1
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle. eLife 2024; 12:RP92674. [PMID: 38466320 PMCID: PMC10928493 DOI: 10.7554/elife.92674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e. an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e. myofibril hypertrophy) and/or the number of myofibrils (i.e. myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (fluorescence imaging of myofibrils with image deconvolution [FIM-ID]). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
Affiliation(s)
- Kent W Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Jamie E Hibbert
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Ramy KA Sayed
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag UniversitySohagEgypt
| | - Anthony N Lange
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | | | | | | | | | | | | | - Troy A Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
2
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A Novel Imaging Method (FIM-ID) Reveals that Myofibrillogenesis Plays a Major Role in the Mechanically Induced Growth of Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557204. [PMID: 37745462 PMCID: PMC10515927 DOI: 10.1101/2023.09.13.557204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e., an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e., myofibril hypertrophy) and/or the number of myofibrils (i.e., myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (FIM-ID). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
|
3
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
5
|
Willingham TB, Kim Y, Lindberg E, Bleck CKE, Glancy B. The unified myofibrillar matrix for force generation in muscle. Nat Commun 2020; 11:3722. [PMID: 32709902 PMCID: PMC7381600 DOI: 10.1038/s41467-020-17579-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human movement occurs through contraction of the basic unit of the muscle cell, the sarcomere. Sarcomeres have long been considered to be arranged end-to-end in series along the length of the muscle into tube-like myofibrils with many individual, parallel myofibrils comprising the bulk of the muscle cell volume. Here, we demonstrate that striated muscle cells form a continuous myofibrillar matrix linked together by frequently branching sarcomeres. We find that all muscle cells contain highly connected myofibrillar networks though the frequency of sarcomere branching goes down from early to late postnatal development and is higher in slow-twitch than fast-twitch mature muscles. Moreover, we show that the myofibrillar matrix is united across the entire width of the muscle cell both at birth and in mature muscle. We propose that striated muscle force is generated by a singular, mesh-like myofibrillar network rather than many individual, parallel myofibrils. Skeletal muscle cells have long been considered to be made primarily of many individual, parallel myofibrils. Here, the authors show that the striated muscle contractile machinery forms a highly branched, mesh-like myofibrillar matrix connected across the entire length and width of the muscle cell.
Collapse
Affiliation(s)
- T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Lindberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Bennett BT, Mohamed JS, Alway SE. The Effects of Calcium- β-Hydroxy- β-Methylbutyrate on Aging-Associated Apoptotic Signaling and Muscle Mass and Function in Unloaded but Nonatrophied Extensor Digitorum Longus Muscles of Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3938672. [PMID: 32774671 PMCID: PMC7396042 DOI: 10.1155/2020/3938672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Nerve and Muscle, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| |
Collapse
|
7
|
Jorgenson KW, Phillips SM, Hornberger TA. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review. Cells 2020; 9:cells9071658. [PMID: 32660165 PMCID: PMC7408414 DOI: 10.3390/cells9071658] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Kent W. Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Troy A. Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA;
- Correspondence:
| |
Collapse
|
8
|
Murach KA, Dungan CM, Peterson CA, McCarthy JJ. Muscle Fiber Splitting Is a Physiological Response to Extreme Loading in Animals. Exerc Sport Sci Rev 2019; 47:108-115. [PMID: 30640746 DOI: 10.1249/jes.0000000000000181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skeletal muscle fiber branching and splitting typically is associated with damage and regeneration and is considered pathological when observed during loading-induced hypertrophy. We hypothesize that fiber splitting is a nonpathological component of extreme loading and hypertrophy, which is primarily supported by evidence in animals, and propose that the mechanisms and consequences of fiber splitting deserve further exploration.
