1
|
Konuksever D, Yücel SP. Evaluation of correlation between vitamin D with vitamin B12 and folate in children. Nutrition 2022; 99-100:111683. [DOI: 10.1016/j.nut.2022.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
|
2
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
3
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC, Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules 2021; 26:molecules26123731. [PMID: 34207319 PMCID: PMC8235569 DOI: 10.3390/molecules26123731] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Vladimir Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Svetlana Kardasheva
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Alla Sedova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Anastasia Kurbatova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Elena Bueverova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Arthur Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
| | - Kristina Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-764-9878
| | | | - Vladimir Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| |
Collapse
|
4
|
Chen Z, Peng H, Zhang C. Advances in kidney-targeted drug delivery systems. Int J Pharm 2020; 587:119679. [PMID: 32717283 DOI: 10.1016/j.ijpharm.2020.119679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| |
Collapse
|
5
|
Rahman A, Al-Taiar A, Shaban L, Al-Sabah R, Mojiminiyi O. Plasma 25-hydroxyvitamin D is positively associated with folate and vitamin B 12 levels in adolescents. Nutr Res 2020; 79:87-99. [PMID: 32653772 DOI: 10.1016/j.nutres.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D affects the absorption of folate in vitro, and perhaps of vitamin B12 (B12). However, epidemiological studies on the association of vitamin D with folate and B12 are inconclusive. We hypothesized a positive association of plasma 25-hydroxyvitamin D [25(OH)D] with folate and B12 levels in adolescents. This hypothesis was tested in a cross-sectional study of healthy adolescents (11-16 years old; n = 1416), selected from public middle schools from across Kuwait, using stratified multistage cluster random sampling. Plasma 25(OH)D was measured by LC-MS/MS. Serum B12 and total folate in hemolyzed whole blood were analyzed with commercial kits; RBC and plasma folate were calculated from total folate. Data on potential confounders were collected from the parents and adolescents. In a univariable model, 25(OH)D as a continuous variable was positively associated with each of total, RBC, and plasma folate (P < .001). After adjusting for potential confounders, this association remained significant with total folate (β = 2.0, P < .001) and red blood cell folate (β = 1.8, P < .001), but not with plasma folate (β = 0.2, P = .34). A similar pattern of association was evident when 25(OH)D was fitted as categorical variable. Correlation between B12 and 25(OH)D was weak but significant (ρ = 0.1, P < .001). 25(OH)D was positively associated with B12 in both univariable and multivariable models (P < .001) when fitted as a categorical variable only. Simultaneous quantile regression confirmed these results. We conclude that plasma 25(OH)D is positively associated with folate and B12 levels in adolescents. Properly designed large-scale randomized controlled trials are warranted to investigate the causal role of vitamin D in folate and B12 absorption.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA 23529.
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Box: 24923, Safat 13110, Kuwait.
| | - Olusegun Mojiminiyi
- Department of Pathology, Faculty of Medicine, Kuwait University, Box: 24923, Safat 13110, Kuwait.
| |
Collapse
|
6
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
7
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Zhao R, Aluri S, Goldman ID. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption. Mol Aspects Med 2016; 53:57-72. [PMID: 27664775 DOI: 10.1016/j.mam.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023]
Abstract
The proton-coupled folate transporter (PCFT-SLC46A1) is the mechanism by which folates are absorbed across the brush-border membrane of the small intestine. The transporter is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of PCFT function, as occurs in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), results in a syndrome characterized by severe systemic and cerebral folate deficiency. Folate-receptor alpha (FRα) is expressed in the choroid plexus, and loss of function of this protein, as also occurs in an autosomal recessive disorder, results solely in "cerebral folate deficiency" (CFD), the designation for this disorder. This paper reviews the current understanding of the functional and structural properties and regulation of PCFT, an electrogenic proton symporter, and contrasts PCFT properties with those of the reduced folate carrier (RFC), an organic anion antiporter, that is the major route of folate transport to systemic tissues. The clinical characteristics of HFM and its treatment, based upon the thirty-seven known cases with the clinical syndrome, of which thirty have been verified by genotype, are presented. The ways in which PCFT and FRα might interact at the level of the choroid plexus such that each is required for folate transport from blood to cerebrospinal fluid are considered along with the different clinical presentations of HFM and CFD.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
9
|
Functional and mechanistic roles of the human proton-coupled folate transporter transmembrane domain 6-7 linker. Biochem J 2016; 473:3545-3562. [PMID: 27514717 DOI: 10.1042/bcj20160399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
The proton-coupled folate transporter (PCFT; SLC46A1) is a folate-proton symporter expressed in solid tumors and is used for tumor-targeted delivery of cytotoxic antifolates. Topology modeling suggests that the PCFT secondary structure includes 12 transmembrane domains (TMDs) with TMDs 6 and 7 linked by an intracellular loop (positions 236-265) including His247, implicated as functionally important. Single-cysteine (Cys) mutants were inserted from positions 241 to 251 in Cys-less PCFT and mutant proteins were expressed in PCFT-null (R1-11) HeLa cells; none were reactive with 2-aminoethyl methanethiosulfonate biotin, suggesting that the TMD6-7 loop is intracellular. Twenty-nine single alanine mutants spanning the entire TMD6-7 loop were expressed in R1-11 cells; activity was generally preserved, with the exception of the 247, 250, and 251 mutants, partly due to decreased surface expression. Coexpression of PCFT TMD1-6 and TMD7-12 half-molecules in R1-11 cells partially restored transport activity, although removal of residues 252-265 from TMD7-12 abolished transport. Chimeric proteins, including a nonhomologous sequence from a thiamine transporter (ThTr1) inserted into the PCFT TMD6-7 loop (positions 236-250 or 251-265), were active, although replacement of the entire loop with the ThTr1 sequence resulted in substantial loss of activity. Amino acid replacements (Ala, Arg, His, Gln, and Glu) or deletions at position 247 in wild-type and PCFT-ThTr1 chimeras resulted in differential effects on transport. Collectively, our findings suggest that the PCFT TMD6-7 connecting loop confers protein stability and may serve a unique functional role that depends on secondary structure rather than particular sequence elements.
