1
|
Namba F, Go H, Murphy JA, La P, Yang G, Sengupta S, Fernando AP, Yohannes M, Biswas C, Wehrli SL, Dennery PA. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model. PLoS One 2014; 9:e90936. [PMID: 24599172 PMCID: PMC3944979 DOI: 10.1371/journal.pone.0090936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Premature infants exposed to hyperoxia suffer acute and long-term pulmonary consequences. Nevertheless, neonates survive hyperoxia better than adults. The factors contributing to neonatal hyperoxic tolerance are not fully elucidated. In contrast to adults, heme oxygenase (HO)-1, an endoplasmic reticulum (ER)-anchored protein, is abundant in the neonatal lung but is not inducible in response to hyperoxia. The latter may be important, because very high levels of HO-1 overexpression are associated with significant oxygen cytotoxicity in vitro. Also, in contrast to adults, HO-1 localizes to the nucleus in neonatal mice exposed to hyperoxia. To understand the mechanisms by which HO-1 expression levels and subcellular localization contribute to hyperoxic tolerance in neonates, lung-specific transgenic mice expressing high or low levels of full-length HO-1 (cytoplasmic, HO-1-FL(H) or HO-1-FL(L)) or C-terminally truncated HO-1 (nuclear, Nuc-HO-1-TR) were generated. In HO-1-FL(L), the lungs had a normal alveolar appearance and lesser oxidative damage after hyperoxic exposure. In contrast, in HO-1-FL(H), alveolar wall thickness with type II cell hyperproliferation was observed as well worsened pulmonary function and evidence of abnormal lung cell hyperproliferation in recovery from hyperoxia. In Nuc-HO-1-TR, the lungs had increased DNA oxidative damage, increased poly (ADP-ribose) polymerase (PARP) protein expression, and reduced poly (ADP-ribose) (PAR) hydrolysis as well as reduced pulmonary function in recovery from hyperoxia. These data indicate that low cytoplasmic HO-1 levels protect against hyperoxia-induced lung injury by attenuating oxidative stress, whereas high cytoplasmic HO-1 levels worsen lung injury by increasing proliferation and decreasing apoptosis of alveolar type II cells. Enhanced lung nuclear HO-1 levels impaired recovery from hyperoxic lung injury by disabling PAR-dependent regulation of DNA repair. Lastly both high cytoplasmic and nuclear expression of HO-1 predisposed to long-term abnormal lung cellular proliferation. To maximize HO-1 cytoprotective effects, therapeutic strategies must account for the specific effects of its subcellular localization and expression levels.
Collapse
Affiliation(s)
- Fumihiko Namba
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Hayato Go
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jennifer A. Murphy
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ping La
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Guang Yang
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Amal P. Fernando
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mekdes Yohannes
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Chhanda Biswas
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Suzanne L. Wehrli
- Small Animal Core, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Phyllis A. Dennery
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Chan JKW, Charrier JG, Kodani SD, Vogel CF, Kado SY, Anderson DS, Anastasio C, Van Winkle LS. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs. Part Fibre Toxicol 2013; 10:34. [PMID: 23902943 PMCID: PMC3735485 DOI: 10.1186/1743-8977-10-34] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). OBJECTIVES Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. METHODS We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. RESULTS We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. CONCLUSIONS We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in young adult animals, that are unaffected in neonates. We conclude that the inability of neonatal animals to upregulate the antioxidant response may, in part, explain enhanced their susceptibility to ultrafine particles, such as PFP.
Collapse
Affiliation(s)
- Jackie K W Chan
- Center for Health and the Environment, University of California, One Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Moien-Afshari F, Ghosh S, Elmi S, Rahman MM, Sallam N, Khazaei M, Kieffer TJ, Brownsey RW, Laher I. Exercise restores endothelial function independently of weight loss or hyperglycaemic status in db/db mice. Diabetologia 2008; 51:1327-37. [PMID: 18437348 DOI: 10.1007/s00125-008-0996-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Exercise ameliorates oxidative stress-mediated diabetic vascular endothelial dysfunction through poorly defined mechanisms. We hypothesised that, in addition to improving metabolic parameters, upregulation of antioxidants such as superoxide dismutase (SOD) mediates exercise-induced reductions of oxidative stress and increased nitric oxide (NO) bioavailability, and also restores vasodilatation. METHODS Type 2 diabetic db/db and normoglycaemic wild-type mice were exercised at moderate intensity for 1 h a day for 7 weeks, leading to a 10% body weight loss. Sedentary animals or those undergoing a low-intensity exercise regimen causing non-significant weight loss were also used. We examined aortic endothelial cell function, NO bioavailability and various biomarkers of oxidative stress. RESULTS Moderate-intensity exercise lowered body weight, increased mitochondrial manganese SOD (MnSOD) and both total and phosphorylated (Ser1177) endothelial nitric oxide synthase (eNOS) protein production; it also reduced whole-body (plasma 8-isoprostane) and tissue oxidative stress (nitrotyrosine immunostaining or protein carbonyl levels in the aorta). Low-intensity exercise did not alter body weight; however, it upregulated cytosolic Cu/Zn-SOD instead of MnSOD, and still demonstrated all the above benefits in the db/db aorta. Importantly, both exercise protocols improved endothelial-dependent vasodilatation and NO bioavailability without altering hyperglycaemic status in db/db mice. CONCLUSIONS/INTERPRETATION Exercise reverses diabetic vascular endothelial dysfunction independently of improvements in body weight or hyperglycaemia. Our data suggest that upregulation of eNOS and specific SOD isoforms could play important roles in improving NO bioavailability, as well as in reversing endothelial dysfunction in type 2 diabetes patients through lifestyle modifications in the management of diabetes.
