1
|
Bychkova S, Bychkov M, Dordevic D, Vítězová M, Rittmann SKMR, Kushkevych I. Bafilomycin A1 Molecular Effect on ATPase Activity of Subcellular Fraction of Human Colorectal Cancer and Rat Liver. Int J Mol Sci 2024; 25:1657. [PMID: 38338935 PMCID: PMC10855383 DOI: 10.3390/ijms25031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bafilomycin A1 inhibits V-type H+ ATPases on the molecular level, which acidifies endo-lysosomes. The main objective of the study was to assess the effect of bafilomycin A1 on Ca2+ content, NAADP-induced Ca2+ release, and ATPase activity in rat hepatocytes and human colon cancer samples. Chlortetracycline (CTC) was used for a quantitative measure of stored calcium in permeabilized rat hepatocytes. ATPase activity was determined by orthophosphate content released after ATP hydrolysis in subcellular post-mitochondrial fraction obtained from rat liver as well as from patients' samples of colon mucosa and colorectal cancer samples. In rat hepatocytes, bafilomycin A1 decreased stored Ca2+ and prevented the effect of NAADP on stored Ca2+. This effect was dependent on EGTA-Ca2+ buffers in the medium. Bafilomycin A1 significantly increased the activity of Ca2+ ATPases of endoplasmic reticulum (EPR), but not plasma membrane (PM) Ca2+ ATPases in rat liver. Bafilomycin A1 also prevented the effect of NAADP on these pumps. In addition, bafilomycin A1 reduced Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in the subcellular fraction of rat liver. Concomitant administration of bafilomycin A1 and NAADP enhanced these effects. Bafilomycin A1 increased the activity of the Ca2+ ATPase of EPR in the subcellular fraction of normal human colon mucosa and also in colon cancer tissue samples. In contrast, it decreased Ca2+ ATPase PM activity in samples of normal human colon mucosa and caused no changes in colon cancer. Bafilomycin A1 decreased Na+/K+ ATPase activity and increased basal Mg2+ ATPase activity in normal colon mucosa samples and in human colon cancer samples. It can be concluded that bafilomycin A1 targets NAADP-sensitive acidic Ca2+ stores, effectively modulates ATPase activity, and assumes the link between acidic stores and EPR. Bafilomycin A1 may be useful for cancer therapy.
Collapse
Affiliation(s)
- Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Mykola Bychkov
- Department of Therapy No. 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| |
Collapse
|
2
|
Guse AH. Enzymology of Ca 2+-Mobilizing Second Messengers Derived from NAD: From NAD Glycohydrolases to (Dual) NADPH Oxidases. Cells 2023; 12:cells12040675. [PMID: 36831342 PMCID: PMC9954121 DOI: 10.3390/cells12040675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its 2'-phosphorylated cousin NADP are precursors for the enzymatic formation of the Ca2+-mobilizing second messengers adenosine diphosphoribose (ADPR), 2'-deoxy-ADPR, cyclic ADPR, and nicotinic acid adenine dinucleotide phosphate (NAADP). The enzymes involved are either NAD glycohydrolases CD38 or sterile alpha toll/interleukin receptor motif containing-1 (SARM1), or (dual) NADPH oxidases (NOX/DUOX). Enzymatic function(s) are reviewed and physiological role(s) in selected cell systems are discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Li G, Huang D, Li P, Yuan X, Yarotskyy V, Li PL. Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. CURRENT TOPICS IN MEMBRANES 2022; 90:37-63. [PMID: 36368874 PMCID: PMC9842397 DOI: 10.1016/bs.ctm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysosomal acid ceramidase (AC) has been reported to determine multivesicular body (MVB) fate and exosome secretion in different mammalian cells including coronary arterial endothelial cells (CAECs). However, this AC-mediated regulation of exosome release from CAECs and associated underlying mechanism remain poorly understood. In the present study, we hypothesized that AC controls lysosomal Ca2+ release through TRPML1 channel to regulate exosome release in murine CAECs. To test this hypothesis, we isolated and cultured CAECs from WT/WT and endothelial cell-specific Asah1 gene (gene encoding AC) knockout mice. Using these CAECs, we first demonstrated a remarkable increase in exosome secretion and significant reduction of lysosome-MVB interaction in CAECs lacking Asah1 gene compared to those cells from WT/WT mice. ML-SA1, a TRPML1 channel agonist, was found to enhance lysosome trafficking and increase lysosome-MVB interaction in WT/WT CAECs, but not in CAECs lacking Asah1 gene. However, sphingosine, an AC-derived sphingolipid, was able to increase lysosome movement and lysosome-MVB interaction in CAECs lacking Asah1 gene, leading to reduced exosome release from these cells. Moreover, Asah1 gene deletion was shown to substantially inhibit lysosomal Ca2+ release through suppression of TRPML1 channel activity in CAECs. Sphingosine as an AC product rescued the function of TRPML1 channel in CAECs lacking Asah1 gene. These results suggest that Asah1 gene defect and associated deficiency of AC activity may inhibit TRPML1 channel activity, thereby reducing MVB degradation by lysosome and increasing exosome release from CAECs. This enhanced exosome release from CAECs may contribute to the development of coronary arterial disease under pathological conditions.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pengyang Li
