1
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
2
|
Sabbatini ME, Chen X, Ernst SA, Williams JA. Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 2008; 283:23884-94. [PMID: 18577515 PMCID: PMC2527106 DOI: 10.1074/jbc.m800754200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/02/2008] [Indexed: 11/06/2022] Open
Abstract
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III.
Collapse
Affiliation(s)
- Maria E Sabbatini
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA.
| | | | | | | |
Collapse
|
3
|
Faust F, Gomez-Lazaro M, Borta H, Agricola B, Schrader M. Rab8 is Involved in Zymogen Granule Formation in Pancreatic Acinar AR42J Cells. Traffic 2008; 9:964-79. [DOI: 10.1111/j.1600-0854.2008.00739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Chen X, Walker AK, Strahler JR, Simon ES, Tomanicek-Volk SL, Nelson BB, Hurley MC, Ernst SA, Williams JA, Andrews PC. Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics 2005; 5:306-12. [PMID: 16278343 DOI: 10.1074/mcp.m500172-mcp200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen granule (ZG) is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and has been a model for studying secretory granule functions. In an initial effort to comprehensively understand the functions of this organelle, we conducted a proteomic study to identify proteins from highly purified ZG membranes. By combining two-dimensional gel electrophoresis and two-dimensional LC with tandem mass spectrometry, 101 proteins were identified from purified ZG membranes including 28 known ZG proteins and 73 previously unknown proteins, including SNAP29, Rab27B, Rab11A, Rab6, Rap1, and myosin Vc. Moreover several hypothetical proteins were identified that represent potential novel proteins. The ZG localization of nine of these proteins was further confirmed by immunocytochemistry. To distinguish intrinsic membrane proteins from soluble and peripheral membrane proteins, a quantitative proteomic strategy was used to measure the enrichment of intrinsic membrane proteins through the purification process. The iTRAQ ratios correlated well with known or Transmembrane Hidden Markov Model-predicted soluble or membrane proteins. By combining subcellular fractionation with high resolution separation and comprehensive identification of proteins, we have begun to elucidate zymogen granule functions through proteomic and subsequent functional analysis of its membrane components.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen X, Li C, Izumi T, Ernst SA, Andrews PC, Williams JA. Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem Biophys Res Commun 2004; 323:1157-62. [PMID: 15451418 DOI: 10.1016/j.bbrc.2004.08.212] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 12/13/2022]
Abstract
To understand the function of pancreatic zymogen granules, we performed a proteomics analysis to identify ZG membrane components. Here we report the identification of Rab27b through this proteomics study and validate its role in granule function. MALDI-MS peptide mass fingerprint was matched to rat Rab27b with 43% sequence coverage, and the identification was also confirmed by tandem mass spectrometry. The localization of Rab27b on ZGs was confirmed by Western blotting and immunocytochemistry. To examine the function of Rab27b in acinar secretion, we overexpressed wild type and mutant Rab27b protein in pancreatic acini using recombinant adenoviruses. Wild type Rab27b had no effect on amylase secretion, while Rab27b Q78L enhanced, and Rab27b N133I inhibited, CCK-induced amylase release by 92+/-13% and 53+/-8%, respectively. This enhancement and inhibition occurred at all points on the CCK dose-response curve and over a 30min time course. These results demonstrate that Rab27b is present on ZGs and plays an important role in regulating acinar exocytosis.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Caillol N, Pasqualini E, Lloubes R, Lombardo D. Impairment of bile salt-dependent lipase secretion in human pancreatic tumoral SOJ-6 cells. J Cell Biochem 2000; 79:628-47. [PMID: 10996854 DOI: 10.1002/1097-4644(20001215)79:4<628::aid-jcb120>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bile salt-dependent lipase (BSDL) was detected in human SOJ-6 and rat AR4-2J pancreatic cells. Whereas AR4-2J cells actively secreted the enzyme, BSDL was retained within the Golgi compartment of SOJ-6 cells. Because Rab6 is involved in vesicle transport in the Golgi apparatus and the trans-Golgi network, we confirmed the presence of Rab6 in these cells. In rat AR4-2J cells, Rab6 as well as Rab1A/B and Rab2, partitioned between the cytosol and microsomes. In SOJ-6 cells Rab1A/B and Rab2 also partitioned between the cytosol and microsomes, but Rab6 was strictly associated with microsome membranes, suggesting a specific defect of Rab6 cycling in human SOJ-6 cells. The apparent defect of cycling in these cells is not due to the expression of a defective Rab6 since its correct sequence was confirmed. We further demonstrated that AR4-2J and SOJ-6 cells express the Rab-GDIbeta and Rab-GDIalpha isoforms, respectively. However, the sequence of Rab-GDIbeta, which may be the main form expressed by SOJ-6 cells, identified a few substitutions located in regions that are essential for Rab-GDI function. We conclude that the deficient secretion of BSDL by SOJ-6 cells could be due to the expression of defective Rab-GDIbeta. In spite of the alterations in Rab-GDIbeta, membrane proteins such as CD71 and NHE3 were correctly localized to the cell plasma membrane of SOJ-6 cells, suggesting that two functional distinct secretory pathway coexist in pancreatic cells.
