1
|
Hayato R, Matsumoto T, Higure Y. Ca2+ Depletion in the ER Causes Store-Operated Ca2+ Entry via the TRPC6 Channel in Mouse Brown Adipocytes. Physiol Res 2024; 73:69-80. [PMID: 38466006 PMCID: PMC11019620 DOI: 10.33549/physiolres.935071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/31/2023] [Indexed: 04/26/2024] Open
Abstract
beta3-adrenergic activation causes Ca2+ release from the mitochondria and subsequent Ca2+ release from the endoplasmic reticulum (ER), evoking store-operated Ca2+ entry (SOCE) due to Ca2+ depletion from the ER in mouse brown adipocytes. In this study, we investigated how Ca2+ depletion from the ER elicits SOCE in mouse brown adipocytes using fluorometry of intracellular Ca2+ concentration ([Ca2+]i). The administration of cyclopiazonic acid (CPA), a reversible sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump blocker in the ER, caused an increase in [Ca2+]i. Moreover, CPA induced SOCE was suppressed by the administration of a Ca2+ free Krebs solution and the transient receptor potential canonical 6 (TRPC6) selective blockers 2-APB, ML-9 and GsMTx-4 but not Pico145, which blocks TRPC1/4/5. Administration of TRPC6 channel agonist 1-oleoyl-2-acetyl-sn-glycerol (OAG) and flufenamic acid elicited Ca2+ entry. Moreover, our RT-PCR analyses detected mRNAs for TRPC6 in brown adipose tissues. In addition, western blot analyses showed the expression of the TRPC6 protein. Thus, TRPC6 is one of the Ca2+ pathways involved in SOCE. These modes of Ca2+ entry provide the basis for heat production via activation of Ca2+-dependent dehydrogenase and the expression of uncoupling protein 1 (UCP1). Enhancing thermogenic metabolism in brown adipocytes may serve as broad therapeutic utility to reduce obesity and metabolic syndrome.
Collapse
Affiliation(s)
- R Hayato
- Laboratory of Anatomy and Physiology, School of Nutritional Sciences, Nagoya University of Arts and Sciences, Takenoyama, Nissin-City, Aichi, Japan.
| | | | | |
Collapse
|
2
|
Vorobjeva N, Dagil Y, Pashenkov M, Pinegin B, Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 114:109448. [PMID: 36436472 DOI: 10.1016/j.intimp.2022.109448] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Neutrophils release extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory and malignant diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating the aberrant or excessive NET release. Protein kinase C (PKC) is a serine/threonine kinase which is involved in various neutrophil functions, however, little is known about its implication in NETosis activated by various physiological and pharmacological stimuli. Since there are conventional, novel and atypical PKC isoforms (α, βI, βII, δ, and ζ) found in human neutrophils, we investigated their impact in NETosis, oxidative burst and spreading applying pharmacological approach. Using specific inhibitors of PKC isoforms, we showed that PKCβ, PKCδ, and PKCζ are involved in the oxidative burst, spreading and NETosis activated by calcium ionophore A23187, while only PKCβ is implicated in these functions activated by phorbol 12-myristate 13-acetate (PMA). The data obtained in our study might help in the development of new drugs useful for the treatment of autoimmune and inflammatory diseases associated with NETs.