Collapse
|
10
|
|
11
|
Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. Biochem J 2015; 469:33-44. [PMID: 25877470 DOI: 10.1042/bj20150169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022]
Abstract
The human proton-coupled folate transporter (hPCFT) is expressed in solid tumours and is active at pHs characterizing the tumour microenvironment. Recent attention focused on exploiting hPCFT for targeting solid tumours with novel cytotoxic anti-folates. hPCFT has 12 transmembrane domains (TMDs) and forms homo-oligomers with functional significance. The hPCFT primary sequence includes GXXXG motifs in TMD2 (G(93)XXXG(97)) and TMD4 (G(155)XXXG(159)). To investigate roles of these motifs in hPCFT function, stability and surface expression, we mutated glycine to leucine to generate single or multiple substitution mutants. Only the G93L and G159L mutants preserved substantial [(3)H]methotrexate (Mtx) transport when expressed in hPCFT-null (R1-11) HeLa cells. Transport activity of the glycine-to-leucine mutants correlated with surface hPCFT by surface biotinylation and confocal microscopy with ECFP*-tagged hPCFTs, suggesting a role for GXXXG in hPCFT stability and intracellular trafficking. When co-expressed in R1-11 cells, haemagglutinin-tagged glycine-to-leucine mutants and His10-tagged wild-type (WT) hPCFT co-associated on nickel affinity columns, suggesting that the GXXXG motifs are not directly involved in hPCFT oligomerization. This was substantiated by in situ FRET experiments with co-expressed ECFP*- and YFP-tagged hPCFT. Molecular modelling of dimeric hPCFT structures showed juxtaposed TMDs 2, 3, 4 and 6 as potential structural interfaces between monomers. hPCFT cysteine insertion mutants in TMD3 (Q136C and L137C) and TMD6 (W213C, L214C, L224C, A227C, F228C, F230C and G231C) were expressed in R1-11 cells and cross-linked with 1,6-hexanediyl bismethanethiosulfonate, confirming TMD juxtapositions. Altogether, our results imply that TMDs 3 and 6 provide critical interfaces for formation of hPCFT oligomers, which might be facilitated by the GXXXG motifs in TMD2 and TMD4.
Collapse
|
12
|
Wilson MR, Hou Z, Matherly LH. Substituted cysteine accessibility reveals a novel transmembrane 2-3 reentrant loop and functional role for transmembrane domain 2 in the human proton-coupled folate transporter. J Biol Chem 2014; 289:25287-95. [PMID: 25053408 DOI: 10.1074/jbc.m114.578252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [(3)H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2-3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding.
Collapse
Affiliation(s)
| | - Zhanjun Hou
- From the Department of Oncology and the Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Larry H Matherly
- From the Department of Oncology and the Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201 Department of Pharmacology, Wayne State University School of Medicine and
| |
Collapse
|
13
|
Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos 2014; 42:632-49. [PMID: 24396145 PMCID: PMC3965896 DOI: 10.1124/dmd.113.055723] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Larry H Matherly
- Department of Oncology (L.H.M., M.R.W., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (L.H.M., Z.H.)