Collapse
Affiliation(s)
- F Moien-Afshari
- Department of Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Johnston CJ, Holm BA, Finkelstein JN. Differential proinflammatory cytokine responses of the lung to ozone and lipopolysaccharide exposure during postnatal development. Exp Lung Res 2005; 30:599-614. [PMID: 15371095 DOI: 10.1080/01902140490476355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Age appears to be a critical variable in the ability of the lung to cope with external stress. Alterations in cellular responses associated with environmental toxicants are likely to modify the developmental processes. This would suggest that the timing and interaction between exposure and developmental events appears to play an important role as susceptible targets for environmental perturbation. C57BL/6 mice ages 2, 4, 7, 10, 14, 28, and 56 days were exposed to 2.5 PPM ozone for 4 hours or to a 10-minute inhalation of lipopolysaccharide (LPS) with an estimated deposited dose of 26 EU and examined 2 hours post exposure. Abundance of proinflammatory cytokine and chemokine mRNA were measured by RNase protection assay. After ozone exposure interleukin (IL)-6 was not detected in 2-, 4-, and 7-day-old mice; however, increases of 18- to 20-fold were measured in 10-, 14-, 28-, and 56-day-old mice. Macrophage inhibitory protein (MIP)-2 and cytokine-induced neutrophil chenocettractant (KC) were elevated slightly, with no differences between 2- and 56-day-old mice. After LPS exposure, IL-6 was not detected in 2- and 4-day-old mice; however, 8- to 10-fold increases were measured in 7-, 14-, and 28-day-old mice and approximately 20-fold in 56-day-old mice. IL-1beta was elevated approximately 4-fold at 2 and 4 days of age but was elevated 25- to 30-fold in 7-, 14-, 28-, and 56-day-old mice. MIP-2 and KC mRNA abundance was elevated 25- to 30-fold, with no differences between 2- and 56-day-old mice. These results demonstrate that critical time points exist during lung development to inhaled environmental pollutants and that differences exist in the maturation of inflammatory and epithelial defense mechanisms.
Collapse
Affiliation(s)
- Carl J Johnston
- Department of Environmental Medicine, University of Rochester, NY 14642,
| | | | | |
Collapse
|
5
|
Yang G, Abate A, George AG, Weng YH, Dennery PA. Maturational differences in lung NF-kappaB activation and their role in tolerance to hyperoxia. J Clin Invest 2004; 114:669-78. [PMID: 15343385 PMCID: PMC514581 DOI: 10.1172/jci19300] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 07/20/2004] [Indexed: 01/10/2023] Open
Abstract
Neonatal rodents are more tolerant to hyperoxia than adults. We determined whether maturational differences in lung NF-kappaB activation could account for the differences. After hyperoxic exposure (O2 > 95%), neonatal (<12 hours old) lung NF-kappaB binding was increased and reached a maximum between 8 and 16 hours, whereas in adults no changes were observed. Additionally, neonatal NF-kappaB/luciferase transgenic mice (incorporating 2 NF-kappaB consensus sequences driving luciferase gene expression) demonstrated enhanced in vivo NF-kappaB activation after hyperoxia in real time. In the lungs of neonates, there was a propensity toward NF-kappaB activation as evidenced by increased lung I-kappaB kinase protein levels, I-kappaBalpha phosphorylation, beta-transducin repeat-containing protein levels, and total I-kappaBalpha degradation. Increased lung p-JNK immunoreactive protein was observed only in the adult lung. Inhibition of pI-kappaBalpha by BAY 11-7085 resulted in decreased Bcl-2 protein levels in neonatal lung homogenates and decreased cell viability in lung primary cultures after hyperoxic exposure. Furthermore, neonatal p50-null mutant (p50(-/-)) mice showed increased lung DNA degradation and decreased survival in hyperoxia compared with WT mice. These data demonstrate that there are maturational differences in lung NF-kappaB activation and that enhanced NF-kappaB may serve to protect the neonatal lung from acute hyperoxic injury via inhibition of apoptosis.
