1
|
Monteiro CJ, Duarte MJ, Machado MCV, Mascarenhas RS, Palma PVB, García HDM, Nakaya HI, Cunha TM, Donadi EA, Passos GA. The single-cell transcriptome of mTECs and CD4 + thymocytes under adhesion revealed heterogeneity of mTECs and a network controlled by Aire and lncRNAs. Front Immunol 2024; 15:1376655. [PMID: 39328409 PMCID: PMC11425717 DOI: 10.3389/fimmu.2024.1376655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
To further understand the impact of deficiency of the autoimmune regulator (Aire) gene during the adhesion of medullary thymic epithelial cells (mTECs) to thymocytes, we sequenced single-cell libraries (scRNA-seq) obtained from Aire wild-type (WT) (Airewt/wt ) or Aire-deficient (Airewt/mut ) mTECs cocultured with WT single-positive (SP) CD4+ thymocytes. Although the libraries differed in their mRNA and long noncoding RNA (lncRNA) profiles, indicating that mTECs were heterogeneous in terms of their transcriptome, UMAP clustering revealed that both mTEC lines expressed their specific markers, i.e., Epcam, Itgb4, Itga6, and Casp3 in resting mTECs and Ccna2, Pbk, and Birc5 in proliferative mTECs. Both cocultured SP CD4+ thymocytes remained in a homogeneous cluster expressing the Il7r and Ccr7 markers. Comparisons of the two types of cocultures revealed the differential expression of mRNAs that encode transcription factors (Zfpm2, Satb1, and Lef1), cell adhesion genes (Itgb1) in mTECs, and Themis in thymocytes, which is associated with the regulation of positive and negative selection. At the single-cell sequencing resolution, we observed that Aire acts on both Aire WT and Aire-deficient mTECs as an upstream controller of mRNAs, which encode transcription factors or adhesion proteins that, in turn, are posttranscriptionally controlled by lncRNAs, for example, Neat1, Malat1, Pvt1, and Dancr among others. Under Aire deficiency, mTECs dysregulate the expression of MHC-II, CD80, and CD326 (EPCAM) protein markers as well as metabolism and cell cycle-related mRNAs, which delay the cell cycle progression. Moreover, when adhered to mTECs, WT SP CD4+ or CD8+ thymocytes modulate the expression of cell activation proteins, including CD28 and CD152/CTLA4, and the expression of cellular metabolism mRNAs. These findings indicate a complex mechanism through which an imbalance in Aire expression can affect mTECs and thymocytes during adhesion.
Collapse
Affiliation(s)
- Cíntia J. Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Max J. Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara Cristina V. Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Romário S. Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia V. Bonini Palma
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Helder I. Nakaya
- Research Institute, Albert Einstein Israeli Hospital, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A. Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A. Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Center for Cell-Based Therapy in Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Tanaka PP, Oliveira EH, Vieira-Machado MC, Duarte MJ, Assis AF, Bombonato-Prado KF, Passos GA. miR-155 exerts posttranscriptional control of autoimmune regulator (Aire) and tissue-restricted antigen genes in medullary thymic epithelial cells. BMC Genomics 2022; 23:404. [PMID: 35643451 PMCID: PMC9145475 DOI: 10.1186/s12864-022-08631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The autoimmune regulator (Aire) gene is critical for the appropriate establishment of central immune tolerance. As one of the main controllers of promiscuous gene expression in the thymus, Aire promotes the expression of thousands of downstream tissue-restricted antigen (TRA) genes, cell adhesion genes and transcription factor genes in medullary thymic epithelial cells (mTECs). Despite the increasing knowledge about the role of Aire as an upstream transcriptional controller, little is known about the mechanisms by which this gene could be regulated. RESULTS Here, we assessed the posttranscriptional control of Aire by miRNAs. The in silico miRNA-mRNA interaction analysis predicted thermodynamically stable hybridization between the 3'UTR of Aire mRNA and miR-155, which was confirmed to occur within the cellular milieu through a luciferase reporter assay. This finding enabled us to hypothesize that miR-155 might play a role as an intracellular posttranscriptional regulator of Aire mRNA. To test this hypothesis, we transfected a murine mTEC cell line with a miR-155 mimic in vitro, which reduced the mRNA and protein levels of Aire. Moreover, large-scale transcriptome analysis showed the modulation of 311 downstream mRNAs, which included 58 TRA mRNAs. Moreover, miR-155 mimic-transfected cells exhibited a decrease in their chemotaxis property compared with control thymocytes. CONCLUSION Overall, the results indicate that miR-155 may posttranscriptionally control Aire mRNA, reducing the respective Aire protein levels; consequently, the levels of mRNAs encode tissue-restricted antigens were affected. In addition, miR-155 regulated a crucial process by which mTECs allow thymocytes' migration through chemotaxis.