| | | | | |
Collapse
|
14
|
Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 2014; 44:480-8. [PMID: 24494987 DOI: 10.3109/00498254.2013.845705] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism. Mammals cannot synthesize folate and depend on supplementation to maintain normal levels. Low folate status may be caused by low dietary intake, poor absorption of ingested folate and alteration of folate metabolism due to genetic defects or drug interactions. 2. Folate deficiency has been linked with an increased risk of neural tube defects, cardiovascular disease, cancer and cognitive dysfunction. Most countries have established recommended intakes of folate through folic acid supplements or fortified foods. External supplementation of folate may occur as folic acid, folinic acid or 5-methyltetrahydrofolate (5-MTHF). 3. Naturally occurring 5-MTHF has important advantages over synthetic folic acid - it is well absorbed even when gastrointestinal pH is altered and its bioavailability is not affected by metabolic defects. Using 5-MTHF instead of folic acid reduces the potential for masking haematological symptoms of vitamin B12 deficiency, reduces interactions with drugs that inhibit dihydrofolate reductase and overcomes metabolic defects caused by methylenetetrahydrofolate reductase polymorphism. Use of 5-MTHF also prevents the potential negative effects of unconverted folic acid in the peripheral circulation. 4. We review the evidence for the use of 5-MTHF in preventing folate deficiency.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | | |
Collapse
|
15
|
Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. CURRENT TOPICS IN MEMBRANES 2014; 73:175-204. [PMID: 24745983 DOI: 10.1016/b978-0-12-800223-0.00004-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
16
|
Vitamin D is not linked to folate status and mRNA expression of intestinal proton-coupled folate transporter. Eur J Nutr 2013; 53:1115-22. [DOI: 10.1007/s00394-013-0614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 01/14/2023]
|
17
|
Wassermann L, Halwachs S, Baumann D, Schaefer I, Seibel P, Honscha W. Assessment of ABCG2-mediated transport of xenobiotics across the blood–milk barrier of dairy animals using a new MDCKII in vitro model. Arch Toxicol 2013; 87:1671-82. [DOI: 10.1007/s00204-013-1066-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
|
18
|
Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther 2012; 13:1355-73. [PMID: 22954694 PMCID: PMC3542225 DOI: 10.4161/cbt.22020] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Cancer Biology Graduate Program in Cancer Biology, Department of Oncology, Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | |
Collapse
|
19
|
Involvement of Multiple Transporters-mediated Transports in Mizoribine and Methotrexate Pharmacokinetics. Pharmaceuticals (Basel) 2012; 5:802-36. [PMID: 24280676 PMCID: PMC3763673 DOI: 10.3390/ph5080802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022] Open
Abstract
Mizoribine is administered orally and excreted into urine without being metabolized. Many research groups have reported a linear relationship between the dose and peak serum concentration, between the dose and AUC, and between AUC and cumulative urinary excretion of mizoribine. In contrast, a significant interindividual variability, with a small intraindividual variability, in oral bioavailability of mizoribine is also reported. The interindividual variability is mostly considered to be due to the polymophisms of transporter genes. Methotrexate (MTX) is administered orally and/or by parenteral routes, depending on the dose. Metabolic enzymes and multiple transporters are involved in the pharmacokinetics of MTX. The oral bioavailability of MTX exhibits a marked interindividual variability and saturation with increase in the dose of MTX, with a small intraindividual variability, where the contribution of gene polymophisms of transporters and enzymes is suggested. Therapeutic drug monitoring of both mizoribine and MTX is expected to improve their clinical efficacy in the treatment of rheumatoid arthritis.
Collapse
|
20
|
Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, Wloszczynski PA, Moin K, Matherly LH. Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 2011; 287:4982-95. [PMID: 22179615 DOI: 10.1074/jbc.m111.306860] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proton-coupled folate transporter (PCFT; SLC46A1) is a proton-folate symporter that is abundantly expressed in solid tumors and normal tissues, such as duodenum. The acidic pH optimum for PCFT is relevant to intestinal absorption of folates and could afford a means of selectively targeting tumors with novel cytotoxic antifolates. PCFT is a member of the major facilitator superfamily of transporters. Because major facilitator superfamily members exist as homo-oligomers, we tested this for PCFT because such structures could be significant to PCFT mechanism and regulation. By transiently expressing PCFT in reduced folate carrier- and PCFT-null HeLa (R1-11) cells and chemical cross-linking with 1,1-methanediyl bismethanethiosulfonate and Western blotting, PCFT species with molecular masses approximating those of the PCFT dimer and higher order oligomers were detected. Blue native polyacrylamide gel electrophoresis identified PCFT dimer, trimer, and tetramer forms. PCFT monomers with hemagglutinin and His(10) epitope tags were co-expressed in R1-11 cells, solubilized, and bound to nickel affinity columns, establishing their physical associations. Co-expressing YPet and ECFP*-tagged PCFT monomers enabled transport and fluorescence resonance energy transfer in plasma membranes of R1-11 cells. Combined wild-type (WT) and inactive mutant P425R PCFTs were targeted to the cell surface by surface biotinylation/Western blots and confocal microscopy and functionally exhibited a "dominant-positive" phenotype, implying positive cooperativity between PCFT monomers and functional rescue of mutant by WT PCFT. Our results demonstrate the existence of PCFT homo-oligomers and imply their functional and regulatory impact. Better understanding of these higher order PCFT structures may lead to therapeutic applications related to folate uptake in hereditary folate malabsorption, and delivery of PCFT-targeted chemotherapy drugs for cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011; 31:177-201. [PMID: 21568705 DOI: 10.1146/annurev-nutr-072610-145133] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
22
|
Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3016-21. [PMID: 21854757 DOI: 10.1016/j.bbamem.2011.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
Transport of riboflavin (RF) across both the brush border membrane (BBM) and basolateral membrane (BLM) of the polarized enterocyte occurs via specific carrier-mediated mechanisms. Although, three human riboflavin transporters (hRFTs), i.e., hRFT-1, hRFT-2 and hRFT-3 are expressed in the intestine, little is known about the cell surface domain(s) at which these specific hRFTs are expressed. Here, we used live cell confocal imaging of intestinal epithelial Caco-2 and renal MDCK cells to show that the hRFT-1 is mainly expressed at the BLM, hRFT-2 is exclusively expressed at the apical membrane, while hRFT-3 is mostly localized inside intracellular vesicular structures (with some expression at the BLM). Further the level of hRFT-2 mRNA expression in Caco-2 cells and in native human intestine is significantly higher than that of hRFT-1 and -3; hRFT-2 was also more efficient in transporting 3H-RF than hRFT-1 and -3. These findings implied an important role for hRFT-2 in intestinal RF uptake, a conclusion that was further supported by findings of hRFT-2 gene-specific siRNA knockdown investigation. These results show that members of the hRFT family are differentially expressed in polarized epithelia, and that the apically expressed hRFT-2 plays a key role in intestinal RF accumulation.