Collapse
Affiliation(s)
- Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
6
|
Caron N, El Hajjam A, Declèves AE, Joly E, Falck JR, Kramp R. Changes in renal haemodynamics induced by indomethacin in the rat involve cytochrome P450 arachidonic acid-dependent epoxygenases. Clin Exp Pharmacol Physiol 2004; 31:683-90. [PMID: 15554908 DOI: 10.1111/j.0305-1870.2004.04066.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant renal vasodilation was observed previously after an acute cyclo-oxygenase (COX) inhibition induced with indomethacin. Because this effect could be due to COX-dependent intrarenal metabolization of arachidonic acid through cytochrome P450 (CYP450) pathways, the aim of the present study was to investigate, in vivo, possible interactions between COX and CYP450 mono-oxygenases. Mean arterial pressure (MAP) and renal blood flow (RBF), using an electromagnetic flow transducer for RBF evaluation, were measured continuously in 71 anaesthetized euvolaemic rats. Appropriate solvents (vehicle), 3 mg/kg indomethacin, 17-octadecynoic acid (17-ODYA; 2 mmol/L), either miconazole (MI; 1.5 mmol/L) or N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 5 mg/kg) and N'-hydroxyphenylformamidine (HET0016; 5 or 10 mg/kg) were administered to inhibit either COX, CYP450 mono-oxygenases, epoxygenases or hydroxylase, respectively. The CYP450 and COX inhibitors were also combined as follows: 17-ODYA/indomethacin, MI (or MS-PPOH)/indomethacin, HET0016/indomethacin and indomethacin/HET0016. Mean arterial pressure and RBF were not modified by vehicle, 17-ODYA or MI (or MS-PPOH). However, MAP decreased slightly (P < 0.05; paired t-test, 5 d.f.) and RBF increased transiently (P < 0.05; anova, 5 d.f.) after HET0016. In contrast, MAP decreased by 10 mmHg (P < 0.05) and RBF increased by 10% (P < 0.05) after indomethacin. This enhancement was prevented by 17-ODYA or MI (or MS-PPOH), but not by HET0016. Moreover, RBF increased step-wise to 21% in the indomethacin/HET0016 experiment (P < 0.05). Consequently, changes from baseline in renal vascular resistance differed among treatments, averaging -2 +/- 3 (vehicle), -13 +/- 3 (indomethacin; P < 0.05 vs vehicle), -4 +/- 3 (17-ODYA/indomethacin), -3 +/- 4 (MI or MS-PPOH/indomethacin), -15 +/- 3 (HET0016/indomethacin; P < 0.05) and -22 +/- 4% (indomethacin/HET0016; P < 0.05). In conclusion, these results demonstrate that the renal vasodilation induced by indomethacin can be prevented by prior inhibition of CYP450 mono-oxygenases and further suggest that the CYP450 epoxygenases pathway may prevail.
Collapse
Affiliation(s)
- N Caron
- Service de Physiologie et de Pharmacologie, Faculté de Médecine, Université de Mons-Hainaut, Mons, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Yang G, Abate A, George AG, Weng YH, Dennery PA. Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia. J Clin Invest 2004. [DOI: 10.1172/jci200419300] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Gonzalez C, Sanz-Alfayate G, Obeso A, Agapito MT. Role of Glutathione Redox State in Oxygen Sensing by Carotid Body Chemoreceptor Cells. Methods Enzymol 2004; 381:40-71. [PMID: 15063665 DOI: 10.1016/s0076-6879(04)81003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiologia, Facultad de Medicina, Universidad de Valladolid, Spain
| | | | | | | |
Collapse
|
9
|
Vuorensola K, Sirén H, Karjalainen U. Determination of dopamine and methoxycatecholamines in patient urine by liquid chromatography with electrochemical detection and by capillary electrophoresis coupled with spectrophotometry and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 788:277-89. [PMID: 12705968 DOI: 10.1016/s1570-0232(02)01037-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The applicability of capillary electrophoresis (CE) with UV and mass spectrometric (MS) detection for the determination of dopamine and methoxycatecholamines in urine was evaluated in comparison with the liquid chromatography-electrochemical detection (LC-EC) method widely used in catecholamine analysis. The catecholamines in urine were deconjugated with acid or enzyme hydrolysis, purified by cation exchange (CEX) or solid-phase extraction (SPE) with a copolymer of N-divinylpyrrolidone and divinylbenzene and analyzed by LC-EC, CE-UV, and CE-MS. Acid hydrolysis was more effective in the deconjugation than enzymatic hydrolysis with Helix pomatia. However, the recoveries of HMBA, DA and NMN from spiked samples were less than 30% after acid hydrolysis and SPE purification. The CEX purification was more efficient than SPE in removing matrix compounds from the urine samples. The limits of detection were lower in LC-EC analysis than in CE-UV or CE-MS. Many factors in the analytical procedure caused deviations in the concentrations measured for urinary dopamine and methoxycatecholamines. The recovery of HMBA, which was used as the internal standard, was poor after acid hydrolysis and SPE purification. The purification methods were validated in conjunction with the analytical methods and therefore cross analysis was unsuccessful. The LC-EC method was the most sensitive, but CE-UV and CE-MS were sensitive enough for the determination of dopamine and methoxycatecholamines even in healthy patient urine. The EC and MS detections were superior to the UV detection in specificity since, after acid hydrolysis, some matrix compounds were migrating close to I.S., DA and 3MT.
