallels effects in ACTA1 families and suggests altering this ratio in patient muscle may be a therapy for patients with dominant ACTA1 disease. Furthermore, ringbinden fibres were observed in these mouse models. The presence of such features suggests that perhaps patients with ringbinden of unknown genetic origin should be considered for ACTA1 mutation screening. This is the first experimental, as opposed to observational, evidence that mutant protein load determines the severity of ACTA1 disease.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci U S A 2010; 107:14327-32. [PMID: 20660752 DOI: 10.1073/pnas.1009536107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anabolic effects of androgens on skeletal muscles are thought to be mediated predominantly through the androgen receptor (AR), a member of the ligand-dependent nuclear receptor superfamily. However, despite numerous studies performed in men and in rodents, these effects remain poorly understood. To characterize androgen signaling in skeletal muscles, we generated mice in which the AR is selectively ablated in myofibers. We show that myocytic AR controls androgen-induced insulin-like growth factor IEa (IGF-IEa) expression in the highly androgen-sensitive perineal muscles and that it mediates androgen-stimulated postnatal hypertrophy of these muscles. In contrast, androgen-dependent postnatal hypertrophy of limb muscle fibers is independent of myocytic AR. Thus, androgens control perineal and limb muscle mass in male mice through myocytic AR-dependent and -independent pathways, respectively. Importantly, we also show that AR deficiency in limb myocytes impairs myofibrillar organization of sarcomeres and decreases muscle strength, thus demonstrating that myocytic AR controls key pathways required for maximum force production. These distinct androgen signaling pathways in perineal and limb muscles may allow the design of screens to identify selective androgen modulators of muscle strength.
Collapse
|
30
|
Sato Y, Probst HC, Tatsumi R, Ikeuchi Y, Neuberger MS, Rada C. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J Biol Chem 2010; 285:7111-8. [PMID: 20022958 PMCID: PMC2844160 DOI: 10.1074/jbc.m109.052977] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/03/2009] [Indexed: 11/06/2022] Open
Abstract
The apoB RNA-editing enzyme, catalytic polypeptide-like (APOBEC) family of proteins includes APOBEC1, APOBEC3, and activation-induced deaminase, all of which are zinc-dependent cytidine deaminases active on polynucleotides and involved in RNA editing or DNA mutation. In contrast, the biochemical and physiological functions of APOBEC2, a muscle-specific member of the family, are unknown, although it has been speculated, like APOBEC1, to be an RNA-editing enzyme. Here, we show that, although expressed widely in striated muscle (with levels peaking late during myoblast differentiation), APOBEC2 is preferentially associated with slow-twitch muscle, with its abundance being considerably greater in soleus compared with gastrocnemius muscle and, within soleus muscle, in slow as opposed to fast muscle fibers. Its abundance also decreases following muscle denervation. We further show that APOBEC2-deficient mice harbor a markedly increased ratio of slow to fast fibers in soleus muscle and exhibit an approximately 15-20% reduction in body mass from birth onwards, with elderly mutant animals revealing clear histological evidence of a mild myopathy. Thus, APOBEC2 is essential for normal muscle development and maintenance of fiber-type ratios; although its molecular function remains to be identified, biochemical analyses do not especially argue for any role in RNA editing.
Collapse
MESH Headings
- APOBEC Deaminases
- Animals
- Body Weight
- Cell Line
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Denervation
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Protein Multimerization
Collapse
Affiliation(s)
- Yusuke Sato
- From the Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Hans Christian Probst
- the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Ryuichi Tatsumi
- From the Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Yoshihide Ikeuchi
- From the Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan and
| | - Michael S. Neuberger
- the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Cristina Rada
- the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|
31
|
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A, Freyssenet D, Tanti JF, Le-Marchand-Brustel Y, Ferrier B, Conjard-Duplany A, Romanino K, Bauché S, Hantaï D, Mueller M, Kozma SC, Thomas G, Rüegg MA, Ferry A, Pende M, Bigard X, Koulmann N, Schaeffer L, Gangloff YG. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. ACTA ACUST UNITED AC 2010; 187:859-74. [PMID: 20008564 PMCID: PMC2806319 DOI: 10.1083/jcb.200903131] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
mTor, acting mainly via mTORC1, controls dystrophin transcription in a raptor- and rictor-independent mechanism. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent.