- Division of Cardiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
5
|
Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox Biol 2021; 43:102013. [PMID: 34030116 PMCID: PMC8163985 DOI: 10.1016/j.redox.2021.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome in podocytes has been implicated in the initiation of glomerular inflammation during hyperhomocysteinemia (hHcy). However, the mechanism by which NLRP3 inflammasome products are released from podocytes remains unknown. The present study tested whether exosome secretion from podocytes is enhanced by NADPH oxidase-produced reactive oxygen species (ROS), which may serve as a pathogenic mechanism mediating the release of inflammatory cytokines produced by the NLRP3 inflammasome in podocytes after Hcy stimulation. We first demonstrated the remarkable elevation of endogenously produced ROS in podocytes treated with Hcy compared with control podocytes, which was abolished by pre-treatment with the NADPH oxidase inhibitors, gp91 ds-tat peptide and diphenyleneiodonium (DPI). In addition, Hcy induced activation in podocytes of NLRP3 inflammasomes and the formation of multivesicular bodies (MVBs) containing inflammatory cytokines, which were prevented by treatment with gp91 ds-tat or the ROS scavenger, catalase. Given the importance of the transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited by endogenously produced ROS in podocytes after Hcy stimulation. By GCaMP3 Ca2+ imaging, we confirmed the inhibition of TRPML1 channel activity by Hcy which was remarkably ameliorated by catalase and gp91 ds-tat peptide. By structured illumination microscopy (SIM) and nanoparticle tracking analysis (NTA), we found that ML-SA1, a TRPML1 channel agonist, significantly enhanced lysosome-MVB interaction and reduced exosome release in podocytes, which were attenuated by Hcy. Pre-treatment of podocytes with catalase or gp91 ds-tat peptide restored ML-SA1-induced changes in lysosome-MVB interaction and exosome secretion. Moreover, we found that hydrogen peroxide (H2O2) mimicked the effect of Hcy on TRPML1 channel activity, lysosome-MVB interaction, and exosome secretion in podocytes. Based on these results, we conclude that endogenously produced ROS importantly contributes to inflammatory exosome secretion from podocytes through inhibition of TRPML1 channel activity, which may contribute to the initiation of glomerular inflammation during hHcy.
Collapse
|
6
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Li G, Huang D, Bhat OM, Poklis JL, Zhang A, Zou Y, Kidd J, Gehr TWB, Li PL. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158856. [PMID: 33221496 PMCID: PMC7770122 DOI: 10.1016/j.bbalip.2020.158856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Aolin Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. Int J Mol Sci 2020; 21:ijms21051559. [PMID: 32106480 PMCID: PMC7084483 DOI: 10.3390/ijms21051559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are visceral epithelial cells covering the outer surface of glomerular capillaries in the kidney. Blood is filtered through the slit diaphragm of podocytes to form urine. The functional and structural integrity of podocytes is essential for the normal function of the kidney. As a membrane-bound organelle, lysosomes are responsible for the degradation of molecules via hydrolytic enzymes. In addition to its degradative properties, recent studies have revealed that lysosomes may serve as a platform mediating cellular signaling in different types of cells. In the last decade, increasing evidence has revealed that the normal function of the lysosome is important for the maintenance of podocyte homeostasis. Podocytes have no ability to proliferate under most pathological conditions; therefore, lysosome-dependent autophagic flux is critical for podocyte survival. In addition, new insights into the pathogenic role of lysosome and associated signaling in podocyte injury and chronic kidney disease have recently emerged. Targeting lysosomal functions or signaling pathways are considered potential therapeutic strategies for some chronic glomerular diseases. This review briefly summarizes current evidence demonstrating the regulation of lysosomal function and signaling mechanisms as well as the canonical and noncanonical roles of podocyte lysosome dysfunction in the development of chronic glomerular diseases and associated therapeutic strategies.
Collapse
|
10
|
Bhat OM, Li G, Yuan X, Huang D, Gulbins E, Kukreja RC, Li PL. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci Rep 2020; 10:1645. [PMID: 32015399 PMCID: PMC6997457 DOI: 10.1038/s41598-020-58568-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.