Collapse
Affiliation(s)
- Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara Cristina Vieira-Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Max Jordan Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
- Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
- Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Monteleone-Cassiano AC, Dernowsek JA, Mascarenhas RS, Assis AF, Pitol D, Santos Moreira NC, Sakamoto-Hojo ET, Issa JPM, Donadi EA, Passos GA. The absence of the autoimmune regulator gene (AIRE) impairs the three-dimensional structure of medullary thymic epithelial cell spheroids. BMC Mol Cell Biol 2022; 23:15. [PMID: 35331137 PMCID: PMC8952272 DOI: 10.1186/s12860-022-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background Besides controlling the expression of peripheral tissue antigens, the autoimmune regulator (AIRE) gene also regulates the expression of adhesion genes in medullary thymic epithelial cells (mTECs), an essential process for mTEC-thymocyte interaction for triggering the negative selection in the thymus. For these processes to occur, it is necessary that the medulla compartment forms an adequate three-dimensional (3D) architecture, preserving the thymic medulla. Previous studies have shown that AIRE knockout (KO) mice have a small and disorganized thymic medulla; however, whether AIRE influences the mTEC-mTEC interaction in the maintenance of the 3D structure has been little explored. Considering that AIRE controls cell adhesion genes, we hypothesized that this gene affects 3D mTEC-mTEC interaction. To test this, we constructed an in vitro model system for mTEC spheroid formation, in which cells adhere to each other, establishing a 3D structure. Results The comparisons between AIRE wild type (AIREWT) and AIRE KO (AIRE−/−) 3D mTEC spheroid formation showed that the absence of AIRE: i) disorganizes the 3D structure of mTEC spheroids, ii) increases the proportion of cells at the G0/G1 phase of the cell cycle, iii) increases the rate of mTEC apoptosis, iv) decreases the strength of mTEC-mTEC adhesion, v) promotes a differential regulation of mTEC classical surface markers, and vi) modulates genes encoding adhesion and other molecules. Conclusions Overall, the results show that AIRE influences the 3D structuring of mTECs when these cells begin the spheroid formation through controlling cell adhesion genes.
Collapse
Affiliation(s)
- Ana Carolina Monteleone-Cassiano
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Janaina A Dernowsek
- Institute for Energy and Nuclear Research, University of São Paulo, São Paulo, SP, Brazil
| | - Romario S Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Dimitrius Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Geraldo Aleixo Passos
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil. .,Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Duarte MJ, Mascarenhas RS, Assis AF, Tanaka PP, Speck-Hernandez CA, Passos GA. Autoimmune regulator act in synergism with thymocyte adhesion in the control of lncRNAs in medullary thymic epithelial cells. Mol Immunol 2021; 140:127-135. [PMID: 34700158 DOI: 10.1016/j.molimm.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/30/2021] [Accepted: 10/07/2021] [Indexed: 12/06/2022]
Abstract
The autoimmune regulator (Aire) gene in medullary thymic epithelial cells (mTECs) encodes the AIRE protein, which interacts with its partners within the nucleus. This "Aire complex" induces stalled RNA Pol II on chromatin to proceed with transcription elongation of a large set of messenger RNAs and microRNAs. Considering that RNA Pol II also transcribes long noncoding RNAs (lncRNAs), we hypothesized that Aire might be implicated in the upstream control of this RNA species. To test this, we employed a loss-of-function approach in which Aire knockout mTECs were compared to Aire wild-type mTECs for lncRNA transcriptional profiling both in vitro and in vivo model systems. RNA sequencing enables the differential expression profiling of lncRNAs when these cells adhere in vitro to thymocytes or do not adhere to them as a way to test the effect of cell adhesion. Sets of lncRNAs that are unique and that are shared in vitro and in vivo were identified. Among these, we found the Aire-dependent lncRNAs as for example, Platr28, Ifi30, Morrbid, Malat1, and Xist. This finding represents the first evidence that Aire mediates the transcription of lncRNAs in mTECs. Microarray hybridizations enabled us to observe that temporal thymocyte adhesion modulates the expression levels of such lncRNAs as Morrbid, Xist, and Fbxl12o after 36 h of adhesion. This finding shows the existence of a synergistic mechanism involving a link between thymocyte adhesion, Aire, and lncRNAs in mTECs that might be important for immune self-representation.