Collapse
Affiliation(s)
- Kevin A Murach
- Center for Muscle Biology.,Department of Rehabilitation Sciences, and
| | - Cory M Dungan
- Center for Muscle Biology.,Department of Rehabilitation Sciences, and
| | | | - John J McCarthy
- Center for Muscle Biology.,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
9
|
Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B. Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 2015; 191:224-35. [PMID: 26057347 DOI: 10.1016/j.jsb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/25/2023]
Abstract
Pseudodiaptomus marinus copepods are small crustaceans living in estuarine areas endowed with exceptional swimming and adaptative performances. Since the external cuticle acts as an impermeable barrier for most dyes and molecular tools for labeling copepod proteins with fluorescent tags are not available, imaging cellular organelles in these organisms requires label free microscopy. Complementary nonlinear microscopy techniques have been used to investigate the structure and the response of their myofibrils to abrupt changes of temperature or/and salinity. In contrast with previous observations in vertebrates and invertebrates, the flavin autofluorescence which is a signature of mitochondria activity and the Coherent Anti-Stokes Raman Scattering (CARS) pattern assigned to T-tubules overlapped along myofibrils with the second harmonic generation (SHG) striated pattern generated by myosin tails in sarcomeric A bands. Temperature jumps from 18 to 4 °C or salinity jumps from 30 to 15 psu mostly affected flavin autofluorescence. Severe salinity jumps from 30 to 0 psu dismantled myofibril organization with major changes both in the SHG and CARS patterns. After a double stress (from 18 °C/30 psu to 4° C/0 psu) condensed and distended regions appeared within single myofibrils, with flavin autofluorescence bands located between sarcomeric A bands. These results shed light on the interactions between the different functional compartments which provide fast acting excitation-contraction coupling and adequate power supply in copepods muscles.
Collapse
Affiliation(s)
- Ali Ibrahim
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France; Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Charles Henri Hage
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Anissa Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Aymeric Leray
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, UMR CNRS 8187 LOG, University of Lille, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux, France.
| | - Bernard Vandenbunder
- Interdisciplinary Research Institute, USR 3078 CNRS, University of Lille - Parc scientifique de la Haute Borne, 59650 Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Lee SSM, Piazza SJ. Built for speed: musculoskeletal structure and sprinting ability. J Exp Biol 2009; 212:3700-7. [DOI: 10.1242/jeb.031096] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY
The musculoskeletal structure of the foot and ankle has the potential to influence human sprinting performance in complex ways. A large Achilles'tendon moment arm improves the mechanical advantage of the triceps surae but also produces larger shortening velocity during rapid plantarflexion, which detracts from the force-generating capacity of the plantarflexors. The lever arm of the ground reaction force that resists the muscular plantarflexor moment during propulsive push-off is constrained in part by the skeletal structure of the foot. In this study, we measured the plantarflexion moment arms of the Achilles' tendon, lateral gastrocnemius fascicle lengths and pennation angles, and anthropometric characteristics of the foot and lower leg in collegiate sprinters and height-matched non-sprinters. The Achilles' tendon moment arms of the sprinters were 25% smaller on average in sprinters than in non-sprinters (P<0.001) whereas the sprinters' fascicles were 11%longer on average (P=0.024). The ratio of fascicle length to moment arm was 50% larger in sprinters (P<0.001). Sprinters were found to have longer toes (P=0.032) and shorter lower legs (P=0.026)than non sprinters. A simple computer simulation of the sprint push-off demonstrated that shorter plantarflexor moment arms and longer toes, like those measured in sprinters, permit greater generation of forward impulse. Simulated propulsion was enhanced in both cases by increasing the `gear ratio'of the foot, thus maintaining plantarflexor fibre length and reducing peak fibre shortening velocity. Longer toes especially prolonged the time of contact, giving greater time for forward acceleration by propulsive ground reaction force.
