1
|
Duan M, Zhang X, Lou Y, Feng J, Guo P, Ye S, Lv P, Chen Y. Deletion of Tmem268 in mice suppresses anti-infectious immune responses by downregulating CD11b signaling. EMBO Rep 2024; 25:2550-2570. [PMID: 38730209 PMCID: PMC11169502 DOI: 10.1038/s44319-024-00141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Transmembrane protein 268 (TMEM268) is a novel, tumor growth-related protein first reported by our laboratory. It interacts with the integrin subunit β4 (ITGB4) and plays a positive role in the regulation of the ITGB4/PLEC signaling pathway. Here, we investigated the effects and mechanism of TMEM268 in anti-infectious immune response in mice. Tmem268 knockout in mice aggravated cecal ligation and puncture-induced sepsis, as evidenced by higher bacterial burden in various tissues and organs, congestion, and apoptosis. Moreover, Tmem268 deficiency in mice inhibited phagocyte adhesion and migration, thus decreasing phagocyte infiltration at the site of infection and complement-dependent phagocytosis. Further findings indicated that TMEM268 interacts with CD11b and inhibits its degradation via the endosome-lysosome pathway. Our results reveal a positive regulatory role of TMEM268 in β2 integrin-associated anti-infectious immune responses and signify the potential value of targeting the TMEM268-CD11b signaling axis for the maintenance of immune homeostasis and immunotherapy for sepsis and related immune disorders.
Collapse
Affiliation(s)
- Mengyuan Duan
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Xuan Zhang
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Jinqiu Feng
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Pengli Guo
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Shufang Ye
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, 100191, Beijing, China.
- Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, 100191, Beijing, China.
| |
Collapse
|
2
|
Bai X, Yang W, Zhao Y, Cao T, Lin R, Jiao P, Li H, Li H, Min J, Jia X, Zhang H, Fan W, Jia X, Bi Y, Liu W, Sun L. The extracellular cyclophilin A-integrin β2 complex as a therapeutic target of viral pneumonia. Mol Ther 2024; 32:1510-1525. [PMID: 38454605 PMCID: PMC11081868 DOI: 10.1016/j.ymthe.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin β2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin β2 interaction. Overall, our findings reveal that eCypA-integrin β2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxian Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuna Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Tongtong Cao
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Runshan Lin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heqiao Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Jia
- The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Cao Z, Garcia MJ, Sklar LA, Wandinger-Ness A, Fan Z. A Flow Cytometry-Based High-Throughput Technique for Screening Integrin-Inhibitory Drugs. J Vis Exp 2024:10.3791/64401. [PMID: 38372326 PMCID: PMC11172413 DOI: 10.3791/64401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
This protocol aims to establish a method for identifying small molecular antagonists of β2 integrin activation, utilizing conformational-change-reporting antibodies and high-throughput flow cytometry. The method can also serve as a guide for other antibody-based high-throughput screening methods. β2 integrins are leukocyte-specific adhesion molecules that are crucial in immune responses. Neutrophils rely on integrin activation to exit the bloodstream, not only to fight infections but also to be involved in multiple inflammatory diseases. Controlling β2 integrin activation presents a viable approach for treating neutrophil-associated inflammatory diseases. In this protocol, a monoclonal antibody, mAb24, which specifically binds to the high-affinity headpiece of β2 integrins, is utilized to quantify β2 integrin activation on isolated primary human neutrophils. N-formylmethionyl-leucyl-phenylalanine (fMLP) is used as a stimulus to activate neutrophil β2 integrins. A high-throughput flow cytometer capable of automatically running 384-well plate samples was used in this study. The effects of 320 chemicals on β2 integrin inhibition are assessed within 3 h. Molecules that directly target β2 integrins or target molecules in the G protein-coupled receptor-initiated integrin inside-out activation signaling pathway can be identified through this approach.