Collapse
MESH Headings
- Acid Ceramidase/genetics
- Acid Ceramidase/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Calcium Signaling
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Farber Lipogranulomatosis/genetics
- Farber Lipogranulomatosis/metabolism
- Lysosomes/metabolism
- Male
- Metabolic Networks and Pathways
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Cardiovascular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sphingolipids/metabolism
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany and Dept. of Surgery, University of Cincinnati, Cincinnati, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
11
|
Abstract
Of the established Ca2+-mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations, and its receptors undergo dramatic desensitization. Recent studies have identified a new class of calcium-release channel, the two-pore channels (TPCs), as the likely targets for NAADP regulation, even though the effect may be indirect. These channels localized at endolysosomes, where they mediate local Ca2+ release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca2+ mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca2+ release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca2+-induced Ca2+-release (CICR) channels at lysosomal-endoplasmic reticulum (ER) junctions. The third is to regulate plasma membrane excitability by the targeting of Ca2+ release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca2+-activated channels. In this review, I discuss the role of nicotinic acid adenine nucleotide diphosphate (NAADP)-mediated Ca2+ release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca2+ signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
12
|
Li G, Huang D, Hong J, Bhat OM, Yuan X, Li PL. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. Am J Physiol Cell Physiol 2019; 317:C481-C491. [PMID: 31268777 PMCID: PMC6766620 DOI: 10.1152/ajpcell.00150.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
The transient receptor potential mucolipin 1 (TRPML1) channel has been reported to mediate lysosomal Ca2+ release that is involved in Ca2+-dependent lysosome trafficking and autophagic flux. However, this regulatory mechanism of lysosomal TRPML1 channel activity in podocytes remains poorly understood. In the present study, we tested whether the TRPML1 channel in podocytes mediates lysosome trafficking, which is essential for multivesicular body (MVB) degradation by lysosomes. We first demonstrated the abundant expression of TRPML1 channel in podocytes. By GCaMP3 Ca2+ imaging, we characterized the lysosomal specificity of TRPML1 channel-mediated Ca2+ release in podocytes. Given the important role of acid ceramidase (AC) in lysosome function and podocyte injury, we tested whether AC regulates this TRPML1 channel-mediated Ca2+ release and consequent lysosome-dependent MVB degradation in podocytes. Pharmacologically, it was found that TRPML1 channel activity was remarkably attenuated by the AC inhibitor carmofur. Sphingosine, as an AC product, was demonstrated to induce TRPML1-mediated Ca2+ release, which was inhibited by a TRPML1 blocker, verapamil. Using a Port-a-Patch planar patch-clamp system, we found that AC-associated sphingolipids, sphingomyelin, ceramide, and sphingosine had different effects on TRPML1 channel activity in podocytes. Functionally, the inhibition of AC or blockade of TRPML1 channels was found to suppress the interaction of lysosomes and MVBs, leading to increased exosome release from podocytes. These results suggest that AC is critical for TRPML1 channel-mediated Ca2+ release, which controls lysosome-MVB interaction and exosome release in podocytes.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jinni Hong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
13
|
|
14
|
Xu X, Yuan X, Li N, Dewey WL, Li PL, Zhang F. Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in CD38(-/-) mice. J Cell Mol Med 2016; 20:1001-13. [PMID: 26818887 PMCID: PMC4882979 DOI: 10.1111/jcmm.12788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/13/2015] [Indexed: 12/16/2022] Open
Abstract
The disruption in transportation of oxLDL‐derived cholesterol and the subsequent lipid accumulation in macrophages are the hallmark events in atherogenesis. Our recent studies demonstrated that lysosomal Ca2+ messenger of nicotinic acid adenine dinucleotide phosphate (NAADP), an enzymatic product of CD38 ADP‐ribosylcyclase (CD38), promoted lipid endocytic trafficking in human fibroblast cells. The current studies are designed to examine the functional role of CD38/NAADP pathway in the regulation of lysosomal cholesterol efflux in atherosclerosis. Oil red O staining showed that oxLDL concentration‐dependently increased lipid buildup in bone marrow‐derived macrophages from both wild type and CD38−/−, but to a significant higher extent with CD38 gene deletion. Bodipy 493/503 fluorescence staining found that the deposited lipid in macrophages was mainly enclosed in lysosomal organelles and largely enhanced with the blockade of CD38/NAADP pathway. Filipin staining and direct measurement of lysosome fraction further revealed that the free cholesterol constituted a major portion of the total cholesterol segregated in lysosomes. Moreover, in situ assay disclosed that both lysosomal lumen acidity and the acid lipase activity were reduced upon cholesterol buildup in lysosomes. In CD38−/− mice, treatment with Western diet (12 weeks) produced atherosclerotic damage in coronary artery with striking lysosomal cholesterol sequestration in macrophages. These data provide the first experimental evidence that the proper function of CD38/NAADP pathway plays an essential role in promoting free cholesterol efflux from lysosomes and that a defection of this signalling leads to lysosomal cholesterol accumulation in macrophages and results in coronary atherosclerosis in CD38−/− mice.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - William L Dewey