Collapse
Affiliation(s)
- Nina Vorobjeva
- Dept. Immunology, Biology Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | | | - Mikhail Pashenkov
- National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Kashirskoe shosse 24, 115522 Moscow, Russia
| | - Boris Pinegin
- National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Kashirskoe shosse 24, 115522 Moscow, Russia
| | - Boris Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
3
|
Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress. Exp Mol Med 2018; 50:1-11. [PMID: 30120227 PMCID: PMC6098103 DOI: 10.1038/s12276-018-0138-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
Multiple cancer cells highly express cathepsin S, which has pro-tumoral effects. However, it was previously unknown whether knockdown or a pharmacological inhibitor (ZFL) of cathepsin S acts as an inducer of ER stress. Here, ZFL and knockdown of cathepsin S markedly induced ER stress through the up-regulation of calcium levels in the cytosol. Induction of calcium levels by inhibition of cathepsin S is markedly blocked by an inhibitor of the IP3 receptor and the ryanodine receptor Ca2+ channel in the ER, but an inhibitor of a mitochondrial Ca2+ uniporter had no effect on ZFL-induced calcium levels. Furthermore, production of mitochondrial ROS by ZFL was associated with an increase in cytosolic calcium levels. ZFL-mediated ER stress enhanced anti-cancer drug-induced apoptotic cell death, and pretreatment with chemical chaperones or down-regulation of ATF4 and CHOP by small interfering RNA markedly reduced ZFL plus oxaliplatin-induced apoptosis. Taken together, our findings reveal that inhibition of cathepsin S is an inducer of ER stress; these findings may contribute to the enhancement of therapeutic efficiency in cancer cells. A drug that inhibits a key cancer enzyme could be used in combination with anti-cancer drugs to improve sensitivity to treatment. The intracellular endoplasmic reticulum (ER) is involved in several vital processes in cells, including folding and processing proteins. Taeg Kyu Kwon at Keimyung University, Daegu, South Korea, and co-workers have demonstrated how inhibition of cathepsin S, which is expressed in many cancer cells, induces ER stress. In trials on human kidney cancer cells grafted onto mice and in vitro, the team found that ZFL (cathepsin S inhibitor) triggered transient ER stress by increasing calcium levels inside cells. Subsequent treatment with the anti-cancer drug oxaliplatin resulted in increased cancer cell death.
Collapse
|
4
|
Yoon MJ, Lee AR, Jeong SA, Kim YS, Kim JY, Kwon YJ, Choi KS. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget 2015; 5:6816-31. [PMID: 25149175 PMCID: PMC4196165 DOI: 10.18632/oncotarget.2256] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is known to have anticancer activity, but its underlying mechanism is not completely understood. In this study, we show that celastrol kills several breast and colon cancer cell lines by induction of paraptosis, a cell death mode characterized by extensive vacuolization that arises via dilation of the endoplasmic reticulum (ER) and mitochondria. Celastrol treatment markedly increased mitochondrial Ca2+ levels and induced ER stress via proteasome inhibition in these cells. Both MCU (mitochondrial Ca2+ uniporter) knockdown and pretreatment with ruthenium red, an inhibitor of MCU, inhibited celastrol-induced mitochondrial Ca2+ uptake, dilation of mitochondria/ER, accumulation of poly-ubiquitinated proteins, and cell death in MDA-MB 435S cells. Inhibition of the IP3 receptor (IP3R) with 2-aminoethoxydiphenyl borate (2-APB) also effectively blocked celastrol-induced mitochondrial Ca2+ accumulation and subsequent paraptotic events. Collectively, our results show that the IP3R-mediated release of Ca2+ from the ER and its subsequent MCU-mediated influx into mitochondria critically contribute to celastrol-induced paraptosis in cancer cells.
Collapse
Affiliation(s)
- Mi Jin Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. These authors contributed equally to this work.
| | - A Reum Lee
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. These authors contributed equally to this work
| | - Soo Ah Jeong
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| | - You-Sun Kim
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| | - Jin Yeop Kim
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea. Discovery Biology Group, Institut Pasteur Korea, Sampyeong-dong 696, Bundang-gu, Seongnam-si, Gyeonggi-do , South Korea.
| | - Yong-Jun Kwon
- Discovery Biology Group, Institut Pasteur Korea, Sampyeong-dong 696, Bundang-gu, Seongnam-si, Gyeonggi-do , South Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon , Korea
| |
Collapse
|
5
|
Williams MJ, Almén MS, Fredriksson R, Schiöth HB. What model organisms and interactomics can reveal about the genetics of human obesity. Cell Mol Life Sci 2012; 69:3819-34. [PMID: 22618246 PMCID: PMC11114734 DOI: 10.1007/s00018-012-1022-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/22/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023]
Abstract
Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.