Collapse
|
23
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
Zhao R, Shin DS, Diop-Bove N, Ovits CG, Goldman ID. Random mutagenesis of the proton-coupled folate transporter (SLC46A1), clustering of mutations, and the bases for associated losses of function. J Biol Chem 2011; 286:24150-8. [PMID: 21602279 PMCID: PMC3129196 DOI: 10.1074/jbc.m111.236539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/25/2011] [Indexed: 01/19/2023] Open
Abstract
Loss-of-function mutations in the proton-coupled folate transporter (PCFT, SLC46A1) result in the autosomal recessive disorder, hereditary folate malabsorption (HFM). Identification and characterization of HFM mutations provide a wealth of information on the structure-function relationship of this transporter. In the current study, PCR-based random mutagenesis was employed to generate unbiased loss-of-function mutations of PCFT, simulating the spectrum of alterations that might occur in the human disorder. A total of 26 mutations were generated and 4 were identical to HFM mutations. Eleven were base deletion or insertion mutations that led to a frameshift and, along with similar HFM mutations, are predominantly localized to two narrow regions of the pcft gene at the 5'-end. Base substitution mutations identified in the current study and HFM patients were largely distributed across the pcft gene. Elimination of the ATG initiation codon by a one-base substitution (G > A) did not result in a complete lack of translation at the same codon consistent with rare non-ATG translation initiation. Among six missense mutants evaluated, three mutant PCFTs were not detected at the plasma membrane, one mutation resulted in decreased binding to folate substrate, and one had a reduced rate of conformational change associated with substrate translocation. The remaining PCFT mutant had defects in both processes. These results broaden understanding of the regions of the pcft gene prone to base insertion and deletion and inform further approaches to the analysis of the structure-function of PCFT.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
25
|
Reinke Y, Behrendt M, Schmidt S, Zimmer KP, Naim HY. Impairment of protein trafficking by direct interaction of gliadin peptides with actin. Exp Cell Res 2011; 317:2124-35. [PMID: 21663741 DOI: 10.1016/j.yexcr.2011.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
Intestinal celiac disease (CD) is triggered by peptic-tryptic digest of gluten, known as Frazer's Fraction (FF), in genetically predisposed individuals. Here, we investigate the immediate effects of FF on the actin cytoskeleton and the subsequent trafficking of actin-dependent and actin-independent proteins in COS-1 cells. Morphological alterations in the actin filaments were revealed concomitant with a drastic reduction in immunoprecipitated actin from cells incubated with FF. These alterations elicit impaired protein trafficking of intestinal sucrase-isomaltase, a glycoprotein that follows an actin-dependent vesicular transport to the cell surface. However, the actin-independent transport of intestinal lactase phlorizin hydrolase remains unaffected. Moreover, the morphological alteration in actin is induced by direct interaction of this protein with gliadin peptides carrying the QQQPFP epitope revealed by co-immunoprecipitation utilizing a monoclonal anti-gliadin antibody. Finally, stimulation of cells with FF directly influences the binding of actin to Arp2. Altogether, our data demonstrate that FF directly interacts with actin and alters the integrity of the actin cytoskeleton thus leading to an impaired trafficking of intestinal proteins that depend on an intact actin network. This direct interaction could be related to the endocytic segregation of gliadin peptides as well as the delayed endocytic vesicle trafficking and maturation in gliadin-positive intestinal epithelial cells and opens new insights into the pathogenesis of CD.
