1
|
Mao ND, Xu Y, Yao X, Gao Y, Hui Z, Che H, Wang C, Lu J, Yu J, Hu S, Zhang H, Ye XY. Design, synthesis, and biological evaluation of novel AAK1/HDACs dual inhibitors against SARS-CoV-2 entry. Bioorg Chem 2024; 153:107973. [PMID: 39581172 DOI: 10.1016/j.bioorg.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
AP2-associated protein kinase 1 (AAK1) is a crucial regulator of clathrin-mediated endocytosis, involved in various cellular processes, including viral infection. Histone deacetylases (HDACs) are essential in regulating gene transcription through the process of histone deacetylation and have become promising therapeutic targets for the treatment of cancer and viral infections. In this study, several AAK1/HDACs dual inhibitors based on our previous reported compounds were designed and synthesized, and the antiviral activity of these dual inhibitors were evaluated. Among them, compound 12 showed remarkable dual inhibitory activity against both AAK1 and HDACs, with IC50 values of 15.9 nM for AAK1, 148.7 nM for HDAC1, and 5.2 nM for HDAC6. Notably, this compound exhibited superior efficacy in suppressing SARS-CoV-2 entry into host cells compared to its close analogs 4, 13a, and 13b. Mechanistically, compound 12 attenuated AAK1-induced phosphorylation of adaptor protein-2 μ subunit (AP2M1) threonine 156, disrupting the direct interaction between AP2M1 and ACE2, thus inhibiting the CME-mediated SARS-CoV-2 endocytosis. Additionally, compound 12 increased the acetylation levels of H3K27 and α-tubulin, suggesting its potential as an epigenetic modulator. Overall, our findings propose compound 12 as a promising dual inhibitor against AAK1 and HDACs, highlighting its therapeutic potential in antiviral infections.
Collapse
Affiliation(s)
- Nian-Dong Mao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yueying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenchen Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinshan Lu
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Yu
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suwen Hu
- Fujian Provincial Drug Evaluation and Monitoring Center Xiamen Branch, Xiamen, Fujian 361013, China.
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiang-Yang Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Mu F, Liu C, Huo H, Zeng X, Wang F. The relationship between Sjögren's syndrome and recurrent pregnancy loss: a bioinformatics analysis. Reprod Biomed Online 2024; 49:104363. [PMID: 39299134 DOI: 10.1016/j.rbmo.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 09/22/2024]
Abstract
RESEARCH QUESTION As Sjögren's syndrome is an autoimmune disease and an essential factor in recurrent pregnancy loss (RPL), are there gene-related relationships between the pathogenesis of Sjögren's syndrome and RPL? DESIGN The gene datasets for Sjögren's syndrome and RPL were obtained from the Gene Expression Omnibus database, and the co-expression modules and shared differentially expressed genes were identified through weighted gene co-expression network analysis (WGCNA) and limma analysis based on sample size. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses were applied to reveal the hidden biological pathways. Additionally, shared hub gene identification, gene set enrichment analysis, association of the hub gene with ferroptosis and immunity, drug sensitivity analysis, single-cell RNA sequencing analysis, and construction of the competing endogenous RNA (ceRNA) network were conducted. RESULTS By intersecting the genes from WGCNA and limma analysis, one shared hub gene (KCNN3) was derived, exhibiting up-regulation in Sjögren's syndrome and RPL. There was a positive relationship between KCNN3 and the immune-related gene TLR2. The ceRNA network revealed that XIST was the most shared long non-coding RNA, which may bind competitively with eight microRNA to regulate the expression of KCNN3. Forty-eight drugs were found to be strongly associated with KCNN3 expression, including estramustine and cyclosporine. Moreover, KCNN3 exhibited high expression in RPL endothelial cells of villous tissue. CONCLUSIONS This is one of the first studies to reveal that Sjögren's syndrome shares common biological pathways with RPL. KCNN3 was identified as the hub gene associated with Sjögren's syndrome and RPL, and may be a new target for mechanistic studies on Sjögren's syndrome and RPL.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Cai Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Huyan Huo
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xianghui Zeng
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
3
|
Kamenshchyk A, Belenichev I, Oksenych V, Kamyshnyi O. Combined Pharmacological Modulation of Translational and Transcriptional Activity Signaling Pathways as a Promising Therapeutic Approach in Children with Myocardial Changes. Biomolecules 2024; 14:477. [PMID: 38672493 PMCID: PMC11047929 DOI: 10.3390/biom14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial hypertrophy is the most common condition that accompanies heart development in children. Transcriptional gene expression regulating pathways play a critical role both in cardiac embryogenesis and in the pathogenesis of congenital hypertrophic cardiomyopathy, neonatal posthypoxic myocardial hypertrophy, and congenital heart diseases. This paper describes the state of cardiac gene expression and potential pharmacological modulators at different transcriptional levels. An experimental model of perinatal cardiac hypoxia showed the downregulated expression of genes responsible for cardiac muscle integrity and overexpressed genes associated with energy metabolism and apoptosis, which may provide a basis for a therapeutic approach. Current evidence suggests that RNA drugs, theaflavin, neuraminidase, proton pumps, and histone deacetylase inhibitors are promising pharmacological agents in progressive cardiac hypertrophy. The different points of application of the above drugs make combined use possible, potentiating the effects of inhibition in specific signaling pathways. The special role of N-acetyl cysteine in both the inhibition of several signaling pathways and the reduction of oxidative stress was emphasized.
Collapse
Affiliation(s)
- Andrii Kamenshchyk
- Department of Hospital Pediatrics, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine
| | - Igor Belenichev
- Department of Pharmacology, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
4
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
5
|
Wei Y, Guo Y, Lv S. Research on the progress of Traditional Chinese medicine components and preparations on histone deacetylase inhibitors - Like effects in the course of disease treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115521. [PMID: 35809757 DOI: 10.1016/j.jep.2022.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the treatment of diseases, histone deacetylases (HDAC) may have side effects such as strong immune inhibition and drug resistance, which may lead to damage of heart, liver and kidney. Traditional Chinese medicine (TCM) is a valuable and unique resource in China, which has good efficacy and safety. At present, it has been found that Chinese herbal compounds and active ingredients can effectively inhibit the expression of HDAC. Moreover, pharmacological studies have shown that these TCMs have shown therapeutic effects in the treatment of cancer, cardiovascular and cerebrovascular diseases, orthopedic diseases and skin diseases. AIM OF THE REVIEW This article reviews the mechanism of action of HDAC, and introduces the epigenetic correlation between TCM and HDAC. We expounded the histone deacetylase inhibitor (HDACi)-like inhibitory effect and clinical application of natural drugs, and summarized the research progress of TCM on HDAC in recent years. MATERIALS AND METHODS We collected relevant information published before March 2022 by searching the literature in various online databases such as PubMed, CNKI, Wanfang Database, Elsevier, Web of Science and China Biomedical Database. Search terms include "HDAC" or "HDACi", as well as "herb" or "herbal ingredient". RESULTS A large number of studies have proved that many TCMs and their chemical components have the effect of inhibiting HDAC activity, which is highly selective, acts on different HDAC subtypes, and plays a certain therapeutic effect in cancer, cardiovascular and cerebrovascular diseases, orthopedic diseases, skin diseases and other diseases by inhibiting the process of HDAC. DISCUSSION AND CONCLUSIONS The review of this paper is helpful to understand and excavate the active components of TCM, further explore the role of plant drugs with HDACi-like effect in diseases, and provide ideas for the development of new HDACi.
Collapse
Affiliation(s)
- Yuxin Wei
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Yuyan Guo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Shaowa Lv
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|