Collapse
Affiliation(s)
- Katariina Vuorensola
- Viikki Drug Discovery Technology Center (DDTC), Department of Pharmacy, University of Helsinki, P.O. Box 56, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
10
|
|
11
|
Papadopoulos MC, Koumenis IL, Xu L, Giffard RG. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels. Eur J Neurosci 1998; 10:1252-60. [PMID: 9749779 DOI: 10.1046/j.1460-9568.1998.00134.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overexpression of the proto-oncogene bcl-2 has been shown to protect a variety of cell types from oxidative and non-oxidative injury, blocking apoptotic and necrotic types of cell death. Retroviral vectors were used to stably overexpress bcl-2 in primary murine astrocyte cultures with more than 95% efficiency. Compared to beta-galactosidase-expressing and uninfected control cells, bcl-2 overexpressing astrocytes suffered < 40% injury after 24 h glucose deprivation, while controls were essentially completely injured. After exposure to 0.2 mM hydrogen peroxide, the bcl-2 overexpressing astrocytes suffered < 40% the injury seen in controls. In contrast, when the cultures were injured by combined oxygen-glucose deprivation, no difference in the extent or time course of injury was found between cells overexpressing bcl-2 and those expressing beta-galactosidase. To investigate one possible mechanism of bcl-2 protection, we measured the levels of glutathione and three antioxidant enzymes. Astrocytes overexpressing bcl-2 had elevated glutathione levels (130-200%), increased superoxide dismutase (170%) and glutathione peroxidase (140%) activities compared with beta-galactosidase-expressing controls. Bcl-2 overexpressing astrocytes suffered less lipid peroxidation after glucose deprivation, as assessed by cis-parinaric acid fluorescence, and demonstrated more rapid removal of hydrogen peroxide from the medium. When glutathione levels were decreased 80% by pretreatment with buthionine sulfoximine, the extent of protection from glucose deprivation of bcl-2 overexpressing cells was decreased by about half. Increased antioxidant defence contributes to protection from glucose deprivation in bcl-2 overexpressing astrocytes.
Collapse
Affiliation(s)
- M C Papadopoulos
- Department of Anaesthesia, Stanford University School of Medicine, CA 94305, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Antioxidant enzyme activities were measured following exposure to hypericin +/- irradiation in EMT6 cells. CuZnSOD and catalase activities peaked within 0.5 h following irradiation for nontoxic 0.5 microM hypericin and toxic 1.0 microM hypericin. Catalase remained elevated up to 3 h for 1.0 microM hypericin + light. MnSOD activity was elevated immediately following irradiation for both doses. These levels returned to control by 1 h for 0.5 microM hypericin, but were depressed after 1 h for 1.0 microM hypericin. This suggests that mitochondria impairment may be a critical factor in hypericin phototoxicity. Glutathione reductase was inhibited immediately following irradiation with 1.0 microM hypericin, suggesting that an altered status of the glutathione pool contributed to cytotoxicity. Glutathione peroxidase activities were elevated following irradiation but returned to control levels within 0.5 h for both doses, implicating hydroperoxide formation as an early event in hypericin phototoxicity. Inhibition by hypericin in the dark was demonstrated for purified CuZnSOD, Se-dependent glutathione peroxidase, glutathione S-transferase, and glutathione reductase activities in vitro. Irradiation did not potentiate hypericin-mediated glutathione reductase inhibition and decrease inhibition for the other enzymes. Collectively, these data demonstrate an antioxidant enzyme response to hypericin photoactivation and confirm a role for oxygen in hypericin phototoxicity.