Collapse
Affiliation(s)
- N Caillol
- INSERM Unité 260-Faculté de Médecine-Timone, 27 bld Jean Moulin, 13385 Marseille cedex 05 France
| | | | | | | |
Collapse
|
7
|
Sleer LS, Hall PF. Partial characterization of mitochondrial G proteins in adrenal cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:99-106. [PMID: 10631298 DOI: 10.1016/s0005-2736(99)00185-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four low molecular mass G proteins have been identified in mitochondrial membranes from bovine adrenal cortex. These proteins (referred to as proteins 1 to 4) showed molecular masses of 28, 27, 26 and 24 kDa with isoelectric points (pI) of 8.1, 5.6, and 6.3 respectively for proteins 1, 2 and 4. Protein 3 was shown to be heterogeneous, with isoelectric points of 5.0-6.1. Proteins were identified by binding of [alpha-(32)P]guanosine triphosphate (GTP) after separation by 12% SDS-polyacrylamide gel electrophoresis and transfer to nitrocellulose. Competitive binding by unlabelled competing nucleoside phosphate ligands showed specificity for guanosine triphosphate (GTP) and guanosine diphosphate (GDP) with little binding of guanosine monophosphate and no detectable binding with adenosine nucleoside phosphates. Binding was less than 10% with 100-fold excess GDP and GTP which showed equal intensities of binding. Inhibition of binding by 1000-fold cytidine triphosphate and uridine triphosphate was approx. 10%. Magnesium (Mg(2+)) stimulated binding of GTP by all four proteins. The effect of Mg(2+) was essentially the same for proteins 1, 2 and 3, while protein 4 was less sensitive to Mg(2+) at concentrations <10(-3) M. Centrifugation of sonicated mitochondrial membranes through sucrose density gradients showed the presence of all four proteins in contact points. The presence of lower concentrations (expressed per mg protein) of the proteins in inner and outer membranes suggests that either small amounts of these membranes are part of contact points as presently prepared or that the proteins occur in contact points and to a much smaller extent in inner and outer membranes. It is proposed to examine a possible role for these proteins in transport of cholesterol from outer to inner mitochondrial membranes.
Collapse
Affiliation(s)
- L S Sleer
- Department of Endocrinology, Prince of Wales Hospital, Randwick, NSW, Australia.
| | | |
Collapse
|
8
|
Valentijn JA, Jamieson JD. Carboxyl methylation of rab3D is developmentally regulated in the rat pancreas: correlation with exocrine function. Eur J Cell Biol 1998; 76:204-11. [PMID: 9716267 DOI: 10.1016/s0171-9335(98)80035-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several GTPases of the rab family, including rab3A, are methylesterifled on their carboxy-terminal prenylcysteine residue. The significance of this reversible posttranslational modification for the function of rab proteins is unknown, although it has been postulated that carboxyl methylation facilitates the membrane association of prenylated proteins through a hydrophobic mechanism. We here demonstrate, that pancreatic rab3D undergoes developmentally regulated carboxyl methylation concurrently with the maturation of the regulated secretory apparatus in pancreatic acinar cells: in fetal glands, which are refractive to hormone stimulation, the majority of the rab3D protein was methylated, whereas in neonatal and adult glands, which are secretory competent, only 50% was methylated. The methylated form of rab3D was also predominant in a transplantable acinar cell tumor which displays impaired secretory responsiveness and morphological characteristics reminiscent of the fetal pancreas. In addition, treatment of AR42J pancreatic acinar tumor cells with dexamethasone to induce a regulated secretory pathway, led to a significant increase in the size of the unmethylated pool of a rab3-like protein. Strikingly, membrane preparations from adult pancreata and parotid glands contained both methylated and unmethylated forms of rab3D indiscriminately. These results suggest that the acquisition of stimulus-secretion coupling by the exocrine pancreas correlates with the methylation state of rab3D, and that carboxyl methylation plays no significant role in enhancing the membrane association or determining the subcellular distribution of rab3D.