Collapse
Affiliation(s)
- Yvonne Reinke
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
26
|
Functional roles of aspartate residues of the proton-coupled folate transporter (PCFT-SLC46A1); a D156Y mutation causing hereditary folate malabsorption. Blood 2010; 116:5162-9. [PMID: 20805364 DOI: 10.1182/blood-2010-06-291237] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proton-coupled folate transporter (PCFT; SLC46A1) mediates folate transport into enterocytes in the proximal small intestine; pcft loss-of-function mutations are the basis for hereditary folate malabsorption. The current study explored the roles of Asp residues in PCFT function. A novel, homozygous, loss-of-function mutation, D156Y, was identified in a child of Pakistani origin with hereditary folate malabsorption. Of the 6 other conserved Asp residues, only one, D109, is shown to be required for function. D156Y, along with a variety of other substitutions at this site (Trp, Phe, Val, Asn, or Lys), lacked function due to instability of the PCFT protein. Substantial function was preserved with Glu, Gly, and, to a lesser extent, with Ser, Thr, and Ala substitutions. This correlated with PCFT bio-tinylated at the cell surface. In contrast, all D109 mutants, including D109E, lacked function irrespective of pH (4.5, 5.5, and 7.4) or substrate concentration (0.5-100 μM), despite surface expression comparable to wild-type PCFT. Hence, D156 plays a critical role in PCFT protein stability, and D109, located in the first intracellular loop between the second and third transmembrane domains, is absolutely required for PCFT function.
Collapse
|
27
|
Azakir BA, Di Fulvio S, Therrien C, Sinnreich M. Dysferlin interacts with tubulin and microtubules in mouse skeletal muscle. PLoS One 2010; 5:e10122. [PMID: 20405035 PMCID: PMC2853571 DOI: 10.1371/journal.pone.0010122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/11/2010] [Indexed: 12/26/2022] Open
Abstract
Dysferlin is a type II transmembrane protein implicated in surface membrane repair in muscle. Mutations in dysferlin lead to limb girdle muscular dystrophy 2B, Miyoshi Myopathy and distal anterior compartment myopathy. Dysferlin's mode of action is not well understood and only a few protein binding partners have thus far been identified. Using affinity purification followed by liquid chromatography/mass spectrometry, we identified alpha-tubulin as a novel binding partner for dysferlin. The association between dysferlin and alpha-tubulin, as well as between dysferlin and microtubules, was confirmed in vitro by glutathione S-transferase pulldown and microtubule binding assays. These interactions were confirmed in vivo by co-immunoprecipitation. Confocal microscopy revealed that dysferlin and alpha-tubulin co-localized in the perinuclear region and in vesicular structures in myoblasts, and along thin longitudinal structures reminiscent of microtubules in myotubes. We mapped dysferlin's alpha-tubulin-binding region to its C2A and C2B domains. Modulation of calcium levels did not affect dysferlin binding to alpha-tubulin, suggesting that this interaction is calcium-independent. Our studies identified a new binding partner for dysferlin and suggest a role for microtubules in dysferlin trafficking to the sarcolemma.
Collapse
Affiliation(s)
- Bilal A. Azakir
- Neuromuscular Research Group, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sabrina Di Fulvio
- Neuromuscular Research Group, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Christian Therrien
- Neuromuscular Research Group, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael Sinnreich
- Neuromuscular Research Group, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Neuromuscular Center, Departments of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Tual-Chalot S, Guibert C, Muller B, Savineau JP, Andriantsitohaina R, Martinez MC. Circulating microparticles from pulmonary hypertensive rats induce endothelial dysfunction. Am J Respir Crit Care Med 2010; 182:261-8. [PMID: 20339146 DOI: 10.1164/rccm.200909-1347oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a severe disease characterized by an increase of pulmonary vascular resistance, which is accompanied by functional and structural changes in pulmonary arteries. Microparticles (MPs) have been described as biological vector of endothelial dysfunction in other pathologies. OBJECTIVES The purpose of this work was to characterize circulating MPs during hypoxic PAH and to study their effects on endothelial function. METHODS Male Wistar rats were exposed or not to chronic hypoxia, and normoxic or hypoxic MPs from blood were characterized by flow cytometry. Endothelial cells (ECs) from rat aorta or pulmonary arteries were incubated with MPs, and then expression and phosphorylation of enzymes involved in nitric oxide (NO) and reactive oxygen species productions were analyzed. Hypoxic MPs were injected into rats, and endothelium-dependent relaxation was assessed. MEASUREMENTS AND MAIN RESULTS Circulating levels of MPs from hypoxic rats were twofold higher than those present in normoxic rats. In vitro treatment of ECs with hypoxic MPs reduced NO production in aortas and pulmonary arteries by enhancing phosphorylation of endothelial NO synthase at the inhibitory site. Hypoxic MPs increased oxidative stress only in pulmonary ECs via xanthine oxidase and mitochondrial implication. In vivo injection of hypoxic MPs into rat impaired endothelium-dependent relaxation both in aorta and pulmonary arteries. CONCLUSIONS These data provide evidence that hypoxic circulating MPs induce endothelial dysfunction in rat aorta and pulmonary arteries by decreasing NO production. Moreover, MPs display tissue specificity with respect to increased oxidative stress, which occurs only in pulmonary ECs.