Collapse
Affiliation(s)
- S A Johnson
- Cancer Research Laboratory, Department of Biochemistry, University of Nevada, Reno 89557, USA
| | | |
Collapse
|
13
|
Oztürk HS, Kavutcu M, Canbolat O, Kaçmaz M, Yaşa MH, Durak I. The effects of gentamicin and vitamin E on enzymatic antioxidant defence in guinea-pig lung. J Clin Pharm Ther 1997; 22:411-4. [PMID: 19160727 DOI: 10.1111/j.1365-2710.1997.tb00025.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study the possible effects of gentamicin on the enzymic free-radical defence system in the lung. METHOD Activities of cytoplasmic superoxide dismutase (CuZn-SOD), mitochondrial superoxide dismutase (Mn-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) enzymes were studied in lung tissues from gentamicin-treated guinea-pigs compared to controls. RESULTS Levels of those enzymes were higher in the gentamicin group except for xanthine oxidase (XO) activity. Vitamin E given concomitantly with gentamicin caused significant decreases in CuZn-SOD, Mn-SOD and GSH-Px activities but an increase in CAT activity in the lung tissue. Only vitamin treatment caused significant decreases in the activities of CuZn-SOD, Mn-SOD and GSH-Px enzymes and an increase in CAT activity. CONCLUSION The results suggest that lung tissue is able to respond quickly and effectively against the adverse effects of some oxidant substances by inducing and/or activating the enzymatic free-radical defence system.
Collapse
Affiliation(s)
- H S Oztürk
- Ankara University Medical Faculty, Biochemistry Department, Ankara
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Since the description of bronchopulmonary dysplasia (BPD) in premature infants, the supplemental oxygen administered has been suspect in the etiology of BPD. This has prompted studies on the effect of hyperoxia on lung growth in neonatal animals. So far, these have not led to a treatment which either prevents or mitigates BPD. Another approach to investigate the effect of hyperoxia on the immature lung is to use lung explants from 12-d gestation mouse fetuses. Exposing explants to different concentrations of oxygen for 48 h, we found that exposures to oxygen both below (10%) and above (35% or greater) normoxia adversely affected branching morphogenesis and growth. The effect was irreversible at exposures of 50% oxygen and greater. To determine the role of reactive oxygen species (ROS) in the effect of hyperoxia, antioxidants and inhibitors of ROS formation were added to the incubating explants, and their influence on reducing the adverse effect of 50% oxygen was assessed. The combination of CuZn superoxide dismutase (SOD) and catalase, manganese SOD, manganese-3-tetrakis(1-methyl-4-pyridyl)porphorin, a low molecular weight SOD mimetic, and to a lesser extent, deferoximine, an antioxidant and inhibitor of hydroxyl radical formation, were successful in reducing the effect of 50% oxygen on morphogenesis. Not successful were N-nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase); allopurinol (an inhibitor of xanthine oxidase); N-acetylcysteine and ebselen (a glutathione peroxidase mimetic); Trolox (a synthetic tocopherol); catalase, and CuZnSOD used alone. These results provide evidence that superoxide anion and possibly hydroxyl radical are the ROS most likely responsible for the growth effects of hyperoxia on mouse fetal lung morphogenesis.