Collapse
Affiliation(s)
- Max Jordan Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Romário S Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cesar A Speck-Hernandez
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil; Center for Cell-Based Therapy in Dentistry, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Cotrim-Sousa L, Freire-Assis A, Pezzi N, Tanaka PP, Oliveira EH, Passos GA. Adhesion between medullary thymic epithelial cells and thymocytes is regulated by miR-181b-5p and miR-30b. Mol Immunol 2019; 114:600-611. [PMID: 31539668 DOI: 10.1016/j.molimm.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
In this work, we demonstrate that adhesion between medullary thymic epithelial cells (mTECs) and thymocytes is controlled by miRNAs. Adhesion between mTECs and developing thymocytes is essential for triggering negative selection (NS) of autoreactive thymocytes that occurs in the thymus. Immune recognition is mediated by the MHC / TCR receptor, whereas adhesion molecules hold cell-cell interaction stability. Indeed, these processes must be finely controlled, if it is not, it may lead to aggressive autoimmunity. Conversely, the precise molecular genetic control of mTEC-thymocyte adhesion is largely unclear. Here, we asked whether miRNAs would be controlling this process through the posttranscriptional regulation of mRNAs that encode adhesion molecules. For this, we used small interfering RNA to knockdown (KD) Dicer mRNA in vitro in a murine mTEC line. A functional assay with fresh murine thymocytes co-cultured with mTECs showed that single-positive (SP) CD4 and CD8 thymocyte adhesion was increased after Dicer KD and most adherent subtype was CD8 SP cells. Analysis of broad mTEC transcriptional expression showed that Dicer KD led to the modulation of 114 miRNAs and 422 mRNAs, including those encoding cell adhesion or extracellular matrix proteins, such as Lgals9, Lgals3pb, Tnc and Cd47. Analysis of miRNA-mRNA networks followed by miRNA mimic transfection showed that these mRNAs are under the control of miR-181b-5p and miR-30b*, which may ultimately control mTEC-thymocyte adhesion. The expression of CD80 surface marker in mTECs was increased after Dicer KD following thymocyte adhesion. This indicates the existence of new mechanisms in mTECs that involve the synergistic action of thymocyte adhesion and regulatory miRNAs.
Collapse
Affiliation(s)
- Larissa Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire-Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; State University of Minas Gerais, Passos, MG, Brazil
| | - Nicole Pezzi
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Sirko P, Gale JE, Ashmore JF. Intercellular Ca 2+ signalling in the adult mouse cochlea. J Physiol 2018; 597:303-317. [PMID: 30318615 PMCID: PMC6312409 DOI: 10.1113/jp276400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Intercellular Ca2+ waves are increases in cytoplasmic Ca2+ levels that propagate between cells. Periodic Ca2+ waves have been linked to gene regulation and are thought to play a crucial role in the development of our hearing epithelium, the organ of Corti and the acquisition of hearing. We observed regular periodic intercellular Ca2+ waves in supporting cells of an ex vivo preparation of the adult mouse organ of Corti, and these waves were found to propagate independently of extracellular ATP and were inhibited by the gap junction blockers 1-octanol and carbenoxolone. Our results establish that the existence of periodic Ca2+ waves in the organ of Corti is not restricted to the prehearing period. ABSTRACT We have investigated wave-like cytoplasmic calcium (Ca2+ ) signalling in an ex vivo preparation of the adult mouse organ of Corti. Two types of intercellular Ca2+ waves that differ in propagation distance and speed were observed. One type was observed to travel up to 100 μm with an average velocity of 7 μm/s. Such waves were initiated by local tissue damage in the outer hair cell region. The propagation distance was decreased when the purinergic receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 50 μm) or suramin (150 μm) were added to the extracellular buffer. Immunocytochemical analysis and experiments with calcium indicator dyes showed that both P2X and P2Y receptors were present in supporting cells. A second class of waves identified to travel longitudinally along the organ of Corti propagated at a lower velocity of 1-3 μm/s. These 'slow' Ca2+ waves were particularly evident in the inner sulcus and Deiters' cells. They travelled for distances of up to 500 μm. The slow Ca2+ signalling varied periodically (approximately one wave every 10 min) and was maintained for more than 3 h. The slow waves were not affected by apyrase, or by the P2 receptor agonists suramin (150 μm) or PPADS (50 μm) but were blocked by the connexin channel blockers octanol (1 mm) and carbenoxolone (100 μm). It is proposed that the observed Ca2+ waves might be a physiological response to a change in extracellular environment and may be involved in critical gene regulation activities in the supporting cells of the cochlea.