Collapse
Affiliation(s)
- Sabrina S. M. Lee
- Department of Kinesiology, The Pennsylvania State University, University Park,PA 16802, USA
| | - Stephen J. Piazza
- Department of Kinesiology, The Pennsylvania State University, University Park,PA 16802, USA
- Department of Mechanical Engineering, The Pennsylvania State University,University Park, PA 16802, USA
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Abstract
High-resistance strength training (HRST) is one of the most widely practiced forms of physical activity, which is used to enhance athletic performance, augment musculo-skeletal health and alter body aesthetics. Chronic exposure to this type of activity produces marked increases in muscular strength, which are attributed to a range of neurological and morphological adaptations. This review assesses the evidence for these adaptations, their interplay and contribution to enhanced strength and the methodologies employed. The primary morphological adaptations involve an increase in the cross-sectional area of the whole muscle and individual muscle fibres, which is due to an increase in myofibrillar size and number. Satellite cells are activated in the very early stages of training; their proliferation and later fusion with existing fibres appears to be intimately involved in the hypertrophy response. Other possible morphological adaptations include hyperplasia, changes in fibre type, muscle architecture, myofilament density and the structure of connective tissue and tendons. Indirect evidence for neurological adaptations, which encompasses learning and coordination, comes from the specificity of the training adaptation, transfer of unilateral training to the contralateral limb and imagined contractions. The apparent rise in whole-muscle specific tension has been primarily used as evidence for neurological adaptations; however, morphological factors (e.g. preferential hypertrophy of type 2 fibres, increased angle of fibre pennation, increase in radiological density) are also likely to contribute to this phenomenon. Changes in inter-muscular coordination appear critical. Adaptations in agonist muscle activation, as assessed by electromyography, tetanic stimulation and the twitch interpolation technique, suggest small, but significant increases. Enhanced firing frequency and spinal reflexes most likely explain this improvement, although there is contrary evidence suggesting no change in cortical or corticospinal excitability. The gains in strength with HRST are undoubtedly due to a wide combination of neurological and morphological factors. Whilst the neurological factors may make their greatest contribution during the early stages of a training programme, hypertrophic processes also commence at the onset of training.
Collapse
Affiliation(s)
- Jonathan P Folland
- School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK.
| | | |
Collapse
|
12
|
Alway SE, Siu PM, Murlasits Z, Butler DC. Muscle hypertrophy models: applications for research on aging. ACTA ACUST UNITED AC 2005; 30:591-624. [PMID: 16293906 DOI: 10.1139/h05-143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle hypertrophy is an adaptive response to overload that requires increasing gene transcription and synthesis of muscle-specific proteins resulting in increased protein accumulation. Progressive resistance training (P(RT)) is thought to be among the best means for achieving hypertrophy in humans. However, hypertrophy and functional adaptations to P(RT) in the muscles of humans are often difficult to evaluate because adaptations can take weeks, months, or even years before they become evident, and there is a large variability in response to P(RT) among humans. In contrast, various animal models have been developed which quickly result in extensive muscle hypertrophy. Several such models allow precise control of the loading parameters and records of muscle activation and performance throughout overload. Scientists using animal models of muscle hypertrophy should be familiar with the advantages and disadvantages of each and thereby choose the model that best addresses their research question. The purposes of this paper are to review animal models currently being used in basic research laboratories, discuss the hypertrophic and functional outcomes as well as applications of these models to aging, and highlight a few mechanisms involved in regulating hypertrophy as a result of applying these animal models to questions in research on aging.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Robert C Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Abe T. Fascicle length of gastrocnemius muscles in monozygous twins. JOURNAL OF PHYSIOLOGICAL ANTHROPOLOGY AND APPLIED HUMAN SCIENCE 2002; 21:291-5. [PMID: 12612401 DOI: 10.2114/jpa.21.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A large inter-individual variation is seen in muscle fascicle length of the athletes but the reasons for this phenomenon are unclear. The purpose of this study was to determine whether genetic factors contribute to the variances in muscle architectural characteristics. Nine monozygous twin pairs (3 males and 6 females), mean age 23 years (range 17-40) were studied. Fascicle length, pennation angle, and muscle thickness of the medial (MG) and lateral (LG) gastrocnemius muscles were measured in vivo by B-mode ultrasound. In the LG muscle intrapair resemblance (P < 0.01) for fascicle length (r = 0.98), pennation angle (r = 0.94) and muscle thickness (r = 0.86) were observed. In MG muscle, however, there was no intrapair resemblance for fascicle length (r = 0.66, P > 0.05), although pennation angle (r = 0.73, P < 0.05) and muscle thickness (r = 0.86, P < 0.01) were significant. Mean percent intrapair difference in LG and MG muscles were 1.8% and 5.1% for fascicle length, 11.3% and 12.3% for pennation angle and 12.4% and 9.9% for muscle thickness, respectively. There is intrapair difference between muscle thickness and pennation angle in both MG (r = 0.69, P < 0.05) and LG (r = 0.70, P < 0.05) muscles. However, no significant correlation was observed for intrapair difference between muscle thickness and fascicle length in both muscles (MG, r = 0.46; LG, r = 0.40). It appears that genetic predisposition is the predominant factor for the determination of muscle fascicle length. However, a lack of intrapair resemblance in MG fascicle length raises the possibility that fascicle length may be further influenced by external environmental factors such as physical training.