Collapse
Affiliation(s)
- A M Wilborn
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
15
|
Kobayashi Y, Amenta F. Neurotransmitter receptors in the pulmonary circulation with particular emphasis on pulmonary endothelium. JOURNAL OF AUTONOMIC PHARMACOLOGY 1994; 14:137-64. [PMID: 8051199 DOI: 10.1111/j.1474-8673.1994.tb00598.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Y Kobayashi
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Università Tor Vergata, Rome, Italy
| | | |
Collapse
|
16
|
Okada K, Shinozuka K, Shimoura K, Kobayashi Y, Hattori K, Nakase A. Effects of reserpine on the content and uptake of dopamine and noradrenaline in rabbit arteries. Clin Exp Pharmacol Physiol 1993; 20:261-7. [PMID: 8485926 DOI: 10.1111/j.1440-1681.1993.tb01679.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Change with time of the content and uptake of dopamine (DA) and noradrenaline (NA) in the renal, superior mesenteric and femoral arteries and abdominal aorta of rabbit after reserpine administration was examined. Endogenous DA and NA were measured by high performance liquid chromatography coupled with electrochemical detector. 2. A single dose of reserpine (3 mg/kg, i.p.) maximally depleted the endogenous DA and NA contents in the four blood vessels 24 h after the administration; the ratios of reductions were 70-90% and approximately 90% of the normal levels, respectively. The DA contents in all four vessels recovered to the normal level within 4 days after reserpine. However, NA content did not recover to the normal levels within 30 days after reserpine except in the mesenteric artery. 3. The activity of dopamine beta-hydroxylase (DBH) significantly increased in all four blood vessels 1 h after reserpine. Although the DBH activity returned to the normal level after 3 days in the mesenteric artery, it returned within 24 h in the other three vessels. 4. [3H]-Dopamine and [3H]-NA uptake were almost completely depressed 1 h after reserpine. The [3H]-NA uptake in four vessels recovered to the normal level 2-14 days after reserpine, and [3H]-DA uptake recovered after 30-45 days. Thus, the endogenous DA content in blood vessels was completely restored although DA uptake and NA content were still affected. 5. These results suggested that the recovery of stored DA after reserpine was faster than that of stored NA and the recovery of DA uptake after reserpine was slower than NA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Okada
- Department of Pharmacology, Shimane Medical University, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Jornot L, Junod AF. Response of human endothelial cell antioxidant enzymes to hyperoxia. Am J Respir Cell Mol Biol 1992; 6:107-15. [PMID: 1728289 DOI: 10.1165/ajrcmb/6.1.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To explore the level of regulation of the expression of the major antioxidant enzymes in response to hyperoxia, we exposed human umbilical vein endothelial cells to 95% O2 for 3 and 5 days and measured (1) the steady-state mRNA levels, (2) the activities, and (3) the immunoreactive content of CuZn and Mn superoxide dismutases (SOD), catalase (CAT), and glutathione peroxidase (GP). We found that a 3-day exposure to 95% O2 caused (1) an increase in CuZnSOD mRNA (by 41%), CAT mRNA (by 26%), and GP mRNA (by 173%); (2) an increase in CuZnSOD activity (by 30%), a decrease in CAT activity (by 37%), and an increase in GP activity (by 60%); and (3) an increase in CuZnSOD immunodetectable protein (by 26%) and a loss in CAT immunoreactive protein (by 27%). After a 5-day exposure to 95% O2, there was (1) a 93% increase in CuZnSOD mRNA, a 71% increase in CAT mRNA, and a 127% increase in GP mRNA; (2) a 56% increase in CuZnSOD activity, a 70% decrease in CAT activity, and an 89% increase in GP activity; and (3) a 35% increase in CuZnSOD immunoreactive protein and a 55% loss in CAT immunoreactive protein. There was no change in the steady-state MnSOD mRNA level after 3 days in 95% O2, but a 100% increase was observed on day 5 of oxygen exposure. MnSOD activity was unchanged in cells exposed to hyperoxia for 3 and 5 days. These data suggest that, in human umbilical vein endothelial cells, the regulation of antioxidant enzymes expression in response to O2 is complex and exerted at different levels.
Collapse
Affiliation(s)
- L Jornot
- Respiratory Division, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
18
|
Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K. 'Ischemic tolerance' phenomenon found in the brain. Brain Res 1990; 528:21-4. [PMID: 2245337 DOI: 10.1016/0006-8993(90)90189-i] [Citation(s) in RCA: 847] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the possibility that neuronal cells given a mild ischemic treatment sufficient to perturb the cellular metabolism acquired tolerance to a subsequent, and what would be lethal, ischemic stress in vivo. Cerebral ischemia was produced in the gerbils by occlusion of both common carotids for 5 min, which consistently resulted in delayed neuronal death in the CA1 region of the hippocampus. Minor 2-min ischemia in this model depletes high-energy phosphate compounds and perturbs the protein synthesis, but never causes neuronal necrosis, and therefore was chosen as mild ischemic treatment. Single 2-min ischemia 1 day or 2 days before 5 min ischemia exhibited only partial protective effects against delayed neuronal death. However, two 2-min ischemic treatments at 1 day intervals 2 days before 5 min ischemia exhibited drastically complete protection against neuronal death. The duration and intervals of ischemic treatment, enough to perturb cellular metabolism and cause protein synthesis, were needed respectively, because neither 1-min ischemia nor 2-min ischemia received twice at short intervals exhibited protective effects. This 'ischemic tolerance' phenomenon induced by ischemic stress--which is unquestionably important--and frequent stress in clinical medicine, is intriguing and may open a new approach to investigate the pathophysiology of ischemic neuronal damage.