Collapse
Affiliation(s)
- Piotr Sirko
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Department of Cell & Developmental Biology, UCL, Gower St., London, WC1E 6BT, UK
| | - Jonathan F Ashmore
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.,Department of Neuroscience, Physiology & Pharmacology, UCL, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
9
|
Speck-Hernandez CA, Assis AF, Felicio RF, Cotrim-Sousa L, Pezzi N, Lopes GS, Bombonato-Prado KF, Giuliatti S, Passos GA. Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes. Front Immunol 2018; 9:964. [PMID: 29867946 PMCID: PMC5949327 DOI: 10.3389/fimmu.2018.00964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
The function of medullary thymic epithelial cells (mTECs) is associated with thymocyte adhesion, which is crucial for the negative selection of autoreactive thymocytes in the thymus. This process represents the root of central tolerance of self-components and prevents the onset of autoimmune diseases. Since thymic epithelia correspond to an important target of donor T cells during the onset of chronic graft-vs-host-disease, mTEC-thymocyte adhesion may have implications for alloimmunity. The Aire and Fezf2 genes function as transcriptome controllers in mTECs. The central question of this study is whether there is a mutual relationship between mTEC-thymocyte adhesion and the control of the mTEC transcriptome and whether Aire is involved in this process. Here, we show that in vitro mTEC-thymocyte adhesion causes transcriptome changes in mTECs and upregulates the transcriptional expression of Aire and Fezf2, as well as cell adhesion-related genes such as Cd80 or Tcf7, among others. Crispr-Cas9-mediated Aire gene disruption demonstrated that this gene plays a role in the process of mTEC-thymocyte adhesion. Consistent with the nuclear localization signal (NLS) encoded by Aire exon 3, which was targeted, we demonstrate that Aire KO-/- mTECs impair AIRE protein localization in the nucleus. Consequently, the loss of function of Aire reduced the ability of these cells to adhere to thymocytes. Their transcriptomes differed from their wild-type Aire+/+ counterparts, even during thymocyte adhesion. A set of mRNA isoforms that encode proteins involved in cell adhesion were also modulated during this process. This demonstrates that both thymocyte interactions and Aire influence transcriptome profiling of mTEC cells.