Collapse
Affiliation(s)
- Takashi Abe
- Department of Exercise and Sport Science, Tokyo Metropolitan University.
| |
Collapse
|
15
|
Alway SE. Attenuation of Ca(2+)-activated ATPase and shortening velocity in hypertrophied fast twitch skeletal muscle from aged Japanese quail. Exp Gerontol 2002; 37:665-78. [PMID: 11909684 DOI: 10.1016/s0531-5565(02)00003-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of aging on the in vitro contractile properties of the patagialis (PAT) muscle of 35 young adult (YA; 8 weeks of age) and 35 aged adult (AA, 110 weeks of age) Coturnix quails was examined after 0-30 days of stretch-overload. Overload was achieved by placing a weight equivalent to 12% of the birds' body weight on one wing. The contralateral wing served as the intra-animal control. Overload increased the weight of the PAT by 45.1+/-2.1% in YA, and 24.1+/-2.6% in AA. Twitch contraction time increased with loading from 43.2+/-1.2 to 67.3+/-2.2 ms in YA birds and 57.2+/-1.7 to 77.4+/-1.9 ms in AA birds. Unloaded shortening velocity (Vo) decreased by 40.1+/-2.2 and 38.8+/-3.2% in YA and aged birds, respectively. The decrease in fast myosin expression was greater in overloaded muscles of YA (20%) as compared to AA birds (12%). However, this was accompanied by a greater decrease in total muscle ATPase activity in aged birds (61%) compared to YA birds (40%). Myosin isozyme Ca(2+)-ATPase activity was 26% lower in FM1 but not other fast myosins in YA birds, but it was approximately 30% lower in all fast myosins in PAT muscles of aged birds. These data show that the reduction of Vo and the increase in twitch duration with aging may be due in part to reductions in ATPase activity in all myosin isoforms, as compared to myosin isoforms isolated from YA birds.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle, Sarcopenia and Muscle Diseases, Division of Exercise Physiology, Robert C. Byrd Health Science Center, West Virginia University School of Medicine, P.O. Box 9227, Morgantown, WV 26506-9227, USA.
| |
Collapse
|
16
|
Davidowitz J, Rubinson K, Onejeme A. Location along the muscle's length is a determinant of myofibril size. Tissue Cell 2000; 32:336-50. [PMID: 11145017 DOI: 10.1054/tice.2000.0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a previous study of myofibril size in 'Pale' (fast-twitch-glycolytic) fibers of rabbit extraocular muscle (EOM), it was found that individual long Pale fibers demonstrate a substantial increase in the size of myofibril profiles from their proximal to their distal halves (Davidowitz et al., 1996b). That finding raised the question of whether such proximal-to-distal increase of myofibril size in the Pale fibers is determined by: (1) longitudinal position within the individual muscle fibers themselves or (2) location along the length of the muscle as a whole? This question was tested in the present study by comparing the original group of long Pale fibers, which extend the full length of the muscle, with two groups of short Pale fibers, which are respectively confined to the proximal and distal halves of the muscle. It was found that (a) in the proximal half of the muscle, the short fibers and the adjacent portions of the long fibers have the same smaller size of myofibrils, and (b) in the distal half of the muscle, the short fibers and the adjacent portions of the long fibers have the same larger size of myofibrils. This finding indicates that the proximal-to-distal increase of myofibril-profile size in these EOM Pale fibers is determined by location along the length of the muscle as a whole, and is not related to longitudinal position within the individual fibers themselves.