Collapse
Affiliation(s)
- K Kitagawa
- First Department of Internal Medicine, School of Medicine, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Pulmonary Cu,Zn superoxide dismutase was examined in young (1-month-old), adult (4-5-month-old) and aged (24-months-old) rats to determine if partially inactive forms of the enzyme accumulate in the lung with age. Measurement of Cu,Zn superoxide dismutase activity in lung homogenates showed that total Cu,Zn superoxide dismutase activity/mg DNA was essentially the same in adult and aged rats. The average value of Cu,Zn superoxide dismutase/mg DNA for young rats was less than half that of adult and aged rats. Cu,Zn superoxide dismutase was purified from the lung homogenates and fractionated into isoelectric variants by either isoelectric focusing or chromatofocusing. Three main isoelectric variants of Cu,Zn superoxide dismutase were recovered with pI values of 5.15, 4.88 and 4.75. In all age groups studied, the pI 4.88 variant had a markedly higher specific activity than the other two variants, as well as the highest metal content and greatest resistance to inactivation of all three variants. The pI 4.88 variant declined from 88% of the total Cu,Zn superoxide dismutase activity in the young animals to only 70% in the aged animals. The results of this study indicate that the proportion of the relatively inactive forms of pulmonary Cu,Zn superoxide dismutase increased with age.
Collapse
Affiliation(s)
- H Ischiropoulos
- Department of Pathology, University of California, California College of Medicine, Irvine 92717
| | | | | |
Collapse
|
20
|
Loo CK, Smith GJ, Lykke AW. Effects of hyperoxia on surfactant morphology and cell viability in organotypic cultures of fetal rat lung. Exp Lung Res 1989; 15:597-617. [PMID: 2767005 DOI: 10.3109/01902148909069621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effects of hyperoxia in an organotypic model consisting of well-differentiated fetal rat type 2 pneumocytes have been studied by light and electron microscopy. In cultures exposed to 50% oxygen for 48 h, hyperoxia caused necrosis of cultured lung cells derived from 18- to 19-day gestation fetal rats, less damage in cells derived from 20- to 21-day gestation fetal rats, and no detectable damage of cells derived from newborn rats. After exposure to hyperoxia in organotypic cultures cocultured with fibroblast monolayers, ultrastructural abnormalities of surfactant (large lamellar bodies with disordered lamellae and abnormal shape) were detected in cells from 18- to 19-day gestation fetuses. These abnormalities were not noted when fibroblast monolayers were absent. Fibroblast conditioned medium from fibroblasts exposed to hyperoxia did not cause significant surfactant abnormalities at the ultrastructural level. These changes were less marked in cultures incubated with glutathione's constituent amino acids and with ascorbic acid during exposure to hyperoxia, and in cultures pretreated with dexamethasone (20 nM) before exposure to hyperoxia.
Collapse
Affiliation(s)
- C K Loo
- Carcinogenesis Research Unit, School of Pathology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
21
|
Hass MA, Iqbal J, Clerch LB, Frank L, Massaro D. Rat lung Cu,Zn superoxide dismutase. Isolation and sequence of a full-length cDNA and studies of enzyme induction. J Clin Invest 1989; 83:1241-6. [PMID: 2703531 PMCID: PMC303813 DOI: 10.1172/jci114007] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The synthesis of Cu,Zn SOD by rat lung increases spontaneously in the fetus in late gestation and during exposure of neonatal and adult rats to greater than 95% O2. To explore the regulation of these increases, we measured rat lung Cu,Zn SOD synthesis and activity. We also cloned and sequenced a rat lung Cu,Zn SOD cDNA that was used to measure Cu,Zn SOD mRNA concentration. We found that (a) under normal gestational and postgestational conditions the synthesis of this enzyme was regulated pretranslationally; (b) the increased synthesis that occurs under hyperoxia (greater than 95% O2), was pretranslationally mediated in otherwise unmanipulated neonatal rats but translationally controlled in hyperoxic adult rats; and (c) in lungs of rats made tolerant to greater than 95% O2 by allowing 24 h rest in air after an initial 48 h in greater than 95% O2, the increased Cu,Zn SOD synthesis that occurred during the second period of hyperoxia was regulated pretranslationally. We conclude Cu,Zn SOD gene expression in the lung is developmentally regulated under normal conditions and in response to an oxidant challenge. Tolerance, whether endogenous or induced, appears to require the accumulation of increased amounts of Cu,Zn SOD mRNA.
