1
|
Lombari P, Mallardo M, Petrazzuolo O, Amruthraj Nagoth J, Fiume G, Scanni R, Iervolino A, Damiano S, Coppola A, Borriello M, Ingrosso D, Perna AF, Zacchia M, Trepiccione F, Capasso G. miRNA-23a modulates sodium-hydrogen exchanger 1 expression: studies in medullary thick ascending limb of salt-induced hypertensive rats. Nephrol Dial Transplant 2023; 38:586-598. [PMID: 35921220 DOI: 10.1093/ndt/gfac232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.
Collapse
Affiliation(s)
- Patrizia Lombari
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Oriana Petrazzuolo
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Joseph Amruthraj Nagoth
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Fiume
- Departments of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Roberto Scanni
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Iervolino
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alessandra F Perna
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Miriam Zacchia
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| |
Collapse
|
2
|
Jimenez V, Miranda K, Ingrid A. The old and the new about the contractile vacuole of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12939. [PMID: 35916682 PMCID: PMC11178379 DOI: 10.1111/jeu.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Ingrid
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Sun IO, Bae YU, Lee H, Kim H, Jeon JS, Noh H, Choi JS, Doh KO, Kwon SH. Circulating miRNAs in extracellular vesicles related to treatment response in patients with idiopathic membranous nephropathy. J Transl Med 2022; 20:224. [PMID: 35568952 PMCID: PMC9107687 DOI: 10.1186/s12967-022-03430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Background Extracellular vesicle (EV)-microRNAs (miRNAs) are potential biomarkers for various renal diseases. This study attempted to identify the circulating EV-miRNA signature not only for discriminating idiopathic membranous nephropathy (IMN) from idiopathic nephrotic syndrome (INS), but also to predict the treatment response of patients with IMN. Methods We prospectively enrolled 60 participants, including those with IMN (n = 19) and INS (n = 21) and healthy volunteers (HVs; n = 20) in this study. Using RNA sequencing, we assessed the serum EV-miRNA profiles of all participants. To identify the EV-miRNAs predictive of treatment response in IMN, we also analyzed EV-miRNAs among patients with IMN with and without clinical remission. Results The expression levels of 3 miRNAs differed between IMN patients, INS patients and HVs. In addition, compared to HVs, RNA sequencing revealed differential expression of 77 and 44 EV-miRNAs in patients with IMN without and with remission, respectively. We also identified statistically significant (|fold change ≥ 2, p < 0.05) differences in the expression levels of 23 miRNAs in IMN without remission. Biological pathway analysis of miRNAs in IMN without remission indicated that they are likely involved in various pathways, including renal fibrosis. Conclusion Our study identified EV-miRNAs associated with IMN as well as those associations with therapeutic response. Therefore, these circulating EV-miRNAs may be used as potential markers for the diagnosis and prediction of treatment response in patients with IMN. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03430-7.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Yun-Ui Bae
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jong-Soo Choi
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea.
| |
Collapse
|
4
|
Xia S, Li X, Xu S, Ni X, Zhan W, Zhou W. Sublethal heat treatment promotes breast cancer metastasis and its molecular mechanism revealed by quantitative proteomic analysis. Aging (Albany NY) 2022; 14:1389-1406. [PMID: 35150481 PMCID: PMC8876919 DOI: 10.18632/aging.203884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Radiofrequency ablation (RFA) is a frequently used thermal ablation technique for breast tumors. The study aimed to identify the effect of sublethal heat treatment on biological function of breast cancer cells and reveal its potential molecular mechanism. The expression profile of dysregulated proteins in sublethal heat treated breast cancer cells was analyzed by quantitative proteomic analysis. The differentially expressed proteins in the sublethal heat treated breast cancer were identified. The potential biological functions of these proteins were evaluated. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. The expression profile of proteins in sublethal heat treated breast cancer cells was abundant, and most of which were newly discovered. A total of 206 differentially expressed proteins were identified. Among them, 101 proteins were downregulated while 105 proteins were upregulated. GO and KEGG analysis indicated that various systems were involved in the process of sublethal heat treatment including cancer, immune system, et al. Immunohistochemistry staining showed that the expression of Heat shock protein 1B, NOB1 and CRIP1 was highly expressed while the expression of BCLAF1 was lower in sublethal heat treated group. The proliferation and invasion ability of breast cancer cells were enhanced after sublethal heat treatment. Sublethal heat treatment caused gene alterations in cancer and immune system. Heat shock protein 1B, NOB1 and CRIP1 were upregulated while BCLAF1 was downregulated in breast cancer after sublethal heat treatment.
Collapse
Affiliation(s)
- Shujun Xia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Li
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ni
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ultrasound, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Wang Z, Yu J, Hao D, Liu X, Wang X. Transcriptomic signatures responding to PKM2 activator TEPP-46 in the hyperglycemic human renal proximal epithelial tubular cells. Front Endocrinol (Lausanne) 2022; 13:965379. [PMID: 36120453 PMCID: PMC9471676 DOI: 10.3389/fendo.2022.965379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), as the terminal and last rate-limiting enzyme of the glycolytic pathway, is an ideal enzyme for regulating metabolic phenotype. PKM2 tetramer activation has shown a protective role against diabetic kidney disease (DKD). However, the molecular mechanisms involved in diabetic tubular have not been investigated so far. In this study, we performed transcriptome gene expression profiling in human renal proximal tubular epithelial cell line (HK-2 cells) treated with 25 mM high D-glucose (HG) for 7 days before the addition of 10 μM TEPP-46, an activator of PKM2 tetramerization, for a further 1 day in the presence of HG. Afterwards, we analyzed the differentially expressed (DE) genes and investigated gene relationships based on weighted gene co-expression network analysis. The results showed that 2,902 DE genes were identified (adjusted P-value ≤ 0.05), where 2,509 DE genes (86.46%) were co-expressed in the key module. Four extremely downregulated DE genes (HSPA8, HSPA2, HSPA1B, and ARRB1) and three extremely upregulated DE genes (GADD45A, IGFBP3, and SIAH1) enriched in the downregulated endocytosis (hsa04144) and upregulated p53 signaling pathway (hsa04115), respectively, were validated by qRT-PCR experiments. The qRT-PCR results showed that the relative expression levels of HSPA8 [adjusted P-value = 4.45 × 10-34 and log2(FC) = -1.12], HSPA2 [adjusted P-value = 6.09 × 10-14 and log2(FC) = -1.27], HSPA1B [adjusted P-value = 1.14 × 10-11 and log2(FC) = -1.02], and ARRB1 [adjusted P-value = 2.60 × 10-5 and log2(FC) = -1.13] were significantly different (P-value < 0.05) from the case group to the control group. Furthermore, the interactions and predicted microRNAs of the key genes (HSPA8, HSPA2, HSPA1B, and ARRB1) were visualized in networks. This study identified the key candidate transcriptomic biomarkers and biological pathways in hyperglycemic HK-2 cells responding to the PKM2 activator TEPP-46 that can highlight a possibility of PKM2 tetramerization reshaping the interplay among endocytic trafficking through the versatile networks of Hsp70s and rewiring the crosstalk between EGFR signal transduction circuits and metabolic stress to promote resilience, which will be valuable for further research on PKM2 in DKD.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiating Yu
- Division of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- Division of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Liu, ; Xiao Wang,
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xin Liu, ; Xiao Wang,
| |
Collapse
|
6
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|