Collapse
Affiliation(s)
- Cesar A. Speck-Hernandez
- Graduate Programme in Basic and Applied Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - Amanda F. Assis
- Molecular Immunogenetics Group, Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaela F. Felicio
- Graduate Programme in Basic and Applied Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Cotrim-Sousa
- Molecular Immunogenetics Group, Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Nicole Pezzi
- Graduate Programme in Basic and Applied Immunology, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel S. Lopes
- Graduate Programme in Cellular and Molecular Biology, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Karina F. Bombonato-Prado
- Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Silvana Giuliatti
- Genetics, Bioinformatics Group, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo A. Passos
- Molecular Immunogenetics Group, Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, São Paulo, Brazil
- Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Alberto AVP, Bonavita AG, Fidalgo-Neto AA, Berçot F, Alves LA. Single-cell Microinjection for Cell Communication Analysis. J Vis Exp 2017. [PMID: 28287521 DOI: 10.3791/50836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gap junctions are intercellular channels that allow the communication of neighboring cells. This communication depends on the contribution of a hemichannel by each neighboring cell to form the gap junction. In mammalian cells, the hemichannel is formed by six connexins, monomers with four transmembrane domains and a C and N terminal within the cytoplasm. Gap junctions permit the exchange of ions, second messengers, and small metabolites. In addition, they have important roles in many forms of cellular communication within physiological processes such as synaptic transmission, heart contraction, cell growth and differentiation. We detail how to perform a single-cell microinjection of Lucifer Yellow to visualize cellular communication via gap-junctions in living cells. It is expected that in functional gap junctions, the dye will diffuse from the loaded cell to the connected cells. It is a very useful technique to study gap junctions since you can evaluate the diffusion of the fluorescence in real time. We discuss how to prepare the cells and the micropipette, how to use a micromanipulator and inject a low molecular weight fluorescent dye in an epithelial cell line.
Collapse
Affiliation(s)
| | - André G Bonavita
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation
| | | | - Filipe Berçot
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation
| | - Luiz A Alves
- Institute Oswaldo Cruz, Laboratory of Cellular Communication, Oswaldo Cruz Foundation;
| |
Collapse
|
11
|
Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Sci Rep 2017; 7:42786. [PMID: 28218282 PMCID: PMC5317010 DOI: 10.1038/srep42786] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet.
Collapse
|
12
|
Pezzi N, Assis AF, Cotrim-Sousa LC, Lopes GS, Mosella MS, Lima DS, Bombonato-Prado KF, Passos GA. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Mol Immunol 2016; 77:157-73. [PMID: 27505711 DOI: 10.1016/j.molimm.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.
Collapse
Affiliation(s)
- Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Larissa Cotrim Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Maritza Salas Mosella
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Djalma Sousa Lima
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Karina F Bombonato-Prado
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Yu F, Yan H, Nie W, Zhu J. Connexin43 knockdown in bone marrow‑derived dendritic cells by small interfering RNA leads to a diminished T-cell stimulation. Mol Med Rep 2015; 13:895-900. [PMID: 26648560 DOI: 10.3892/mmr.2015.4593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells, the most powerful type of antigen‑presenting cells, have the unique ability to induce primary immune responses. Connexin43 expression is upregulated to increase gap junctions when immune cells are exposed to inflammatory factors. The present study applied small‑interfering RNA (siRNA) to decrease connexin43 expression. The results showed that silencing of connexin43 using siRNA resulted in arrest of bone marrow‑derived dendritic cell (BM‑DC) maturation as evidenced by reduced expression of major histocompatibility complex II, CD40, CD80 and CD86. Functionally, connexin43‑silenced BM‑DC showed a markedly decreased capability to induce T-cell stimulation. In conclusion, the present study demonstrated that antigens present on BM‑DCs can be suppressed by connexin43 knockdown in BM‑DCs. The present study therefore presented an effective method to modulate the immunology of BM‑DCs.
Collapse
Affiliation(s)
- Fuling Yu
- Cardiovascular Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hui Yan
- Cardiovascular Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wencheng Nie
- Cardiovascular Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianhua Zhu
- Cardiovascular Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
14
|
Orsinger GV, Williams JD, Romanowski M. Focal activation of cells by plasmon resonance assisted optical injection of signaling molecules. ACS NANO 2014; 8:6151-62. [PMID: 24877558 PMCID: PMC4076043 DOI: 10.1021/nn5015903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/30/2014] [Indexed: 05/25/2023]
Abstract
Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca(2+)) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca(2+) concentration within the injected cell initiating the propagation of a Ca(2+) wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca(2+) wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research.
Collapse
Affiliation(s)
- Gabriel V. Orsinger
- Department of Biomedical Engineering, University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Joshua D. Williams
- Department of Biomedical Engineering, University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
- The University of Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Marek Romanowski
- Department of Biomedical Engineering, University of Arizona, 1657 East Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
16
|
Abu Khamidakh A, Juuti-Uusitalo K, Larsson K, Skottman H, Hyttinen J. Intercellular Ca2+ wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation. Exp Eye Res 2013; 108:129-39. [DOI: 10.1016/j.exer.2013.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 01/19/2023]
|
17
|
The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BIOMED RESEARCH INTERNATIONAL 2012; 2013:352414. [PMID: 23509712 PMCID: PMC3591132 DOI: 10.1155/2013/352414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95%) are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.