Collapse
Affiliation(s)
- M A Hass
- Calvin and Flavia Oak Asthma Research and Treatment Facility, University of Miami School of Medicine, Florida 33136
| | | | | | | | | |
Collapse
|
22
|
Betteger WJ, Bray TM. Effect of dietary zinc or copper deficiency on catalase, glutathione peroxidase and superoxide dismutase activities in rat heart. Nutr Res 1989. [DOI: 10.1016/s0271-5317(89)80074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Abstract
Since the discovery of superoxide dismutase in 1969, the role of this enzyme in modulating cellular toxicity of superoxide has been well established. Experimentally, cellular damage from compounds or exposures which produce superoxide extracellularly can be prevented or modified by pretreating a cell or organ system with SOD. Likewise, induction of intracellular SOD by exposing the cell system to various types of nonlethal stress will impart resistance or tolerance to further exposures to oxidant and nonoxidant stresses which would normally be toxic. The differences in intracellular SOD activity based on species, age, and organ variability can have a major impact on the interpretation of toxicology data, particularly extrapolation to human toxicology. An awareness of the importance of SOD to the toxicity of xenobiotics which produce superoxide, either directly or indirectly, will enable those conducting toxicology studies to better understand and interpret their results.
Collapse
Affiliation(s)
- A T Canada
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27714
| | | |
Collapse
|
24
|
Strobel G, Werle E, Helfinger H, Griebel D, Weicker H. Syntheses of the sulfoconjugated isomers of norepinephrine and dopamine, controlled by HPLC with ultraviolet detection. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:397-402. [PMID: 3416878 DOI: 10.1111/j.1432-1033.1988.tb14295.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The physiological significance of sulfoconjugated catecholamines and their involvement in clinical disorders, e.g. hypertension and Parkinsonism, is poorly investigated. For this reason, the sulfoconjugated isomers of dopamine as well as of norepinephrine were synthesized by modified methods. All isomers and their intermediates could be detected by a reversed-phase high-performance liquid chromatography with ultraviolet detection (HPLC-UV) with short retention times and a good reproducibility. Ion-exchange chromatography with an extended column length improved the separation of the reaction products, and the immediate control by HPLC-UV enabled precise cutting of the fractions. The selection of the fractions with the optimum ratios of product/by-product resulted in improved yields and highest purity. All by-products, e.g. dopamine sulfonic acids, were less than 0.04%, as detected by HPLC-UV and, in addition, the contamination by free catecholamines was only 41 x 10(-4)-87 x 10(-4)%, as measured by HPLC with electrochemical detection (HPLC-ED). The purity was further demonstrated in two highly sensitive biological assays: cAMP production in human mononuclear leukocytes and aggregation of human platelets. The sulfoconjugated catecholamines were characterized by melting point, thin-layer chromatography, infrared spectrum, HPLC-UV, elemental analysis, and unequivocally identified by 1H-NMR.
Collapse
Affiliation(s)
- G Strobel
- Department of Pathophysiology and Sports Medicine, University of Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
25
|
Hunter LW, Rorie DK, Yaksh TL, Tyce GM. Concurrent separation of catecholamines, dihydroxyphenylglycol, vasoactive intestinal peptide, and neuropeptide Y in superfusate and tissue extract. Anal Biochem 1988; 173:340-52. [PMID: 3189813 DOI: 10.1016/0003-2697(88)90198-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method is described for separation and quantification of 3,4-dihydroxyphenylglycol (DO-PEG), norepinephrine (NE), dopamine (DA), vasoactive intestinal peptide (VIP), and neuropeptide Y (NPY) from single samples of tissue homogenate and from superfusate from in vitro dog blood vessel preparations using cartridges containing 0.4 g of octadecylsilane (Sep-Pak C-18). Samples were passed through the cartridge at pH 7.4. A step-gradient system was used to first selectively desorb the catechols (DOPEG, NE, DA) with a moderately polar eluent; subsequently VIP and NPY were eluted with 2.5 ml of a mixture of 1% trifluoroacetic acid, 80% acetonitrile. Five Sep-Pak catechol eluents were tested. Catechols were quantified by HPLC with electrochemical detection and peptides by radioimmunoassay. An HPLC solvent system is described which is particularly useful for chromatography of the more hydrophilic catechols DOPEG, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylalanine concurrently with catecholamines. For superfusion studies, sample cleanup time was reduced to about 4 min per sample by attachment of the cartridges directly to the bottom of the superfusion chamber. Superfusate was subsequently pulled through the cartridges immediately after they were passed over the tissue. Batches of 12 high-speed tissue supernates were processed through the method in about 30 min. The method was used to analyze DOPEG, NE, DA, VIP, and NPY in various rat and dog tissues. The values obtained were similar to values obtained previously by other methods. Because the catechols and peptides are separated from a single sample, the method has several advantages over those described previously; e.g., it is rapid, simple, and more sensitive.
Collapse
Affiliation(s)
- L W Hunter
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
26
|
Hass MA, Massaro D. Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)35421-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|