Collapse
Affiliation(s)
- Michael J. Williams
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Markus S. Almén
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| |
Collapse
|
6
|
Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC. Inflammation alters regional mitochondrial Ca²+ in human airway smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C244-56. [PMID: 22673614 DOI: 10.1152/ajpcell.00414.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in airway smooth muscle (ASM) is a key aspect of airway contractility and can be modulated by inflammation. Mitochondria have tremendous potential for buffering [Ca(2+)](cyt), helping prevent Ca(2+) overload, and modulating other intracellular events. Here, compartmentalization of mitochondria to different cellular regions may subserve different roles. In the present study, we examined the role of Ca(2+) buffering by mitochondria and mitochondrial Ca(2+) transport mechanisms in the regulation of [Ca(2+)](cyt) in enzymatically dissociated human ASM cells upon exposure to the proinflammatory cytokines TNF-α and IL-13. Cells were loaded simultaneously with fluo-3 AM and rhod-2 AM, and [Ca(2+)](cyt) and mitochondrial Ca(2+) concentration ([Ca(2+)](mito)) were measured, respectively, using real-time two-color fluorescence microscopy in both the perinuclear and distal, perimembranous regions of cells. Histamine induced a rapid increase in both [Ca(2+)](cyt) and [Ca(2+)](mito), with a significant delay in the mitochondrial response. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (1 μM CGP-37157) increased [Ca(2+)](mito) responses in perinuclear mitochondria but not distal mitochondria. Inhibition of the mitochondrial uniporter (1 μM Ru360) decreased [Ca(2+)](mito) responses in perinuclear and distal mitochondria. CGP-37157 and Ru360 significantly enhanced histamine-induced [Ca(2+)](cyt). TNF-α and IL-13 both increased [Ca(2+)](cyt), which was associated with decreased [Ca(2+)](mito) in the case of TNF-α but not IL-13. The effects of TNF-α on both [Ca(2+)](cyt) and [Ca(2+)](mito) were affected by CGP-37157 but not by Ru360. Overall, these data demonstrate that in human ASM cells, mitochondria buffer [Ca(2+)](cyt) after agonist stimulation and its enhancement by inflammation. The differential regulation of [Ca(2+)](mito) in different parts of ASM cells may serve to locally regulate Ca(2+) fluxes from intracellular sources versus the plasma membrane as well as respond to differential energy demands at these sites. We propose that such differential mitochondrial regulation, and its disruption, may play a role in airway hyperreactivity in diseases such as asthma, where [Ca(2+)](cyt) is increased.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hayato R, Higure Y, Kuba M, Nagai H, Yamashita H, Kuba K. β₃-Adrenergic activation of sequential Ca(2+) release from mitochondria and the endoplasmic reticulum and the subsequent Ca(2+) entry in rodent brown adipocytes. Cell Calcium 2011; 49:400-14. [PMID: 21514957 DOI: 10.1016/j.ceca.2011.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 11/19/2022]
Abstract
We studied how mitochondrial uncoupling by β(3)-adrenergic stimulation elicits Ca(2+) signals in rodent brown adipocytes by fluorometry of Ca(2+) concentrations ([Ca(2+)](i), [Ca(2+)](m) and [Ca(2+)](ER)) in the cytoplasm, mitochondria and the endoplasmic reticulum (ER), respectively, and mitochondrial membrane potential, using fura-2, rhod-5N, cameleon and rhodamine 123. Immunoblotting demonstrated α(1A)- and β(3)-adrenergic receptor and UCP1 in adipocytes, while RT-PCR revealed the mRNA of type 3, 7 and 9 adenylate cyclase, UCP1, UCP2, UCP3 and type 1 and 2 inositoltrisphosphate receptors. Isoproterenol and BRL37344, β-agonist, caused triphasic rises in [Ca(2+)](i) (β-responses) with mitochondrial depolarization in adipocytes. BRL37344 transiently decreased [Ca(2+)](m). β-Responses were blocked by propranolol, β-antagonist, H-89, protein kinase A blocker, and knockout of UCP1 gene. The late phase of β-responses was depressed by a Ca(2+) free, EGTA solution, U73122, a phospholipase C blocker, and thapsigargin, ER-Ca(2+) pump blocker, and by transfecting siRNA for type 2 IP(3)R. Intracellular loading of BAPTA/AM depressed the late phase more strongly than the initial phase. β-Agonists, phenylephrine, α-agonist, and cyclopiazonic acid, ER-Ca(2+) pump blocker, decreased [Ca(2+)](ER). Thus, the mitochondrial uncoupling by β(3)-adrenergic activation causes Ca(2+) release from mitochondria and subsequently from the ER and further evokes plasmalemmal Ca(2+) entries, including the store-operated Ca(2+) entry.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/physiology
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Adrenergic beta-3 Receptor Antagonists/pharmacology
- Animals
- Calcium/metabolism
- Cells, Cultured
- Endoplasmic Reticulum/metabolism
- Fluorescent Dyes/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Channels/genetics
- Ion Channels/metabolism
- Membrane Potential, Mitochondrial