Collapse
|
18
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
19
|
Thymus atrophy and double-positive escape are common features in infectious diseases. J Parasitol Res 2012; 2012:574020. [PMID: 22518275 PMCID: PMC3307005 DOI: 10.1155/2012/574020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/20/2011] [Indexed: 11/21/2022] Open
Abstract
The thymus is a primary lymphoid organ in which bone marrow-derived T-cell precursors undergo differentiation, leading to migration of positively selected thymocytes to the T-cell-dependent areas of secondary lymphoid organs. This organ can undergo atrophy, caused by several endogenous and exogenous factors such as ageing, hormone fluctuations, and infectious agents. This paper will focus on emerging data on the thymic atrophy caused by infectious agents. We present data on the dynamics of thymus lymphocytes during acute Trypanosoma cruzi infection, showing that the resulting thymus atrophy comprises the abnormal release of thymic-derived T cells and may have an impact on host immune response.
Collapse
|
20
|
Transcription profiling of Prss16 (Tssp) can be used to find additional peptidase genes that are candidates for self-peptide generation in the thymus. Mol Biol Rep 2011; 39:4051-8. [DOI: 10.1007/s11033-011-1186-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 07/07/2011] [Indexed: 11/25/2022]
|
21
|
Fornari TA, Donate PB, Macedo C, Marques MMC, Magalhães DA, Passos GAS. Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1). Mol Cell Biochem 2010; 342:21-8. [PMID: 20414703 DOI: 10.1007/s11010-010-0464-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/12/2010] [Indexed: 12/16/2022]
Abstract
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed "promiscuous gene expression" (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80(+) mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.
Collapse
Affiliation(s)
- Thaís A Fornari
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 3900 Via Bandeirantes, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Nihei OK, Fonseca PC, Rubim NM, Bonavita AG, Lyra JSPO, Neves-dos-Santos S, de Carvalho ACC, Spray DC, Savino W, Alves LA. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells. BMC Cell Biol 2010; 11:3. [PMID: 20078861 PMCID: PMC2823718 DOI: 10.1186/1471-2121-11-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/15/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We investigated the effects of the signaling molecules, cyclic AMP (cAMP) and protein-kinase C (PKC), on gap junctional intercellular communication (GJIC) between thymic epithelial cells (TEC). RESULTS Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC. CONCLUSIONS Overall, our data indicate that cAMP and PKC intracellular pathways are involved in the homeostatic control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how the thymic epithelial network can work as a physiological syncytium.
Collapse
Affiliation(s)
- Oscar K Nihei
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paula C Fonseca
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Nara M Rubim
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andre G Bonavita
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jurandy SPO Lyra
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Pathology, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Sandra Neves-dos-Santos
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - David C Spray
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Sonou T, Higuchi M, Terada S. An acute bout of high-intensity intermittent swimming induces glycogen supercompensation in rat skeletal muscle. Eur J Sport Sci 2008. [DOI: 10.1080/17461390802438755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Handel A, Yates A, Pilyugin SS, Antia R. Gap junction-mediated antigen transport in immune responses. Trends Immunol 2007; 28:463-6. [DOI: 10.1016/j.it.2007.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 12/26/2022]
|
25
|
Ribeiro-Carvalho MM, Lima-Quaresma KRF, Mouço T, Carvalho VF, Mello-Coelho V, Savino W. Triiodothyronine modulates thymocyte migration. Scand J Immunol 2007; 66:17-25. [PMID: 17587342 DOI: 10.1111/j.1365-3083.2007.01928.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Triiodothyronine (T(3)) exerts several effects on thymus physiology. In this sense, T(3) is known to stimulate thymic microenvironmental cells to enhance the production of extracellular matrix (ECM) moieties, which are relevant in thymocyte migration. Here, we further investigated the in vivo influence of T(3) on ECM production, as well as on ECM-related T-cell migration events. For this, BALB/c mice were subjected to two protocols of T(3) treatment: long-term (30 days) i.p. daily T(3) injections or short-term (16 h) after a single T(3) intrathymic injection. These two treatments did promote an enhancement in the expression of fibronectin and laminin, in both cortex and medullary regions of the thymic lobules. As revealed by the long-term treatment, the expression of ECM protein receptors, including VLA-4, VLA-5 and VLA-6, was also increased in thymocyte subsets issued from T(3)-treated mice. We further used thymic nurse cells (TNC) as an in vitro system to study the ECM-related migration of immature thymocytes in the context of thymic epithelial cells. Even a single intrathymic injection of T(3) resulted in an increase in the ex vivo exit of thymocytes from TNC lymphoepithelial complexes. Accordingly, when we evaluated thymocyte migration in transwell chambers pre-coated with ECM proteins, we found an increase in the numbers of migrating cells, when thymocytes were derived from T(3)-treated mice. Overall, our data show that in vivo intrathymic short-term i.p. long-term T(3) treatments are able to modulate thymocyte migration, probably via ECM-mediated interactions.