Collapse
Affiliation(s)
- J Davidowitz
- Department of Ophthalmology, New York University Medical Center, NY 10016, USA.
| | | | | |
Collapse
|
17
|
Adams WJ, Morris DL. Pilot study--cimetidine enhances lymphocyte infiltration of human colorectal carcinoma: results of a small randomized control trial. Cancer 1997; 80:15-21. [PMID: 9210704 DOI: 10.1002/(sici)1097-0142(19970701)80:1<15::aid-cncr3>3.0.co;2-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cimetidine preserves postoperative immune function and inhibits the growth of some cancers. In this study, the effect of cimetidine on the local immune response to colorectal carcinoma was investigated. METHODS Forty-two patients scheduled for elective resection of colorectal carcinoma were randomized either to receive cimetidine for 1 week perioperatively or to act as controls. A lymphocyte density of 50 cells per high-power field (approximately 50% of the tumor/tissue interface) was considered a positive response. Patient survival was determined by Kaplan-Meier life table analysis. The effects of histamine and cimetidine on normal subject lymphocyte function was determined in a mitogen-stimulated proliferation assay. RESULTS A positive lymphocyte response was observed in 5 of 24 control carcinoma patients (21%) and 10 of 18 cimetidine-treated carcinoma patients (56%) (P = 0.03). The presence of a lymphocyte response correlated with a better survival (P = 0.02). Histamine had an inhibitory effect on lymphocyte proliferation with a median effective dose of 5 x 10(-7) M. Cimetidine antagonized this effect with a negative logarithm of the cimetidine molar concentration required to reduce the effect of histamine in half of 6.55. CONCLUSIONS Histamine inhibits normal lymphocyte function, antagonized by cimetidine at a histamine type 2 receptor. Cimetidine increases lymphocyte infiltration of primary colorectal carcinoma, possibly by overcoming the immunosuppressive effects of high local histamine concentrations. The presence of a local lymphocyte response correlates with an improved 3-year survival.
Collapse
Affiliation(s)
- W J Adams
- University of New South Wales Department of Surgery, The St. George Hospital, Kogarah, Australia
| | | |
Collapse
|
18
|
DeVol DL, Novakofski J, Fernando R, Bechtel PJ. Varying amounts of stretch stimulus regulate stretch-induced muscle hypertrophy in the chicken. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1991; 100:55-61. [PMID: 1682103 DOI: 10.1016/0300-9629(91)90183-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The effects of different amounts of passive stretch per day and number of days of stretch on muscle hypertrophy in the chicken patagialis (PAT) muscle were determined. 2. Stretch for 24 hr per day (h/d) resulted in a more rapid hypertrophy both on a wet and dry tissue basis (P less than 0.001) than stretch for 4 h/d. 3. Stretch increased PAT weight 43% and 25% in 24 h/d and 4 h/d treatments, respectively, after 10 days of stretch, but by day 25 of stretch there was no difference between treatments. 4. In a second experiment, the PAT muscle was hypertrophied and then the effects of intermittent stretch (4 h/d) on regression of hypertrophy (muscle atrophy) were investigated. 5. Intermittent stretch (4 h/d) for 5 and 10 d significantly (P less than 0.001) inhibited regression of hypertrophied muscle. 6. The results of the present study indicate that stretch-induced hypertrophy can be modulated by varying the amount of stretch applied per day. 7. Intermittent stretch can be used to inhibit the regression which occurs when a continuous stretch stimulus is removed. 8. Intermittent stretch is a useful model for investigating mechanisms of muscle hypertrophy and inhibition of muscle atrophy.
Collapse
Affiliation(s)
- D L DeVol
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
19
|
Abstract
Muscular atrophy regularly occurs as a consequence of immobilisation or disuse after sports injuries. Several experimental models deal with muscle atrophy and are suitable for investigations of the underlying mechanisms of muscle atrophy. Strength loss is the most evident response to atrophy. Muscle strength decreases most dramatically during the first week of immobilisation; little further weakening occurs later on. This is reflected in changes in the EMG of disused muscles and can also be observed in muscle weight and size of muscle fibres. Slow muscles with predominantly oxidative metabolism are most susceptible to atrophy as indicated by various findings: slow muscle fibers show greater atrophy than fast fibres; their relative and probably absolute number is decreased in atrophic muscles; in addition, the oxidative enzyme content is most severely affected by disuse. Atrophic muscle is characterised by a catabolic metabolism. The rate of protein synthesis is reduced and that of protein breakdown increased. Autophagic activities probably play an important role in early stages of muscular atrophy. The oxygen supply to disused muscle may be impaired, although myoglobin content is increased in atrophic muscle. The complete loss of mitochondrial function during the first days of disuse may be of aetiological importance. The amount of connective tissue is increased in atrophic muscle and surrounding periarticular tissue which may lead into a vicious circle of musculoskeletal degeneration. An almost complete recovery from atrophy is possible, yet often the recovery phase is much longer than the total immobilisation period.