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Xu M, Li XX, Wang L, Wang M, Zhang Y, Li PL. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene. Cell Physiol Biochem 2015; 37:432-44. [PMID: 26315049 PMCID: PMC4678283 DOI: 10.1159/000430366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC) phenotypic switching remain unknown. Methods & Results In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs) from CD38−/− mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38−/− CAMs was enhanced by 7-ketocholesterol (7-Ket), an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2), a basic leucine zipper (bZIP) transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38−/− CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38−/− CAMs, 7-Ket failed to stimulate the production of O2−., while in CD38+/+ CAMs 7-Ket induced marked O2−. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2−. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion Taken together, these results suggest that CD38 activity is required for 7-Ket-induced Ca2+ and consequently O2−. production in CAMs, which increases Nrf2 activity to maintain their differentiated status. When CD38 gene expression and function are deficient, the Nrf2 activity is suppressed, thereby leading to phenotypic switching of CAMs.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
16
|
Xu X, Zhang A, Li N, Li PL, Zhang F. Concentration-Dependent Diversifcation Effects of Free Cholesterol Loading on Macrophage Viability and Polarization. Cell Physiol Biochem 2015; 37:419-431. [PMID: 26314949 DOI: 10.1159/000430365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIMS The accumulation of free cholesterol in atherosclerotic lesions has been well documented in both animals and humans. In studying the relevance of free cholesterol buildup in atherosclerosis, contradictory results have been generated, indicating that free cholesterol produces both pro- and anti-atherosclerosis effects in macrophages. This inconsistency might stem from the examination of only select concentrations of free cholesterol. In the present study, we sought to investigate the implication of excess free cholesterol loading in the pathophysiology of atherosclerosis across a broad concentration range from (in µg/ml) 0 to 60. METHODS Macrophage viability was determined by measuring formazan formation and flow cytometry viable cell counting. The polarization of M1 and M2 macrophages was differentiated by FACS (Fluorescence-Activated Cell Sorting) assay. The secretion of IL-1β in macrophage culture medium was measured by ELISA kit. Macrophage apoptosis was detected by flow cytometry using a TUNEL kit. RESULTS Macrophage viability was increased at the treatment of lower concentrations of free cholesterol from (in µg/ml) 0 to 20, but gradually decreased at higher concentrations from 20 to 60. Lower free cholesterol loading induced anti-inflammatory M2 macrophage polarization. The activation of the PPARx03B3; (Peroxisome Proliferator-Activated Receptor gamma) nuclear factor underscored the stimulation of this M2 phenotype. Nevertheless, higher levels of free cholesterol resulted in pro-inflammatory M1 activation. Moreover, with the application of higher free cholesterol concentrations, macrophage apoptosis and secretion of the inflammatory cytokine IL-1β increased significantly. CONCLUSION These results for the first time demonstrate that free cholesterol could render concentration-dependent diversification effects on macrophage viability, polarization, apoptosis and inflammatory cytokine secretions, thereby reconciling the pros and cons of free cholesterol buildup in macrophages to the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Aolin Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| |
Collapse
|
17
|
Davis LC, Platt FM, Galione A. Preferential Coupling of the NAADP Pathway to Exocytosis in T-Cells. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2015; 4:53-66. [PMID: 27330870 PMCID: PMC4910867 DOI: 10.1166/msr.2015.1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cytotoxic T-lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. However, these granules are more than reservoirs of secretory cytolytic proteins but may also serve as unique Ca2+ signaling hubs that autonomously generate their own signals for exocytosis. This review discusses a selective role for the Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP) and its molecular targets, two-pore channels (TPCs), in stimulating exocytosis. Given that TPCs reside on the exocytotic granules themselves, these vesicles generate as well as respond to NAADP-dependent Ca2+ signals, which may have wider implications for stimulus-secretion coupling, vesicular fusion, and patho-physiology.
Collapse
Affiliation(s)
- Lianne C. Davis
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| |
Collapse
|
18
|
Galione A. A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. Cell Calcium 2014; 58:27-47. [PMID: 25449298 DOI: 10.1016/j.ceca.2014.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Since the discovery of the Ca(2+) mobilizing effects of the pyridine nucleotide metabolite, nicotinic acid adenine dinucleotide phosphate (NAADP), this molecule has been demonstrated to function as a Ca(2+) mobilizing intracellular messenger in a wide range of cell types. In this review, I will briefly summarize the distinct principles behind NAADP-mediated Ca(2+) signalling before going on to outline the role of this messenger in the physiology of specific cell types. Central to the discussion here is the finding that NAADP principally mobilizes Ca(2+) from acidic organelles such as lysosomes and it is this property that allows NAADP to play a unique role in intracellular Ca(2+) signalling. Lysosomes and related organelles are small Ca(2+) stores but importantly may also initiate a two-way dialogue with other Ca(2+) storage organelles to amplify Ca(2+) release, and may be strategically localized to influence localized Ca(2+) signalling microdomains. The study of NAADP signalling has created a new and fruitful focus on the lysosome and endolysosomal system as major players in calcium signalling and pathophysiology.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
19
|
Xu M, Li XX, Chen Y, Pitzer AL, Zhang Y, Li PL. Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes. J Cell Mol Med 2014; 18:2165-75. [PMID: 24912985 PMCID: PMC4213304 DOI: 10.1111/jcmm.12326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/15/2014] [Indexed: 01/18/2023] Open
Abstract