Collapse
Affiliation(s)
- Simon Tual-Chalot
- CNRS UMR 6214, Faculté de Médecine, Rue Haute de Reculée, Angers, F-49045 France
| | | | | | | | | | | |
Collapse
|
29
|
Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG, Kim RB. The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am J Physiol Gastrointest Liver Physiol 2010; 298:G248-54. [PMID: 19762432 DOI: 10.1152/ajpgi.00224.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Folic acid is a vitamin essential for thymidylate and purine synthesis. The human proton-coupled folate transporter (hPCFT) has recently been identified as a pH-dependent folic acid transporter, and mutations in this transporter have been linked to hereditary folic acid malabsorption. In this study, we assessed hPCFT-mediated transport activity in vitro, intersubject variability of intestinal expression in relation to blood folates, and the relationship of proton-pump inhibitor (PPI) therapy on hPCFT expression in vivo. We created a Madin-Darby canine kidney strain II (MDCKII) cell line stably expressing hPCFT to evaluate its drug substrates and inhibitors. Intestinal pinch biopsies (duodenum, ileum, colon) were collected from patients undergoing routine endoscopy procedures, and expressed levels of hPCFT were determined by RT-PCR. When assessed using MDCKII-hPCFT cells, folic acid and methotrexate were found to be high-affinity hPCFT substrates. Sulfasalazine and pyrimethamine were noted to inhibit hPCFT activity with Ki values of 42.3 and 161.7 micromol/l, respectively. hPCFT was localized to the brush-border membrane of enterocytes with highest expression in the duodenum and reduced levels in the ileum and colon. When we assessed hPCFT expression in a subset of patients who were receiving PPI therapy, a near 50% reduction in duodenal hPCFT mRNA expression was noted. These results suggest that hPCFT transporter activity can be modulated by many drugs in clinical use, and expression of this transporter in the gastrointestinal tract is higher in the duodenum than more distal sites (duodenum > ileum > colon). Importantly, we note that PPI drug use appears to be associated with reduced hPCFT expression in vivo.
Collapse
Affiliation(s)
- Bradley L Urquhart
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Sciences Centre-Univ. Campus, 339 Windermere Rd., London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Solanky N, Requena Jimenez A, D'Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 2009; 31:134-43. [PMID: 20036773 DOI: 10.1016/j.placenta.2009.11.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Poor folate status during pregnancy can lead to elevated maternal plasma levels of homocysteine (Hcy) with associated pregnancy complications and adverse neonatal outcomes, suggesting placental metabolism of Hcy might be an important determinant in influencing fetal development. The metabolic pathways for Hcy in placenta are not well defined. In this study we examined the gene expression of key enzymes involved in Hcy metabolism in first trimester and term human placenta to determine which metabolic pathways prevail. Expression of mRNA for methionine synthase and 5,10-methylene tetrahydrofolate reductase, enzymes involved in the methionine cycle and responsible for the re-methylation of Hcy to methionine, were expressed at similar levels between first trimester and term and in comparison to human liver as positive control. In contrast, cystathionine beta-synthase mRNA expression was markedly lower than that in liver at both gestational periods. Betaine-homocysteine methyltransferase mRNA was undetectable at either gestational age. These data suggest that re-methylation of Hcy using methyl donation from 5-methyltetrahydrofolate is the prevalent pathway, indicating a marked reliance on folate availability. This led to further investigations examining the expression and localisation of folate transporters in first trimester and term placenta. Folate receptor alpha (FRalpha) was highly polarised to the microvillous plasma membrane (MVM) of the syncytiotrophoblast at both gestational periods, a distribution shared by the proton-coupled folate transporter which co-localised with FRalpha. Reduced folate carrier was distributed to both MVM and basal syncytiotrophoblast plasma membranes at term suggesting a role at both loci, and in first trimester was localised to MVM as well as cytotrophoblast plasma membranes. These data support the concept that placental folate transport is established early in pregnancy, providing folate for utilisation in placental Hcy metabolism.
Collapse
Affiliation(s)
- N Solanky
- School of Clinical and Laboratory Sciences, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester, UK.