Collapse
Affiliation(s)
- Ziming Cao
- Department of Immunology, School of Medicine, UConn Health
| | - Matthew J Garcia
- Center for Molecular Discovery, University of New Mexico Health Sciences Center
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico Health Sciences Center; Comprehensive Cancer Center, University of New Mexico Health Sciences Center; Department of Pathology, University of New Mexico Health Sciences Center; Autophagy, Inflammation, & Metabolism (AIM) Center, University of New Mexico
| | - Angela Wandinger-Ness
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center; Department of Pathology, University of New Mexico Health Sciences Center
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health;
| |
Collapse
|
4
|
Li X, Qiao Q, Liu X, Hu Q, Yu Y, Qin X, Tian T, Tian Y, Ou X, Niu B, Yang C, Kong L, Zhang Z. Engineered Biomimetic Nanovesicles Based on Neutrophils for Hierarchical Targeting Therapy of Acute Respiratory Distress Syndrome. ACS NANO 2024; 18:1658-1677. [PMID: 38166370 DOI: 10.1021/acsnano.3c09848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a clinically severe respiratory disease that causes severe medical and economic burden. To improve therapeutic efficacy, effectively targeting delivery to the inflamed lungs and inflamed cells remains an ongoing challenge. Herein, we designed engineered biomimetic nanovesicles (DHA@ANeu-DDAB) by fusion of lung-targeting functional lipid, neutrophil membrane containing activated β2 integrins, and the therapeutic lipid, docosahexaenoic acid (DHA). By the advantage of lung targeting lipid and β2 integrin targeting adhesion, DHA@ANeu-DDAB can first target lung tissue and further target inflammatory vascular endothelial cells, to achieve "tissue first, cell second" hierarchical delivery. In addition, the β2 integrins in DHA@ANeu-DDAB could bind to the intercellular cell adhesion molecule-1/2 (ICAM-1/2) ligand on the endothelium in the inflamed blood vessels, thus inhibiting neutrophils' infiltration in the blood circulation. DHA administration to inflamed lungs could effectively regulate macrophage phenotype and promote its anti-inflammatory activity via enhanced biosynthesis of specialized pro-resolving mediators. In the lipopolysaccharide-induced ARDS mouse model, DHA@ANeu-DDAB afforded a comprehensive and efficient inhibition of lung inflammation and promoted acute lung damage repair. Through mimicking physiological processes, these engineered biomimetic vesicles as a delivery system possess good potential in targeting therapy for ARDS.
Collapse
Affiliation(s)
- Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Jiang Y, Zhang R, Guo JQ, Qian LL, Ji JJ, Wu Y, Ji ZJ, Yang ZW, Zhang Y, Chen X, Ma GS, Yao YY. Identification of major hub genes involved in high-fat diet-induced obese visceral adipose tissue based on bioinformatics approach. Adipocyte 2023; 12:2169227. [PMID: 36654490 PMCID: PMC9897782 DOI: 10.1080/21623945.2023.2169227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Ling-Lin Qian
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, P. R. China
| | - Jing-Jing Ji
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Zhen-Jun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Zi-Wei Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Xi Chen
- Department of Cardiology, Anqing First People’s Hospital of Anhui Province, Anqing, P. R. China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P. R. China,CONTACT Yu-Yu Yao Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing210009, Jiangsu, P. R. China
| |
Collapse
|
6
|
Su X, Xie L, Li J, Tian X, Lin B, Chen M. Exploring molecular signatures related to the mechanism of aging in different brain regions by integrated bioinformatics. Front Mol Neurosci 2023; 16:1133106. [PMID: 37033380 PMCID: PMC10076559 DOI: 10.3389/fnmol.2023.1133106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
The mechanism of brain aging is not fully understood. Few studies have attempted to identify molecular changes using bioinformatics at the subregional level in the aging brain. This study aimed to identify the molecular signatures and key genes involved in aging, depending on the brain region. Differentially expressed genes (DEGs) associated with aging of the cerebral cortex (CX), hippocampus (HC), and cerebellum (CB) were identified based on five datasets from the Gene Expression Omnibus (GEO). The molecular signatures of aging were explored using functional and pathway analyses. Hub genes of each brain region were determined by protein-protein interaction network analysis, and commonly expressed DEGs (co-DEGs) were also found. Gene-microRNAs (miRNAs) and gene-disease interactions were constructed using online databases. The expression levels and regional specificity of the hub genes and co-DEGs were validated using animal experiments. In total, 32, 293, and 141 DEGs were identified in aging CX, HC, and CB, respectively. Enrichment analysis indicated molecular changes related to leukocyte invasion, abnormal neurotransmission, and impaired neurogenesis due to inflammation as the major signatures of the CX, HC, and CB. Itgax is a hub gene of cortical aging. Zfp51 and Zfp62 were identified as hub genes involved in hippocampal aging. Itgax and Cxcl10 were identified as hub genes involved in cerebellar aging. S100a8 was the only co-DEG in all three regions. In addition, a series of molecular changes associated with inflammation was observed in all three brain regions. Several miRNAs interact with hub genes and S100a8. The change in gene levels was further validated in an animal experiment. Only the upregulation of Zfp51 and Zfp62 was restricted to the HC. The molecular signatures of aging exhibit regional differences in the brain and seem to be closely related to neuroinflammation. Itgax, Zfp51, Zfp62, Cxcl10, and S100a8 may be key genes and potential targets for the prevention of brain aging.