Dynein-mediated autophagosome (AP) trafficking was recently demonstrated to contribute to the formation of autophagolysosomes (APLs) and autophagic flux process in coronary arterial myocytes (CAMs). However, it remains unknown how the function of dynein as a motor protein for AP trafficking is regulated under physiological and pathological conditions. The present study tested whether the dynein-mediated autophagy maturation is regulated by a redox signalling associated with lysosomal Ca2+ release machinery. In primary cultures of CAMs, reactive oxygen species (ROS) including H2O2 and O2−. (generated by xanthine/xanthine oxidase) significantly increased dynein ATPase activity and AP movement, which were accompanied by increased lysosomal fusion with AP and APL formation. Inhibition of dynein activity by (erythro-9-(2-hydroxy-3-nonyl)adenine) (EHNA) or disruption of the dynein complex by dynamitin (DCTN2) overexpression blocked ROS-induced dynein activation, AP movement and APL formation, and resulted in an accumulation of AP along with a failed breakdown of AP. Antagonism of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ signalling with NED-19 and PPADS abolished ROS-enhanced lysosomal Ca2+ release and dynein activation in CAMs. In parallel, all these changes were also enhanced by overexpression of NADPH oxidase-1 (Nox1) gene in CAMs. Incubation with high glucose led to a marked O2−. production compared with normoglycaemic CAMs, while Nox1 inhibitor ML117 abrogated this effect. Moreover, ML117 and NED-19 and PPADS significantly suppressed dynein activity and APL formation caused by high glucose. Taken together, these data suggest that ROS function as important players to regulate dynein-dependent AP trafficking leading to efficient autophagic maturation in CAMs.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res 2014; 102:68-78. [PMID: 24445604 DOI: 10.1093/cvr/cvu011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Autophagic flux is an important process during autophagy maturation in smooth muscle cells. However, the molecular mechanisms underlying autophagic flux in these cells are largely unknown. Here, we revealed a previously undefined role of CD38, an enzyme that metabolizes NADP(+) into NAADP, in the regulation of autophagic flux in coronary arterial myocytes (CAMs). METHODS AND RESULTS In vivo CD38 gene knockout mice (CD38(-/-)) fed the high-fat Western diet showed increased accumulation of autophagosomes in coronary arterial media compared with that in wild-type (CD38(+/+)) mice, suggesting that CD38 gene deletion results in a defective autophagic process in CAMs of coronary arteries. In primary cultured CAMs, CD38 gene deletion markedly enhanced 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer)-induced accumulation of autophagosomes and increased expression of an autophagic marker, LC3B. However, no difference in autophagosome formation was observed between CD38(+/+) and CD38(-/-) CAMs when autophagic flux was blocked, which indicates that CD38 regulates autophagic flux rather than induction of autophagosome formation. Further, 7-Ket-induced formation of autophagolysosomes was markedly attenuated in CD38(-/-) CAMs compared with CD38(+/+) CAMs. Mechanistically, CD38 gene deletion markedly inhibited 7-Ket-induced dynein activation and autophagosome trafficking, which were associated with attenuated lysosomal Ca(2+) release. Importantly, coronary arterial smooth muscle from CD38(-/-) mice fed the Western diet exhibited phenotypic changes towards a more dedifferentiated state with abnormal extracellular matrix metabolism. CONCLUSION Taken together, these results suggest that CD38 plays a critical role in autophagosome trafficking and fusion with lysosomes, thus controlling autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xiong J, Xia M, Xu M, Zhang Y, Abais JM, Li G, Riebling CR, Ritter JK, Boini KM, Li PL. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes. J Cell Mol Med 2013; 17:1598-607. [PMID: 24238063 PMCID: PMC3914646 DOI: 10.1111/jcmm.12173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/27/2013] [Indexed: 01/08/2023] Open
Abstract
Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38-mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3-II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3-II and the content of both APs detected by Cyto-ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin-induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co-transfection of GFP-LC3B and RFP-Lamp1 expression vectors. A colocalization of GFP-LC3B and RFP-Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38-mediated regulation by PPADS completely abolished rapamycin-induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu M, Li XX, Xiong J, Xia M, Gulbins E, Zhang Y, Li PL. Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3228-3236. [PMID: 24095928 DOI: 10.1016/j.bbamcr.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs). Here, we defined the role and molecular mechanism of the motor protein dynein in the regulation of autophagic flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes (APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited. Interestingly, 7-Ket increased lysosomal Ca(2+) release and stimulated dynein ATPase activity, both of which were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-mediated Ca(2+) release plays a crucial role in regulating dynein activity, which mediates APs trafficking and fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiao-Xue Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing Xiong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse, 55, 45122 Essen, Germany
| | - Yang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
23
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
24
|
Jiang YL, Lin AHY, Xia Y, Lee S, Paudel O, Sun H, Yang XR, Ran P, Sham JSK. Nicotinic acid adenine dinucleotide phosphate (NAADP) activates global and heterogeneous local Ca2+ signals from NAADP- and ryanodine receptor-gated Ca2+ stores in pulmonary arterial myocytes. J Biol Chem 2013; 288:10381-94. [PMID: 23443655 PMCID: PMC3624421 DOI: 10.1074/jbc.m112.423053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/08/2013] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-mobilizing messenger that releases Ca(2+) from endolysosomal organelles. Recent studies showed that NAADP-induced Ca(2+) release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca(2+) signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca(2+)]i, which was independent of extracellular Ca(2+) and blocked by the NAADP antagonist Ned-19 or the vacuolar H(+)-ATPase inhibitor bafilomycin A1, indicating Ca(2+) release from acidic endolysosomal Ca(2+) stores. The Ca(2+) response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca(2+) signals, including a diffuse increase in cytosolic [Ca(2+)], Ca(2+) sparks, Ca(2+) bursts, and regenerative Ca(2+) release. The diffuse Ca(2+) increase and Ca(2+) bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca(2+) sparks and regenerative Ca(2+) release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca(2+) release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca(2+) signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca(2+) signals. Depending on the physiological stimuli, these diverse Ca(2+) signals may serve to regulate different cellular functions in PASMCs.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu M, Li X, Walsh SW, Zhang Y, Abais JM, Boini KM, Li PL. Intracellular two-phase Ca2+ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes. Am J Physiol Cell Physiol 2013; 304:C458-66. [PMID: 23283937 PMCID: PMC3602645 DOI: 10.1152/ajpcell.00342.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/02/2013] [Indexed: 11/22/2022]