- Mice
- Mice, Inbred C57BL
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Propranolol/pharmacology
- RNA Interference
- RNA, Small Interfering
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta-3/chemistry
- Receptors, Adrenergic, beta-3/metabolism
- Type C Phospholipases/metabolism
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Ryotaro Hayato
- Laboratory of Anatomy and Physiology, School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nissin, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Gao CL, Zhu C, Zhao YP, Chen XH, Ji CB, Zhang CM, Zhu JG, Xia ZK, Tong ML, Guo XR. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 2010; 320:25-33. [PMID: 20144685 DOI: 10.1016/j.mce.2010.01.039] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 01/21/2023]
Abstract
Hyperglycemia and high free fatty acids (FFAs) are two well-known characteristics of type 2 diabetes, and are also implicated in the etiology of insulin resistance. However, their roles in mitochondrial dysfunction of white adipocytes are not well-studied. In this study, we investigated the effects of high glucose (25 mM), high free fatty acids (FFAs, 1mM), or a combination of both high glucose+high FFAs on mitochondrial function in differentiated 3T3-L1 adipocytes after 48 h of treatment. We found that high glucose, high FFAs, or high glucose+high FFAs reduced insulin-stimulated glucose uptake in differentiated 3T3-L1 adipocytes. In addition, the mitochondria became smaller and more compact. Levels of the mitofusion protein mfn1 decreased and levels of the mitofission protein Drp1 increased as compared to controls. NRF1 was downregulated, and PGC-1 beta levels were diminished in the high glucose and high glucose+high FFAs conditions. Levels of PGC-1 alpha and mtTFA mRNA were greatly downregulated. No difference was found in the mitochondrial DNA (mtDNA) and intracellular ATP levels of treated cells compared to control cells. Cells treated with high glucose or high FFAs accumulated significant amounts of reactive oxygen species (ROS) and displayed a loss of the mitochondrial membrane potential. High glucose and high glucose+high FFAs led to similar decreases in intramitochondrial calcium concentration, although high FFAs had no effect. Therefore, high glucose and high FFAs can regulate insulin sensitivity, and mitochondrial dysfunction may occur in this process.
Collapse
Affiliation(s)
- Chun-Lin Gao
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing 210004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Zhu Y, Ling Y, Zhang H, Liu P, Baluška F, Šamaj J, Lin J, Wang Q. Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs. BMC PLANT BIOLOGY 2010; 10:53. [PMID: 20334630 PMCID: PMC2923527 DOI: 10.1186/1471-2229-10-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 03/24/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs. RESULTS In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs. CONCLUSIONS Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+]c. We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingfang Zhu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Ling
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Peng Liu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Department of Plant Cell Biology, Kirschallee 1, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301 Olomouc, Czech Republic
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Klip A, Schertzer JD, Bilan PJ, Thong F, Antonescu C. Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiol (Oxf) 2009; 196:27-35. [PMID: 19245652 DOI: 10.1111/j.1748-1716.2009.01974.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skeletal muscle is the major store and consumer of fatty acids and glucose. Glucose enters muscle through glucose transporter 4 (GLUT4). Upon insufficient oxygen availability or energy compromise, aerobic metabolism of glucose and fatty aids cannot proceed, and muscle cells rely on anaerobic metabolism of glucose to restore cellular energy status. An increase in glucose uptake into muscle is a key response to stimuli requiring rapid energy supply. This chapter analyses the mechanisms of the adaptive regulation of glucose transport that rescue muscle cells from mitochondrial uncoupling. Under these conditions, the initial drop in ATP recovers rapidly, through a compensatory increase in glucose uptake. This adaptive response involves AMPK activation by the initial ATP drop, which elevates cell surface GLUT4 and glucose uptake. The gain in surface GLUT4 involves different signals and routes of intracellular traffic compared with those engaged by insulin. The hormone increases GLUT4 exocytosis through phosphatidylinositol 3-kinase and Akt, whereas energy stress retards GLUT4 endocytosis through AMPK and calcium inputs. Given that energy stress is a component of muscle contraction, and that contraction activates AMPK and raises cytosolic calcium, we hypothesize that the increase in glucose uptake during contraction may also involve a reduction in GLUT4 endocytosis.