| | | | | | | | | |
Collapse
|
31
|
Eloranta JJ, Zaïr ZM, Hiller C, Häusler S, Stieger B, Kullak-Ublick GA. Vitamin D3 and its nuclear receptor increase the expression and activity of the human proton-coupled folate transporter. Mol Pharmacol 2009; 76:1062-71. [PMID: 19666701 DOI: 10.1124/mol.109.055392] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Folates are essential for nucleic acid synthesis and are particularly required in rapidly proliferating tissues, such as intestinal epithelium and hemopoietic cells. Availability of dietary folates is determined by their absorption across the intestinal epithelium, mediated by the proton-coupled folate transporter (PCFT) at the apical enterocyte membranes. Whereas transport properties of PCFT are well characterized, regulation of PCFT gene expression remains less elucidated. We have studied the mechanisms that regulate PCFT promoter activity and expression in intestine-derived cells. PCFT mRNA levels are increased in Caco-2 cells treated with 1,25-dihydroxyvitamin D(3) (vitamin D(3)) in a dose-dependent fashion, and the duodenal rat Pcft mRNA expression is induced by vitamin D(3) ex vivo. The PCFT promoter region is transactivated by the vitamin D receptor (VDR) and its heterodimeric partner retinoid X receptor-alpha (RXRalpha) in the presence of vitamin D(3). In silico analyses predicted a VDR response element (VDRE) in the PCFT promoter region -1694/-1680. DNA binding assays showed direct and specific binding of the VDR:RXRalpha heterodimer to the PCFT(-1694/-1680), and chromatin immunoprecipitations verified that this interaction occurs within living cells. Mutational promoter analyses confirmed that the PCFT(-1694/-1680) motif mediates a transcriptional response to vitamin D(3). In functional support of this regulatory mechanism, treatment with vitamin D(3) significantly increased the uptake of [(3)H]folic acid into Caco-2 cells at pH 5.5. In conclusion, vitamin D(3) and VDR increase intestinal PCFT expression, resulting in enhanced cellular folate uptake. Pharmacological treatment of patients with vitamin D(3) may have the added therapeutic benefit of enhancing the intestinal absorption of folates.
Collapse
Affiliation(s)
- Jyrki J Eloranta
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Yuasa H, Inoue K, Hayashi Y. Molecular and functional characteristics of proton-coupled folate transporter. J Pharm Sci 2009; 98:1608-16. [PMID: 18823045 DOI: 10.1002/jps.21515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proton-coupled folate transporter (PCFT) has recently been identified as the molecular entity of the carrier-mediated intestinal folate transport system. PCFT has been demonstrated to be most abundantly expressed in the upper small intestine, localizing at the brush border membrane of epithelial cells, transport folate and its analogs more efficiently at lower (acidic) pH by a H(+)-coupled cotransport mechanism, and have a high affinity for folate with a Michaelis constant (K(m)) of a few microM at pH 5.5 and somewhat lower affinities for reduced folates and methotrexate (MTX). A loss of PCFT function due to a homozygous mutation in its gene has been indicated to be responsible for hereditary folate malabsorption. Thus, PCFT has all the characteristics of the brush border H(+)-coupled cotransporter for folate and analogs, which has long been suggested to be present in the intestine. Furthermore, sulfasalazine was found to be a potent inhibitor of PCFT, suggesting that it is a risk factor that would cause malabsorption of folate and also MTX, when coadministered in the treatment of rheumatoid arthritis. Understanding the molecular and functional characteristics of PCFT should be important and helpful in exploring therapeutic strategies for folate malabsorption and in optimizing therapies using antifolate drugs.
Collapse
Affiliation(s)
- Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | |
Collapse
|
33
|
Subramanian VS, Marchant JS, Boulware MJ, Ma TY, Said HM. Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. Am J Physiol Cell Physiol 2009; 296:C663-71. [PMID: 19211916 PMCID: PMC2670647 DOI: 10.1152/ajpcell.00396.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 02/06/2009] [Indexed: 11/22/2022]
Abstract
The human sodium-dependent multivitamin transporter (hSMVT) mediates sodium-dependent uptake of biotin in renal and intestinal epithelia. To date, however, there is nothing known about the structure-function relationship or targeting sequences in the hSMVT polypeptide that control its polarized expression within epithelia. Here, we focused on the role of the COOH-terminal tail of hSMVT in the targeting and functionality of this transporter. A full-length hSMVT-green fluorescent protein (GFP) fusion protein was functional and expressed at the apical membrane in renal and intestinal cell lines. Microtubule disrupting agents disrupted the mobility of trafficking vesicles and impaired cell surface delivery of hSMVT, which was also prevented in cells treated with dynamitin (p50), brefeldin, or monensin. Progressive truncation of the COOH-terminal tail impaired the functionality and targeting of the transporter. First, biotin transport decreased by approximately 20-30% on deletion of up to 15 COOH-terminal amino acids of hSMVT, a decrease mimicked solely by deletion of the terminal PDZ motif (TSL). Second, deletions into the COOH-terminal tail (between residues 584-612, containing a region of predicted high surface accessibility) resulted in a further drop in hSMVT transport (to approximately 40% of wild-type). Third, apical targeting was lost on deletion of a helical-prone region between amino acids 570-584. We conclude that the COOH tail of hSMVT contains several determinants important for polarized targeting and biotin transport.
Collapse
|
34
|
Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 2009; 11:e4. [PMID: 19173758 DOI: 10.1017/s1462399409000969] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Members of the family of B9 vitamins are commonly known as folates. They are derived entirely from dietary sources and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules use several genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier, the proton-coupled folate transporter and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. The mechanism of intestinal folate absorption was recently uncovered, revealing the genetic basis for the autosomal recessive disorder hereditary folate malabsorption, which results from loss-of-function mutations in the proton-coupled folate transporter gene. It is therefore now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of the major folate transporters, with a brief consideration of their impact on the pharmacological activities of antifolates.