Abstract
Activation of the death receptor Fas has been reported to produce a two-phase intracellular Ca(2+) release response in coronary arterial myocytes (CAMs), which consists of local Ca(2+) bursts via lysosomal transient potential receptor-mucolipin 1 (TRP-ML1) channels and consequent Ca(2+) release from the sarcoplasmic reticulum (SR). The present study was designed to explore the molecular mechanism by which lysosomal Ca(2+) bursts are coupled with SR Ca(2+) release in mouse CAMs and to determine the functional relevance of this lysosome-associated two-phase Ca(2+) release to apoptosis, a common action of Fas activation with Fas ligand (FasL). By confocal microscopy, we found that transfection of CAMs with TRP-ML1 small interfering (si)RNA substantially inhibited FasL (10 ng/ml)-induced lysosome Ca(2+) bursts and consequent SR Ca(2+) release. In contrast, transfection of CAMs with plasmids containing a full-length TRP-ML1 gene enhanced FasL-induced two-phase Ca(2+) release. We further demonstrated that FasL significantly increased the colocalization of the lysosomal marker Lamp1 with ryanodine receptor 3 and enhanced a dynamic trafficking of lysosomes to the SR. When CAMs were treated with TRP-ML1 siRNA, FasL-induced interactions between the lysosomes and SR were substantially blocked. Functionally, FasL-induced apoptosis and activation of calpain and calcineurin, the Ca(2+) sensitive proteins that mediate apoptosis, were significantly attenuated by silencing TRP-ML1 gene but enhanced by overexpression of TRP-ML1 gene. These results suggest that TRP-ML1 channel-mediated lysosomal Ca(2+) bursts upon FasL stimulation promote lysosome trafficking and interactions with the SR, leading to apoptosis of CAMs via a Ca(2+)-dependent mechanism.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Esfandiarei M, Fameli N, Choi YYH, Tehrani AY, Hoskins JG, van Breemen C. Waves of calcium depletion in the sarcoplasmic reticulum of vascular smooth muscle cells: an inside view of spatiotemporal Ca2+ regulation. PLoS One 2013; 8:e55333. [PMID: 23408969 PMCID: PMC3567057 DOI: 10.1371/journal.pone.0055333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/20/2012] [Indexed: 01/24/2023] Open
Abstract
Agonist-stimulated smooth muscle Ca2+ waves regulate blood vessel tone and vasomotion. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were stimulated by a combination of inositol 1,4,5-trisphosphate- and Ca2+-induced Ca2+ release from the endo/sarcoplasmic reticulum. Herein, we present the first report of endothelin-1 stimulated waves of Ca2+ depletion from the sarcoplasmic reticulum of vascular smooth muscle cells using a calsequestrin-targeted Ca2+ indicator. Our findings confirm that these waves are due to regenerative Ca2+-induced Ca2+ release by the receptors for inositol 1,4,5-trisphosphate. Our main new finding is a transient elevation in SR luminal Ca2+ concentration ([Ca2+]SR) both at the site of wave initiation, just before regenerative Ca2+ release commences, and at the advancing wave front, during propagation. This strongly suggests a role for [Ca2+]SR in the activation of inositol 1,4,5-trisphosphate receptors during agonist-induced calcium waves. In addition, quantitative analysis of the gradual decrease in the velocity of the depletion wave, observed in the absence of external Ca2+, indicates continuity of the lumen of the sarcoplasmic reticulum network. Finally, our observation that the depletion wave was arrested by the nuclear envelope may have implications for selective Ca2+ signalling.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Child & Family Research Institute, Department of Anaesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. Pflugers Arch 2012; 465:829-38. [DOI: 10.1007/s00424-012-1195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
|
28
|
Gogna R, Madan E, Keppler B, Pati U. Gallium compound GaQ(3) -induced Ca(2+) signalling triggers p53-dependent and -independent apoptosis in cancer cells. Br J Pharmacol 2012; 166:617-36. [PMID: 22074401 DOI: 10.1111/j.1476-5381.2011.01780.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE A novel anti-neoplastic gallium complex GaQ(3) (KP46), earlier developed by us, is currently in phase I clinical trial. GaQ(3) induced S-phase arrest and apoptosis via caspase/PARP cleavage in a variety of cancers. However, the underlying mechanism of apoptosis is unknown. Here, we have explored the mechanism(s) of GaQ(3) -induced apoptosis in cancer cells, focusing on p53 and intracellular Ca(2+) signalling. EXPERIMENTAL APPROACH GaQ(3) -induced cytotoxicity and apoptosis were determined in cancer cell lines, with different p53 status (p53(+/+) , p53(-/-) and p53 mutant). Time course analysis of intracellular Ca(2+) calcium release, p53 promoter activation, p53-nuclear/cytoplasmic movements and reactive oxygen species (ROS) were conducted. Ca(2+) -dependent formation of the p53-p300 transcriptional complex was analysed by co-immunoprecipitation and chromatin immunoprecipitation. Ca(2+) signalling, p53, p300 and ROS were serially knocked down to study Ca(2+) -p53-ROS ineractions in GaQ(3) -induced apoptosis. KEY RESULTS GaQ(3) triggered intracellular Ca(2+) release stabilizing p53-p300 complex and recruited p53 to p53 promoter, leading to p53 mRNA and protein synthesis. p53 induced higher intracellular Ca(2+) release and ROS followed by activation of p53 downstream genes including those for the micro RNA mir34a. In p53(-/-) and p53 mutant cells, GaQ(3) -induced Ca(2+) -signalling generated ROS. ROS further increased membrane translocation of FAS and FAS-mediated extrinsic apoptosis. CONCLUSIONS AND IMPLICATIONS This study disclosed a novel mechanism of Ca(2+) -signalling-mediated p53 activation and ROS up-regulation. Understanding the mechanism of GaQ(3) -induced apoptosis will help establish this gallium-based organic compound as a potent anti-cancer drug.