Collapse
Affiliation(s)
- Xie Su
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Jing Li
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Xinyue Tian
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Lin
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Menghua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Menghua Chen,
| |
Collapse
|
7
|
Caimi G, Lo Presti R, Carollo C, Montana M, Carlisi M. Polymorphonuclear phenotypical expression of CD18, at baseline and after in vitro activation, in several clinical disorders: Revision of our case series. Clin Hemorheol Microcirc 2023; 85:41-58. [PMID: 37482987 DOI: 10.3233/ch-231771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND In relation to the different and important roles of the beta2 integrins, we have revisited the expression of polymorphonuclear leukocyte CD18 in several clinical disorders, at baseline and after in vitro activation. SUBJECTS we have examined subjects with type 1 diabetes mellitus, vascular atherosclerotic disease, type 2 diabetes mellitus without and with macrovascular complications, chronic renal failure on conservative treatment, essential hypertension, deep venous thrombosis, acute ischemic stroke and subjects with venous leg ulcers. METHODS unfractioned leukocyte suspension was prepared according to the Mikita's method, while the leukocyte were separated into mononuclear and polymorphonuclear cells with a Ficoll-Hypaque medium. Using specific monoclonal antibody, the CD18 expression was evaluated with cytofluorimetric analysis, using FACScan (Becton Dickinson) be Cellquest software; the activation in vitro with PMA was effected according to modified Yasui and Masuda methods. RESULTS in type 1 diabetes mellitus, at baseline CD18 is under expressed in comparison with normal control, and not changes after PMA activation were observed; in subjects with vascular atherosclerotic disease, in type 2 diabetes mellitus CD18 is over expressed at baseline but does not vary after activation; in subjects with chronic renal failure, essential hypertension and in subjects with acute ischemic stroke the CD18 up-regulate at baseline compared to normal control, and it increases further after activation; in subjects with deep venous thrombosis the CD18 expression is not different from control group at baseline, but it increases after activation; finally, in subjects with venous leg ulcers the CD18 is normally expressed at baseline, and it does not change after PMA activation. CONCLUSIONS in the different clinical disorders, the trend of this integrin subunit provides some specific information, useful to select the best therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Gregorio Caimi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Montana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Carlisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Riffo E, Palma M, Hepp MI, Benítez-Riquelme D, Torres VA, Castro AF, Pincheira R. The Sall2 transcription factor promotes cell migration regulating focal adhesion turnover and integrin β1 expression. Front Cell Dev Biol 2022; 10:1031262. [DOI: 10.3389/fcell.2022.1031262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
SALL2/Sall2 is a transcription factor associated with development, neuronal differentiation, and cancer. Interestingly, SALL2/Sall2 deficiency leads to failure of the optic fissure closure and neurite outgrowth, suggesting a positive role for SALL2/Sall2 in cell migration. However, in some cancer cells, SALL2 deficiency is associated with increased cell migration. To further investigate the role of Sall2 in the cell migration process, we used immortalized Sall2 knockout (Sall2−/−) and Sall2 wild-type (Sall2+/+) mouse embryonic fibroblasts (iMEFs). Our results indicated that Sall2 positively regulates cell migration, promoting cell detachment and focal adhesions turnover. Sall2 deficiency decreased cell motility and altered focal adhesion dynamics. Accordingly, restoring Sall2 expression in the Sall2−/− iMEFs by using a doxycycline-inducible Tet-On system recovered cell migratory capabilities and focal adhesion dynamics. In addition, Sall2 promoted the autophosphorylation of Focal Adhesion Kinase (FAK) at Y397 and increased integrin β1 mRNA and its protein expression at the cell surface. We demonstrated that SALL2 increases ITGB1 promoter activity and binds to conserved SALL2-binding sites at the proximal region of the ITGB1 promoter, validated by ChIP experiments. Furthermore, the overexpression of integrin β1 or its blockade generates a cell migration phenotype similar to that of Sall2+/+ or Sall2−/− cells, respectively. Altogether, our data showed that Sall2 promotes cell migration by modulating focal adhesion dynamics, and this phenotype is associated with SALL2/Sall2-transcriptional regulation of integrin β1 expression and FAK autophosphorylation. Since deregulation of cell migration promotes congenital abnormalities, tumor formation, and spread to other tissues, our findings suggest that the SALL2/Sall2-integrin β1 axis could be relevant for those processes.