Collapse
Affiliation(s)
- M M Ribeiro-Carvalho
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - K R F Lima-Quaresma
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Mouço
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V F Carvalho
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V Mello-Coelho
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - W Savino
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilMiguelote Viana Central Laboratory, Niterói, BrazilLaboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;Department of Histology and Embryology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Dupont G, Combettes L, Leybaert L. Calcium Dynamics: Spatio‐Temporal Organization from the Subcellular to the Organ Level. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:193-245. [PMID: 17560283 DOI: 10.1016/s0074-7696(07)61005-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many essential physiological processes are controlled by calcium. To ensure reliability and specificity, calcium signals are highly organized in time and space in the form of oscillations and waves. Interesting findings have been obtained at various scales, ranging from the stochastic opening of a single calcium channel to the intercellular calcium wave spreading through an entire organ. A detailed understanding of calcium dynamics thus requires a link between observations at different scales. It appears that some regulations such as calcium-induced calcium release or PLC activation by calcium, as well as the weak diffusibility of calcium ions play a role at all levels of organization in most cell types. To comprehend how calcium waves spread from one cell to another, specific gap-junctional coupling and paracrine signaling must also be taken into account. On the basis of a pluridisciplinar approach ranging from physics to physiology, a unified description of calcium dynamics is emerging, which could help understanding how such a small ion can mediate so many vital functions in living systems.
Collapse
Affiliation(s)
- Geneviève Dupont
- Theoretical Chronobiology Unit, Université Libre de Bruxelles, Faculté des Sciences, 1050 Brussels, Belgium
| | | | | |
Collapse
|
27
|
Palani D, Manchanda R. Effect of heptanol on noradrenaline-induced contractions in rat vas deferens. J Smooth Muscle Res 2006; 42:49-61. [PMID: 16702763 DOI: 10.1540/jsmr.42.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied the effects of 1-heptanol and nifedipine on noradrenaline (NA)-induced contractions in order to explore the role of gap junctions and their interactions with L-type Ca2+ channel mediated [Ca2+]o entry in the generation of NA-induced contractions in the rat vas deferens. Application of 20 microM NA to rat vas deferens resulted in contractions with three different components, an initial phasic component followed by a tonic component overlapped with an oscillatory component. Heptanol (0.01-2 mM) induced a concentration dependent reduction of the contractions. 2 mM heptanol reduced the phasic component by 32.9 +/- 4.4% and the tonic component by 93.8 +/- 1.9% of control, while the oscillatory component was completely abolished (n=7). Nifedipine (2 microM) reduced the phasic component by 34.5 +/- 4.1% and the tonic component by 89.5 +/- 3.8% of control and abolished the oscillatory component (n=6). In the presence of heptanol and nifedipine together, the phasic component was reduced by 61.3 +/- 8.3% and the tonic component by 94.5 +/- 1.0% of control. The oscillatory component was completely abolished (n=6). These results allow the conclusion that phasic contraction is mainly due to the direct action of NA, independent of gap junctions, while the tonic and oscillatory contractions may depend significantly on cell-to-cell communication. These in turn may depend critically on the availability of extracellularly derived Ca2+.