Collapse
Affiliation(s)
- A Klip
- Cell Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
11
|
Durlu-Kandilci NT, Sahin-Erdemli I. The effects of reactive oxygen species on calcium- and carbachol- induced contractile responses in β-escin permeabilized rat bladder. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:645-53. [DOI: 10.1007/s00210-008-0326-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
12
|
Pizzo P, Pozzan T. Mitochondria–endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 2007; 17:511-7. [PMID: 17851078 DOI: 10.1016/j.tcb.2007.07.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/02/2007] [Accepted: 07/17/2007] [Indexed: 01/06/2023]
Abstract
Mitochondria and endoplasmic reticulum (ER) have different roles in living cells but they interact both physically and functionally. A key aspect of the mitochondria-ER relationship is the modulation of Ca(2+) signaling during cell activation, which thus affects a variety of physiological processes. We focus here on the molecular aspects that control the dynamics of the organelle-organelle interaction and their relationship with Ca(2+) signals, also discussing the consequences that these phenomena have, not only for cell physiology but also in the control of cell death.
Collapse
Affiliation(s)
- Paola Pizzo
- Department Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | |
Collapse
|
13
|
Kuba M, Higure Y, Susaki H, Hayato R, Kuba K. Bidirectional Ca2+ coupling of mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+ entries in rat brown adipocytes. Am J Physiol Cell Physiol 2006; 292:C896-908. [PMID: 16987997 DOI: 10.1152/ajpcell.00649.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How the endoplasmic reticulum (ER) and mitochondria communicate with each other and how they regulate plasmalemmal Ca(2+) entry were studied in cultured rat brown adipocytes. Cytoplasmic Ca(2+) or Mg(2+) and mitochondrial membrane potential were measured by fluorometry. The sustained component of rises in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) produced by thapsigargin was abolished by removing extracellular Ca(2+), depressed by depleting extracellular Na(+), and enhanced by raising extracellular pH. FCCP, dinitrophenol, and rotenone caused bi- or triphasic rises in [Ca(2+)](i), in which the first phase was accompanied by mitochondrial depolarization. The FCCP-induced first phase was partially inhibited by oligomycin but not by ruthenium red, cyclosporine A, U-73122, a Ca(2+)-free EGTA solution, and an Na(+)-free solution. The FCCP-induced second phase paralleling mitochondrial repolarization was partially blocked by removing extracellular Ca(2+) and fully blocked by oligomycin but not by thapsigargin or an Na(+)-deficient solution, was accompanied by a rise in cytoplasmic Mg(2+) concentration, and was summated with a high pH-induced rise in [Ca(2+)](i), whereas the extracellular Ca(2+)-independent component was blocked by U-73122 and cyclopiazonic acid. The FCCP-induced third phase was blocked by removing Ca(2+) but not by thapsigargin, depressed by decreasing Na(+), and enhanced by raising pH. Cyclopiazonic acid-evoked rises in [Ca(2+)](i) in a Ca(2+)-free solution were depressed after FCCP actions. Thus mitochondrial uncoupling causes Ca(2+) release, activating Ca(2+) release from the ER and store-operated Ca(2+) entry, and directly elicits a novel plasmalemmal Ca(2+) entry, whereas Ca(2+) release from the ER activates Ca(2+) accumulation in, or release from, mitochondria, indicating bidirectional mitochondria-ER couplings in rat brown adipocytes.
Collapse
Affiliation(s)
- Masako Kuba
- Laboratory of Anatomy and Physiology, School of Nutritional Sciences, Nagoya Univ. of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nissin, Aichi 470-0196, Japan.
| | | | | | | | | |
Collapse
|