Collapse
Affiliation(s)
- H J Appell
- Institute for Experimental Morphology, German Sports University, Cologne
| |
Collapse
|
20
|
Abstract
The pentagastrin-induced acid response, alone and versus different doses of cimetidine, was studied in humans. The inhibitory effect of the histamine H2-receptor antagonist cimetidine could only in part be counteracted by increasing doses of pentagastrin. The maximal gastric acid response was significantly decreased by cimetidine, and the ED50 values for pentagastrin showed a minor but still statistically significant increase, indicating both a competitive and a non-competitive inhibition by cimetidine of pentagastrin-induced gastric acid secretion. The pA2 characterization of the receptor mediating the pentagastrin-induced gastric acid response gave a value of 6.2, compared with the pA2 value of the human H2 receptor of 6.1. This suggests that the pentagastrin-induced gastric acid response in humans is mediated via the histamine H2-receptor.
Collapse
Affiliation(s)
- R Leth
- Sahlgren's Hospital, University of Gothenburg, Sweden
| | | | | |
Collapse
|
21
|
Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:166-74. [PMID: 3350785 DOI: 10.1007/bf02623542] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Highly contractile skeletal myotubes differentiated in tissue culture are normally difficult to maintain on collagen-coated tissue culture dishes for extended periods because of their propensity to detach as a sheet of cells from their substratum. This detachment results in the release of mechanical tension in the growing cell "sheet" and, consequently, loss of cellular protein. We developed a simple method of culturing high density contractile primary avian myotubes embedded in a collagen gel matrix (collagel) attached to either a stainless steel mesh or nylon support structure. With this system the cells are maintained in a highly contractile state for extended periods in vitro under tension. Structural integrity of the myotubes can be maintained for up to 10 d in basal medium without serum or embryo extract. Total cellular protein and myosin heavy chain accumulation in the cells can be maintained for weeks at levels which are two to three times those found in time-matched controls that are under little tension. Morphologically, the myotubes are well differentiated with structural characteristics of neonatal myofibers. This new collagel culture system should prove useful in the analysis of in vitro gene expression during myotube to myofiber differentiation and its regulation by various environmental factors such as medium growth factors, innervation, and mechanical activity.
Collapse
Affiliation(s)
- H H Vandenburgh
- Department of Pathology, Brown University, Providence, Rhode Island 02906
| | | | | |
Collapse
|
22
|
Leivseth G, Tindall A, Myklebust R. Changes in guinea pig muscle histology in response to reduced mobility. Muscle Nerve 1987; 10:410-4. [PMID: 3614255 DOI: 10.1002/mus.880100506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dorsiflexion of one hind foot has been prevented in guinea pigs by means of a light prosthesis. The gastrocnemius and soleus muscles of both hind legs have been removed after a period of 2 weeks, and the fiber cross-sectional areas of type 1 and 2 fibers in both muscles have been measured. Comparison of the values in normal and affected muscles shows that the limited reduction in free movement of the foot led to a significant atrophy in types 1 and 2 fibers in both muscles. The use of this simple prosthesis appears to have no effect on any other function of the leg except for the restriction of the lengthening of gastrocnemius and soleus muscles, and the results show that some of the hypotheses about the muscle atrophy seen in fully immobilized limbs cannot account for the changes observed in the present experiments and seem to be of limited validity.