Collapse
Affiliation(s)
- D Palani
- Biomedical Engineering Group, School of Bioscience and Bioengineering, Indian Institute of Technology-Bombay, Mumbai-400076, India
| | | |
Collapse
|
28
|
Georgescu A, Alexandru N, Constantinescu E, Popov D. Effect of gap junction uncoupler heptanol on resistance arteries reactivity in experimental models of diabetes, hyperlipemia and hyperlipemia-diabetes. Vascul Pharmacol 2006; 44:513-8. [PMID: 16651032 DOI: 10.1016/j.vph.2006.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/15/2006] [Indexed: 12/20/2022]
Abstract
The understanding of the involvement of the gap junctions (GJ) in the vascular reactivity is an ongoing effort. In this study we questioned on impact of pathologies such as diabetes, hyperlipemia, and simultaneous hyperlipemia-diabetes on GJ involvement in the contractile/relaxant response of the mesenteric resistance arteries. To this purpose, four groups of Golden Syrian hamsters were used: (i) diabetics (D), injected by streptozotocin, (ii) hyperlipemics (H), fed the standard chow of the species supplemented with 3% cholesterol and 15% butter, (iii) simultaneously hyperlipemic-diabetics (HD), and (iv) controls (C), age-matched normal healthy animals. At 24 weeks after the beginning of the experiment, the vascular reactivity of the resistance arteries was measured by the myograph technique in the presence/absence of 1 mM Heptanol (Hep) and of vasoconstrictors and vasodilators. The results showed that: (i) in pathological conditions 1 mM Hep significantly impaired the constrictor response of the hamster resistance arteries to both 10(-5) M NA (noradrenaline, agonist of alpha(1)-adrenoceptors) and 64.1 mM K+ (potassium ion, the major intracellular cation). The impairment occur in the group range: HD < H < D < C being the highest at the simultaneous insult of hyperlipemia and diabetes; (ii) independently of the pathological condition, 1 mM Hep abolishes both endothelium-dependent and independent relaxation of the hamster resistance arteries. At 1 mM Hep we noticed a reversible effect on endothelium-dependent relaxation that may be partially restored (in normal) in the presence of L-arginine. It is hoped that these results may contribute to understanding of the involvement of GJ in vascular pathology/dysfunction.
Collapse
Affiliation(s)
- Adriana Georgescu
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania.
| | | | | | | |
Collapse
|
29
|
Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 2005; 38:1653-64. [PMID: 15958223 DOI: 10.1016/j.jbiomech.2004.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2004] [Indexed: 01/26/2023]
Abstract
An in vitro model was used to investigate the effect of mechanical stimuli on adaptation to load and calcium signaling in aligned medial collateral ligament cells (MCL). This model used a patterned silicone membrane to align the cells parallel with the direction of the microgrooves. Alignment created an architecture that simulated a degree of cell orientation in native ligament tissue. It was hypothesized that aligned ligament cells would be more efficient at calcium wave propagation than cells that were randomly oriented. It was further hypothesized that calcium wave propagation would be greater among cells that were both aligned and subjected to mechanical stretch compared to cells that were aligned but not stretched. Rat MCL cells were loaded with Fura-2AM, a calcium-binding dye, and mechanically indented using a micropipette tip. A ratio-imaging fluorescence technique was used to quantitate the calcium (Ca2+) response. It was concluded that stretching ligament cells prior to stimulation increased their sensitivity to load and their ability to propagate a calcium wave. However, the ability of aligned cells to propagate this wave was not significantly different when compared to nonaligned cells. Treatment of cultures with inhibitors such as apyrase and suramin significantly reduced the number of cells recruited in the calcium response. Hence, it was concluded that ATP released from mechanically stimulated cells was a principal mediator responsible for the rise in intracellular calcium in ligament cells. Further, purinoceptor activation may amplify the signal to alert and recruit more cells in a response to mechanical stimulation.
Collapse
Affiliation(s)
- Bertina F Jones
- Curriculum in Applied and Material Sciences, University of North Carolina, Chapel Hill, NC 27599-7055, USA
| | | | | | | | | |
Collapse
|