Collapse
Affiliation(s)
- Rajan Gogna
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
29
|
Sivaramakrishnan V, Bidula S, Campwala H, Katikaneni D, Fountain SJ. Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. J Cell Sci 2012; 125:4567-75. [PMID: 22767503 DOI: 10.1242/jcs.107318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elucidating mechanisms by which Ca(2+) signals are generated by monocytes is important for understanding monocyte function in health and disease. We have investigated mechanisms underlying Ca(2+) signals generated following disruption of lysosomes by exposure to the cathepsin C substrate glycyl-L-phenylalanine-β-napthylamide (GPN). Exposure to 0.2 mM GPN resulted in robust increases in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in the absence of extracellular Ca(2+). The response was antagonised by thapsigargin and evoked capacitative Ca(2+) entry. Dantrolene-sensitive Ca(2+) responses were observed at higher concentrations of GPN (0.4 mM) but not at 0.2 mM. Strikingly, GPN-evoked Ca(2+) responses and β-hexosaminidase secretion were inhibited by the ATPase/ADPase apyrase. Simultaneous measurement of [Ca(2+)](i) and extracellular ATP revealed a concomitant secretion of ATP during GPN-evoked Ca(2+) signalling. Furthermore, the ability of GPN to raise [Ca(2+)](i) was inhibited by P2Y receptor antagonists or by inhibiting vesicular exocytosis with N-ethylmaleimide (NEM). NEM treatment was associated with an inability of GPN to trigger ATP secretion, a drop in baseline [Ca(2+)](i) and reduction in extracellular ATP concentration. Antagonism of purinergic signalling also caused a reduction in baseline [Ca(2+)](i). In summary, these data suggest that P2Y receptor activation contributes significantly to GPN-evoked Ca(2+) signalling, and that constitutive secretion of lysosomal ATP is a major determinant of Ca(2+) homeostasis in monocytes. Lysosomal Ca(2+) stores can communicate with ER Ca(2+) stores either directly through activation of ryanodine receptors, or indirectly through release of ATP and engagement of P2Y receptors.
Collapse
|
30
|
Galione A, Parrington J, Funnell T. Physiological roles of NAADP-mediated Ca2+ signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:725-32. [PMID: 21786195 DOI: 10.1007/s11427-011-4207-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Nicotinic acid dinucleotide phosphate (NAADP) is unique amongst Ca(2+) mobilizing messengers in that its principal function is to mobilize Ca(2+) from acidic organelles. Early studies indicated that it was likely that NAADP activates a novel Ca(2+) release channel distinct from the well characterized Ca(2+) release channels on the (sarco)-endoplasmic reticulum (ER), inositol trisphosphate and ryanodine receptors. In this review, we discuss the emergence of a novel family of endolysosomal channels, the two-pore channels (TPCs), as likely targets for NAADP, and how molecular and pharmacological manipulation of these channels is enhancing our understanding of the physiological roles of NAADP as an intracellular Ca(2+) mobilizing messenger.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
31
|
Brailoiu GC, Oprea TI, Zhao P, Abood ME, Brailoiu E. Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J Biol Chem 2011; 286:29166-29174. [PMID: 21719698 DOI: 10.1074/jbc.m110.217463] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that the majority of endogenous cannabinoid type 1 (CB(1)) receptors do not reach the cell surface but are instead associated with endosomal and lysosomal compartments. Using calcium imaging and intracellular microinjection in CB(1) receptor-transfected HEK293 cells and NG108-15 neuroblastoma × glioma cells, we provide evidence that anandamide acting on CB(1) receptors increases intracellular calcium concentration when administered intracellularly but not extracellularly. The calcium-mobilizing effect of intracellular anandamide was dose-dependent and abolished by pretreatment with SR141716A, a CB(1) receptor antagonist. The anandamide-induced calcium increase was reduced by blocking nicotinic acid-adenine dinucleotide phosphate- or inositol 1,4,5-trisphosphate-dependent calcium release and abolished when both lysosomal and endoplasmic reticulum calcium release pathways were blocked. Taken together, our results indicate that, in CB(1) receptor-transfected HEK293 cells, intracellular CB(1) receptors are functional; they are located in acid-filled calcium stores (endolysosomes). Activation of intracellular CB(1) receptors releases calcium from endoplasmic reticulum and lysosomal calcium stores. In addition, our results support a novel role for nicotinic acid-adenine dinucleotide phosphate in cannabinoid-induced calcium signaling.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Tudor I Oprea
- Division of Biocomputing, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - Pingwei Zhao
- Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Mary E Abood
- Department of Anatomy and Cell Biology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and.