Collapse
|
23
|
Brown CR, Palmer WK, Bechtel PJ. Effects of passive stretch on growth and regression of muscle from chickens of various ages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1987; 86:443-8. [PMID: 2881684 DOI: 10.1016/0300-9629(87)90522-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A non-invasive procedure was used to determine the effect of animal age on the growth response of muscle to passive stretch. Stretch increased patagialis muscle weight 61% in 6-week-old chicks and 34% in 10-month-old chicks, 28-month-old animals had an 18% loss of muscle mass during passive stretch. Removal of the stretch stimulus was followed by a rapid return of patagialis weight to control values in 6-week and 10-month animals, while muscle size of 28-month-old animals had not returned to control levels by 22 days, following removal of the stretch. The stretch-induced changes in muscle wet weight could, in part, be attributed to changes in muscle protein. Total muscle DNA content increased during rapid growth in 6-week- and 10-month-old chickens, and returned to control levels during muscle regression. Muscle hydroxyproline content increased in parallel with increases in muscle mass but did not return to control levels during muscle regression in 6-week-old animals. Results of the present study indicate that there was an effect of animal age on stretch-induced hypertrophy and regression of the patagialis muscle.
Collapse
|
24
|
Holstein B. Characterization with agonists of the histamine receptors mediating stimulation of gastric acid secretion in the Atlantic cod, Gadus morhua. AGENTS AND ACTIONS 1986; 19:42-7. [PMID: 2948373 DOI: 10.1007/bf01977254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gastric acid secretion in response to a number of agonists, active at H1 and/or H2-receptors, were measured in the gastrically and intestinally perfused cod. Histamine (D50 = 15 nmol/kg X h) was the most potent of the agonists tested. The H2-active agonists 4-methylhistamine (4-MeHi), Na-MeHi, and Na,Na-MeHi were about 25 times less potent than histamine in this in vivo model. Na,Na-MeHi was a partial agonist, while 4-MeHi and Na-MeHi elicited maximum responses similar to that of histamine. Dimaprit and impromidine, two highly selective H2-agonists, failed to stimulate acid secretion under basal conditions, and inhibited histamine-stimulated acid secretion. The H1-selective 2-MeHi and 2-pyridylethylamine (2-PEA) were essentially inactive. It is concluded that the cod gastric histamine receptor related to acid secretion is of the H2-class. It is not, however, identical to the mammalian gastric H2-receptor, and should be placed in a separate subgroup.
Collapse
|
25
|
Emami S, Gespach C, Forgue-Lafitte ME, Broer Y, Rosselin G. Histamine and VIP interactions with receptor-cyclic AMP systems in the human gastric cancer cell line HGT-1. Life Sci 1983; 33:415-23. [PMID: 6192308 DOI: 10.1016/0024-3205(83)90789-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In HGT-1 cells incubated at 20 degrees C for 15 min with 1 mM 3-isobutyl-1-methylxanthine (IBMX), histamine (10(-4)M) increased basal cAMP levels from 2.12 +/- 0.14 to 22.9 +/- 2 pmol per 10(6) cells, with a potency of 6.4 X 10(-6)M. IBMX was added in order to inhibit cAMP degradation by low and high Km cAMP-phosphodiesterases (cAMP-PDE). The use of specific H1, H2 agonists or antagonists indicated that the histamine effect was due to an interaction with typical H2 -receptors that are involved in gastric acid secretion. Cyclic AMP levels were also increased (10-fold) by vasoactive intestinal peptide VIP (3 X 10(-11) - 10(-8)M). Porcine peptide having N-terminal histidine and C-terminal isoleucine amide (PHI) and secretin were respectively 80 and 3600 times less potent than VIP and did not produce additive effect when tested in combinations with VIP. This observation indicates that these two peptides, structurally related to VIP, are acting through the recognition sites for VIP. Combination of VIP and histamine results in additive stimulation on intact cells as well as on membrane-bound adenylate cyclase, suggesting the existence of two cell populations bearing respectively the two sets of receptors. Two other human cancer cell lines originating from nongastric tumors (HT-29 and HL-60) possess only VIP or histamine receptors, respectively, indicating the gastric cellular originality of the HGT-1 cells. It is concluded that HGT-1 cells possess both VIP and histamine H2 receptors with similar pharmacological properties to those characterized in normal human fundic glands (1,2). Therefore, this cell line can be a good model to study drugs used therapeutically during the treatment of patients for gastric ulcer or cancer.