Collapse
Affiliation(s)
- Valérie Risson
- Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5239, IFR128, Université de Lyon, Equipe Différenciation Neuromusculaire, Ecole Normale Supérieure, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Treebak JT, Birk JB, Hansen BF, Olsen GS, Wojtaszewski JFP. A-769662 activates AMPK β1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 2009; 297:C1041-52. [DOI: 10.1152/ajpcell.00051.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
5′-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose uptake in skeletal muscle. We studied incubated soleus and extensor digitorum longus (EDL) muscles from 129S6/sv and C57BL/6 mice. Glucose uptake increased only in soleus from 129S6/sv when concentrations of A-769662 were 500 μM (∼15%, P < 0.05) and 1 mM (∼60%, P < 0.01). AMPK β1- but not β2-containing complexes were dose dependently activated by A-769662 in muscles from both genotypes (∼100% at 200 μM and 300–600% at 1 mM). The discrepancy between the A-769662-induced AMPK activation pattern and stimulation of glucose uptake suggested that these effects were unrelated. A-769662 increased phosphorylation of Akt in both muscles from both genotypes, with phosphorylation of T308 being significantly higher in soleus than in EDL in 129S6/sv mice ( P < 0.01). In soleus from 129S6/sv mice, insulin receptor substrate 1-associated phosphatidylinositol 3 (PI3)-kinase activity was markedly increased with A-769662, and Akt phosphorylation and glucose uptake were inhibited by wortmannin while phosphorylation of acetyl-CoA carboxylase (S227) was unaffected. Thus, A-769662 activates β1-containing AMPK complexes in skeletal muscle but induces glucose uptake through a PI3-kinase-dependent pathway. Although development of A-769662 has constituted a step forward in the search for AMPK activators targeting specific AMPK trimers, our data suggest that in intact muscle, A-769662 has off-target effects. This may limit use of A-769662 to study the role of AMPK in skeletal muscle metabolism.
Collapse
Affiliation(s)
- Jonas T. Treebak
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Jesper B. Birk
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | | | | | - Jørgen F. P. Wojtaszewski
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
33
|
Pandorf CE, Jiang WH, Qin AX, Bodell PW, Baldwin KM, Haddad F. Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1037-48. [PMID: 19657098 DOI: 10.1152/ajpregu.00349.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of calcineurin (Cn) in skeletal muscle fiber-type expression has been a subject of great interest because of reports indicating that it controls the slow muscle phenotype. To delineate the role of Cn in phenotype remodeling, particularly its role in driving expression of the type I myosin heavy chain (MHC) gene, we used a novel strategy whereby a profound transition from fast to slow fiber type is induced and examined in the absence and presence of cyclosporin A (CsA), a Cn inhibitor. To induce the fast-to-slow transition, we first subjected rats to 7 days of hindlimb suspension (HS) + thyroid hormone [triiodothyronine (T(3))] to suppress nearly all expression of type I MHC mRNA in the soleus muscle. HS + T(3) was then withdrawn, and rats resumed normal ambulation and thyroid state, during which vehicle or CsA (30 mg x kg(-1) x day(-1)) was administered for 7 or 14 days. The findings demonstrate that, despite significant inhibition of Cn, pre-mRNA, mRNA, and protein abundance of type I MHC increased markedly during reloading relative to HS + T(3) (P < 0.05). Type I MHC expression was, however, attenuated by CsA compared with vehicle treatment. In addition, type IIa and IIx MHC pre-mRNA, mRNA, and relative protein levels were increased in Cn-treated compared with vehicle-treated rats. These findings indicate that Cn has a modulatory role in MHC transcription, rather than a role as a primary regulator of slow MHC gene expression.
Collapse
Affiliation(s)
- Clay E Pandorf
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
34
|
Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE. Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. Am J Physiol Cell Physiol 2009; 296:C1040-8. [DOI: 10.1152/ajpcell.00475.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The signal transduction cascades that maintain muscle mass remain to be fully defined. Herein, we report that inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in vitro decreases myotube size and protein content after 3-day treatment with a MEK inhibitor. Neither p38 nor JNK inhibitors had any effect on myotube size or morphology. ERK1/2 inhibition also upregulated gene transcription of atrogin-1 and muscle-specific RING finger protein 1 and downregulated the phosphorylation of Akt and its downstream kinases. Forced expression of enhanced green fluorescent protein-tagged MAPK phosphatase 1 (MKP-1) in soleus and gastrocnemius muscles decreased both fiber size and reporter activity. This atrophic effect of MKP-1 was time dependent. Analysis of the reporter activity in vivo revealed that the activities of nuclear factor-κB and 26S proteasome were differentially activated in slow and fast muscles, suggesting muscle type-specific mechanisms may be utilized. Together, these findings suggest that MAPK signaling is necessary for the maintenance of skeletal muscle mass because inhibition of these signaling cascades elicits muscle atrophy in vitro and in vivo.
Collapse
|