Collapse
|
9
|
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Nexinhib20 Inhibits Neutrophil Adhesion and β 2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1574-1585. [PMID: 36165184 PMCID: PMC9529951 DOI: 10.4049/jimmunol.2101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting β2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced β2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and β2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chunxia G Cronin
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chengliang Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Jianbin Ruan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT;
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT;
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
10
|
Cao Z, Zhao M, Sun H, Hu L, Chen Y, Fan Z. Roles of mitochondria in neutrophils. Front Immunol 2022; 13:934444. [PMID: 36081497 PMCID: PMC9447286 DOI: 10.3389/fimmu.2022.934444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in human blood. They are critical for fighting infections and are involved in inflammatory diseases. Mitochondria are indispensable for eukaryotic cells, as they control the biochemical processes of respiration and energy production. Mitochondria in neutrophils have been underestimated since glycolysis is a major metabolic pathway for fuel production in neutrophils. However, several studies have shown that mitochondria are greatly involved in multiple neutrophil functions as well as neutrophil-related diseases. In this review, we focus on how mitochondrial components, metabolism, and related genes regulate neutrophil functions and relevant diseases.
Collapse
Affiliation(s)
- Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| | - Meng Zhao
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States,Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology and Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States,*Correspondence: Zhichao Fan,
| |
Collapse
|
11
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
12
|
Cappenberg A, Kardell M, Zarbock A. Selectin-Mediated Signaling-Shedding Light on the Regulation of Integrin Activity in Neutrophils. Cells 2022; 11:cells11081310. [PMID: 35455989 PMCID: PMC9025114 DOI: 10.3390/cells11081310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and ligand binding characteristics mediate distinct functions of each selectin. Interactions of selectins and their counter-receptors mediate the first contact of neutrophils with the endothelium, as well as subsequent neutrophil rolling along the endothelial surface. For efficient neutrophil recruitment, activation of β2-integrins on the cell surface is essential. Integrin activation can be elicited via selectin- as well as chemokine-mediated inside-out signaling resulting in integrin conformational changes and clustering. Dysregulation of selectin-induced integrin activation on neutrophils is involved in the development of severe pathological disease conditions including leukocyte adhesion deficiency (LAD) syndromes in humans. Here, we review molecular mechanisms involved in selectin-mediated signaling pathways in neutrophils and their impact on integrin activation, neutrophil recruitment, and inflammatory diseases.
Collapse
|
13
|
Gomez JC, Doerschuk CM. Neutrophil DREAM come true: The not-so-impossible quest for mechanisms of neutrophil function and heterogeneity. J Exp Med 2022; 219:e20212141. [PMID: 34910084 PMCID: PMC8679798 DOI: 10.1084/jem.20212141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutrophil functions and responses are heterogeneous, and the nature and categorization of this heterogeneity is achieving considerable interest. Work by Li et al. in this issue of JEM (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211083) identifies how a transcriptional repressor, DREAM, regulates adhesion of neutrophils to endothelial cells and their transmigration into tissue. This study offers a mechanism for heterogeneity in this critical response of neutrophils to inflammatory stimuli.
Collapse
Affiliation(s)
| | - Claire M. Doerschuk
- Marsico Lung Institute and the Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|