Collapse
|
35
|
Farah OR, Li D, McIntyre BAS, Pan J, Belik J. Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 2008; 296:L115-20. [PMID: 18952757 DOI: 10.1152/ajplung.90391.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.
Collapse
Affiliation(s)
- Omar R Farah
- The Hospital for Sick Children, 555 Univ. Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Nozik-Grayck E, Suliman HB, Majka S, Albietz J, Van Rheen Z, Roush K, Stenmark KR. Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2008; 295:L422-30. [PMID: 18599502 DOI: 10.1152/ajplung.90293.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although production of reactive oxygen species (ROS) such as superoxide (O(2)(.-)) has been implicated in chronic hypoxia-induced pulmonary hypertension (PH) and pulmonary vascular remodeling, the transcription factors and gene targets through which ROS exert their effects have not been completely identified. We used mice overexpressing the extracellular antioxidant enzyme extracellular superoxide dismutase (EC-SOD TG) to test the hypothesis that O(2)(.-) generated in the extracellular compartment under hypoxic conditions contributes to PH through the induction of the transcription factor, early growth response-1 (Egr-1), and its downstream gene target, tissue factor (TF). We found that chronic hypoxia decreased lung EC-SOD activity and protein expression in wild-type mice, but that EC-SOD activity remained five to seven times higher in EC-SOD TG mice under hypoxic conditions. EC-SOD overexpression attenuated chronic hypoxic PH, and vascular remodeling, measured by right ventricular systolic pressures, proliferation of cells in the vessel wall, muscularization of small pulmonary vessels, and collagen deposition. EC-SOD overexpression also prevented the early hypoxia-dependent upregulation of the redox-sensitive transcription factor Egr-1 and the procoagulant protein TF. These data provide the first evidence that EC-SOD activity is disrupted in chronic hypoxia, and increased EC-SOD activity can attenuate chronic hypoxic PH by limiting the hypoxic upregulation of redox-sensitive genes.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, Univ. of Colorado, Denver, 4200 E. 9th Ave., B131, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood 2008; 112:2055-61. [PMID: 18559978 DOI: 10.1182/blood-2008-04-150276] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hereditary folate malabsorption (HFM) patients harbor inactivating mutations including R113S in the proton-coupled folate transporter (PCFT), an intestinal folate transporter with optimal activity at acidic pH. Here we identified and characterized a novel R113C mutation residing in the highly conserved first intracellular loop of PCFT. Stable transfectants overexpressing a Myc-tagged wild-type (WT) and mutant R113C PCFT displayed similar transporter targeting to the plasma membrane. However, whereas WT PCFT transfectants showed a 22-fold increase in [(3)H]folic acid influx at pH 5.5, R113C or mock transfectants showed no increase. Moreover, WT PCFT transfectants displayed a 50% folic acid growth requirement concentration of 7 nM, whereas mock and R113C transfectants revealed 24- to 27-fold higher values. Consistently, upon fluorescein-methotrexate labeling, WT PCFT transfectants displayed a 50% methotrexate displacement concentration of 50 nM, whereas mock and R113C transfectants exhibited 12- to 14-fold higher values. Based on the crystal structure of the homologous Escherichia coli glycerol-3-phosphate transporter, we propose that the cationic R113 residue of PCFT is embedded in a hydrophobic pocket formed by several transmembrane helices that may be part of a folate translocation pore. These findings establish a novel loss of function mutation in HFM residing in an intracellular loop of PCFT crucial for folate transport.
Collapse
|
39
|
Boueiz A, Damarla M, Hassoun PM. Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 2008; 294:L830-40. [PMID: 18344415 DOI: 10.1152/ajplung.00007.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to its critical role in purine metabolism, xanthine oxidoreductase (XOR) has been implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders such as acute lung injury, ischemia-reperfusion injury, atherosclerosis, heart failure, and arterial hypertension. Although much remains to be clarified about the regulation and signaling pathways of this enzyme, it is quite evident from abundant investigation in animal models and some human trials that XOR inhibition can favorably alter critical disease processes and impact outcomes. From promising bench-to-bedside data, a better understanding of this enigmatic enzyme is emerging. However, the positive findings related to XOR inhibition need to be confirmed in large-scale, well-designed clinical trials. This will hopefully provide new opportunities for therapeutic intervention. This article reviews the available evidence involving XOR in oxidative states with specific emphasis on respiratory and cardiovascular diseases.
Collapse
Affiliation(s)
- Adel Boueiz
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Johns Hopkins Univ. School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
40
|
Collins JF. Novel insights into intestinal and renal folate transport. Focus on “Apical membrane targeting and trafficking of the human proton-coupled folate transporter in polarized epithelia”. Am J Physiol Cell Physiol 2008; 294:C381-2. [DOI: 10.1152/ajpcell.00566.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|