Collapse
|
26
|
Frankeny JR, Holly RG, Ashmore CR. Effects of graded duration of stretch on normal and dystrophic skeletal muscle. Muscle Nerve 1983; 6:269-77. [PMID: 6866007 DOI: 10.1002/mus.880060405] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Daily passive stretch for six weeks ranging from 30 minutes to 24 hours per day was studied in the patagialis (PAT) muscle of normal and dystrophic chickens. Significant increases in wet weight, cross-sectional area, and mean fiber cross-sectional area occurred in both normal and dystrophic PAT in response to stretch of all daily durations tested. More than 50% of the growth occurring in response to continuous stretch was elicited by as little as 30 minutes of stretch per day. Oxidative enzyme capacity increased proportionately with increasing durations of stretch in the normal PAT. Similarly, increasing duration of stretch progressively retarded the onset of histopathological signs in the dystrophic PAT. We conclude that daily stretching for as little as 30 minutes per day is a powerful inducer of growth in normal and dystrophic muscle and that the progress of the histopathology in dystrophic muscle is delayed in proportion to the daily duration of stretch.
Collapse
|
27
|
Hudlická O, Tyler KR, Srihari T, Heilig A, Pette D. The effect of different patterns of long-term stimulation on contractile properties and myosin light chains in rabbit fast muscles. Pflugers Arch 1982; 393:164-70. [PMID: 7099918 DOI: 10.1007/bf00582940] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fast rabbit skeletal muscles (tibialis anterior and extensor digitorum longus) were stimulated for 2-28 days by electrodes implanted in the vicinity of the peroneal nerve to produce maximal contractions at two different frequency patterns: that occurring naturally in nerves to slow muscles (10 Hz continuously) or three bursts of tetani (40 Hz) per minute, each 5s in duration. Both types of frequency produced muscles more resistant to fatigue during isometric twitch contractions, and led to a prolongation of contraction time greater and more consistent with 10 Hz than with 40 Hz. The twitch/tetanus ration was significantly higher in muscles stimulated at 10 Hz for 3-4 weeks but was not different from controls in muscles stimulated at 40 Hz. Both types of stimulation led to the appearance of myosin light chains characteristic of slow muscles. Muscles stimulated for 4 weeks at 40 Hz developed greater twitch tension per gram, and had significantly smaller cross-sectional area of myofibrils than control muscles. It is concluded that long-term electrical stimulation of fast muscles can affect some muscle contractile properties to resemble those of slow muscles irrespective of frequency of stimulation, provided the total number of stimuli is comparable, the duration of stimulation is long enough (minimum 2 weeks) and all motor units are activated.
Collapse
|
28
|
Ashmore CR. Stretch-induced growth in chicken wing muscles: effects on hereditary muscular dystrophy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1982; 242:C178-83. [PMID: 7065168 DOI: 10.1152/ajpcell.1982.242.3.c178] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle growth induced by passive stretch was characterized in the Patigialis muscle of chicks with hereditary muscular dystrophy. When the muscle of 6-wk-old chicks was stretched for 1 wk, the effects on muscle growth and on muscle pathology were variable, but in general few differences between stretched and unstretched muscles were observed. However, when the muscle of 1-wk-old chicks was stretched for 6 wk, the effects on muscle growth and on prevention of pathology were dramatic. Similar to results obtained previously when normal chick muscles were stretched [Holly et al., Am. J. Physiol. 238 (Cell Physiol. 7): C62-C71, 1980; Barnett et al., Am. J. Physiol. 239 (Cell Physiol. 8): C39-C46, 1980], stretched dystrophic muscle increased in weight (200%), cross-sectional area (107%), and fiber cross-sectional area (82%). DNA concentration, which is severalfold higher in unstretched dystrophic muscle compared with unstretched normal muscle, fell to values not different from normal values after being stretched. Nuclei per square millimeter also were the same for stretched dystrophic and stretched normal muscle. Histograms indicated that stretching induced a fiber distribution in dystrophic muscle qualitatively similar to that found in stretched normal muscle. Cytochemical observations revealed a dramatic protective effect of stretch against the progressive pathology of dystrophy. It is concluded that stretch of muscle applied to newly hatched dystrophic chicks is a powerful deterrent of symptoms characteristic of hereditary muscular dystrophy. Stretch imposed after the symptoms of dystrophy are apparent provides little, if any, protection.
Collapse
|