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
32
|
Zhang F, Xu M, Han WQ, Li PL. Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. Am J Physiol Cell Physiol 2011; 301:C421-30. [PMID: 21613607 DOI: 10.1152/ajpcell.00393.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that the mutation of TRP-ML1 (transient receptor potential-mucolipin-1) causes mucolipidosis IV, a lysosomal storage disease. Given that lysosomal nicotinic acid adenine dinucleotide phosphate (NAADP)-Ca(2+) release channel activity is associated with TRP-ML1, the present study was designed to test the hypothesis that NAADP regulates lysosome function via activation of TRP-ML1 channel activity. Using lysosomal preparations from wild-type (TRP-ML1(+/+)) human fibroblasts, channel reconstitution experiments demonstrated that NAADP (0.01-1.0 μM) produced a concentration-dependent increase in TRP-ML1 channel activity. This NAADP-induced activation of TRP-ML1 channels could not be observed in lysosomes from TRP-ML1(-/-) cells, but was restored by introducing a TRP-ML1 transgene into these cells. Microscopic Ca(2+) fluorescence imaging showed that NAADP significantly increased intracellular Ca(2+) concentration to 302.4 ± 74.28 nM (vs. 180 ± 44.13 nM of the basal) in TRP-ML1(+/+) cells, but it had no effect in TRP-ML1(-/-) cells. If a TRP-ML1 gene was transfected into TRP-ML1(-/-) cells, the Ca(2+) response to NAADP was restored to the level comparable to TRP-ML1(+/+) cells. Functionally, confocal microscopy revealed that NAADP significantly enhanced the dynamic interaction of endosomes and lysosomes and the lipid delivery to lysosomes in TRP-ML1(+/+) cells. This functional action of NAADP was abolished in TRP-ML1(-/-) cells, but restored after TRP-ML1 gene was rescued in these cells. Our results suggest that NAADP increases lysosomal TRP-ML1 channel activity to release Ca(2+), which promotes the interaction of endosomes and lysosomes and thereby regulates lipid transport to lysosomes. Failure of NAADP-TRP-ML1 signaling may be one of the important mechanisms resulting in intracellular lipid trafficking disorder and consequent mucolipidosis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
33
|
NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochem Soc Trans 2011; 38:1424-31. [PMID: 21118101 DOI: 10.1042/bst0381424] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies into the mechanisms of action of the Ca(2+)-mobilizing messenger NAADP (nicotinic acid-adenine dinucleotide phosphate) have demonstrated that a novel family of intracellular Ca(2+)-release channels termed TPCs (two-pore channels) are components of the NAADP receptor. TPCs appear to be exclusively localized to the endolysosomal system. These findings confirm previous pharmacological and biochemical studies suggesting that NAADP targets acidic Ca(2+) stores rather than the endoplasmic reticulum, the major site of action of the other two principal Ca(2+)-mobilizing messengers, InsP(3) and cADPR (cADP-ribose). Studies of the messenger roles of NAADP and the function of TPCs highlight the novel role of lysosomes and other organelles of the endocytic pathway as messenger-regulated Ca(2+) stores which also affects the regulation of the endolysosomal system.
Collapse
|
34
|
Abstract
Of the established Ca(2+) mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations. Recent studies have identified a new class of calcium release channel, the two-pore channels (TPCs), as the likely targets for NAADP. These channels are endolysosomal in localization where they mediate local Ca(2+) release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca(2+) mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca(2+) release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca(2+)-induced Ca(2+) release (CICR) channels at lysosomal-ER junctions. The third is to regulate plasma membrane excitability by the targeting of Ca(2+) release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca(2+)-activated channels. In this review, I discuss the role of NAADP-mediated Ca(2+) release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca(2+) signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
35
|
Brailoiu GC, Gurzu B, Gao X, Parkesh R, Aley PK, Trifa DI, Galione A, Dun NJ, Madesh M, Patel S, Churchill GC, Brailoiu E. Acidic NAADP-sensitive calcium stores in the endothelium: agonist-specific recruitment and role in regulating blood pressure. J Biol Chem 2010; 285:37133-7. [PMID: 20876534 DOI: 10.1074/jbc.c110.169763] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence implicates nicotinic acid adenine dinucleotide phosphate (NAADP) in the control of Ca(2+)-dependent functions. Little, however, is known concerning its role in the vascular endothelium, a major regulator of blood pressure. Here, we show that NAADP acetoxymethyl ester (NAADP-AM), a cell-permeant NAADP analog, increases cytosolic Ca(2+) concentration in aortic endothelial cells. We demonstrate that these signals and those evoked by acetylcholine are blocked by disrupting acidic organelles with bafilomycin A1. In contrast, Ca(2+) signals in response to thrombin are only partially inhibited by bafilomycin A1 treatment, and those to ATP were insensitive, suggesting that recruitment of acidic stores is agonist-specific. We further show that NAADP-evoked Ca(2+) signals hyperpolarize endothelial cells and generate NO. Additionally, we demonstrate that NAADP dilates aortic rings in an endothelium- and NO-dependent manner. Finally, we show that intravenous administration of NAADP-AM into anesthetized rats decreases mean arterial pressure. Our data extend the actions of NAADP to the endothelium both in vitro and in vivo, pointing to a previously unrecognized role for this messenger in controlling blood pressure.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Departments of Pharmacology, University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|