Collapse
Affiliation(s)
- J A Valentijn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
9
|
D'Silva NJ, Jacobson KL, Ott SM, Watson EL. Beta-adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1667-73. [PMID: 9611133 DOI: 10.1152/ajpcell.1998.274.6.c1667] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rap1 has recently been identified on the secretory granule membrane and plasma membrane of rat parotid acinar cells (N. J. D'Silva, D. DiJulio, C. B. Belton, K. L. Jacobson, and E. L. Watson. J. Histochem. Cytochem. 45: 965-973, 1997). In the present study, we examined the cellular redistribution of Rap1 following treatment of acini with isoproterenol (ISO), the beta-adrenergic agonist, and determined the relationship between translocation and amylase release. In the presence of ISO, Rap1 translocated to the cytosol in a concentration- and time-dependent manner; this effect was not mimicked by the muscarinic agonist, carbachol. Translocation was maximal at 1 microM ISO and paralleled amylase release immediately after ISO stimulation. Rap1 translocation and amylase release were blocked by the beta-adrenergic antagonist, propranolol, whereas okadaic acid, a downstream secretory inhibitor, significantly blocked amylase release but did not inhibit Rap1 redistribution. Results suggest that the translocation of Rap1 is causally related to secretion and that the role of Rap1 in secretion is at a site proximal to the exocytotic event.
Collapse
Affiliation(s)
- N J D'Silva
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
10
|
Padfield PJ, Panesar N. The two phases of regulated exocytosis in permeabilized pancreatic acini are modulated differently by heterotrimeric G-proteins. Biochem Biophys Res Commun 1998; 245:332-6. [PMID: 9571150 DOI: 10.1006/bbrc.1998.8350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we examined the influence on AlF4- and GTP gamma S on amylase secretion from alpha toxin permeabilized pancreatic acini. AlF4- only activates heterotrimeric G-proteins, whereas GTP gamma S activates both small ras-like GTP-binding proteins and heterotrimeric G-proteins (Kahn, R. A., J. Biol. Chem., 266, 15595-15597, 1991). GTP gamma S, but not AlF4-, significantly stimulated Ca2(+)-independent amylase secretion, suggesting that a small GTP-binding protein controls regulated exocytosis distal to the site of action of Ca2+. In contrast, both AlF4- and GTP gamma S modulated Ca(2+)-dependent amylase secretion. AlF4- and GTP gamma S stimulated the initial rapid, ATP-independent, phase of Ca(2+)-dependent secretion but inhibited the second slower sustained, ATP-dependent, phase of release. There were significant differences in the GTP gamma S requirements for the stimulation and inhibition of Ca(2+)-dependent amylase secretion, consistent with GTP gamma S activating separate heterotrimeric G-proteins to modulate each phase of the Ca(2+)-dependent secretory response. Our studies also indicated that neither G-protein is a member of the Gi/o class of heterotrimeric G-proteins.
Collapse
Affiliation(s)
- P J Padfield
- Department of Pathology, St. Louis University Health Sciences Center, Missouri 63104, USA.
| | | |
Collapse
|
11
|
Shirai Y, Uno T, Aizono Y. Small GTP-binding proteins in the brain-corpus cardiacum-corpus allatum complex of the silkworm, Bombyx mori: involvement in the secretion of prothoracicotropic hormone. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1998; 38:177-184. [PMID: 9704499 DOI: 10.1002/(sici)1520-6327(1998)38:4<177::aid-arch3>3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
At least three GTP-binding proteins (G-proteins), 28, 25, and 21 kDa, were found in the brain-corpus cardiacum-corpus allatum complex (BR-CC-CA) of the silkworm, Bombyx mori. They bound to GTP and GDP specifically among nucleotides tested, indicating that these proteins are small G-proteins. The 25 kDa G-protein showed a cross-reactivity to anti-rab3A antibody, while it did not cross-react with anti-rhoA, rab3B, and anti-ras antibodies. On the other hand, the 28 and 21 kDa G-proteins showed no cross-reactivity to any of those antibodies tested. Immunoblot analysis using the anti-rab3A antibody demonstrated that the 25 kDa G-protein was detected preferentially in the BR-CC-CA, and to some extent in the suboesophageal ganglion, but not in the salivary gland, fat body, prothoracic gland, and oesophagus. These results suggested that the 25 kDa G-protein was a member of the rab family of G-proteins. Furthermore, 1 mM GTP gamma S capable of activating G-proteins induced BR-CC-CA to release PTTH under the conditions that stimulation of the PTTH release with hetero-trimeric G-protein was suppressed. These results indicated that the small G-proteins may possibly contribute to PTTH release in Bombyx mori.
Collapse
Affiliation(s)
- Y Shirai
- Laboratory of Molecular Pharmacology, Kobe University, Hyogo, Japan.
| | | | | |
Collapse
|
12
|
Ohnishi H, Ernst SA, Yule DI, Baker CW, Williams JA. Heterotrimeric G-protein Gq/11 localized on pancreatic zymogen granules is involved in calcium-regulated amylase secretion. J Biol Chem 1997; 272:16056-61. [PMID: 9188511 DOI: 10.1074/jbc.272.25.16056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The heterotrimeric G-protein Gq/11 was identified on pancreatic acinar zymogen granules and its function in calcium-regulated exocytosis was examined. Western blotting showed alphaq/11, but not alphas or alphao, to be localized to the zymogen granule membrane along with G-protein beta-subunit; all three alpha subunits were present in a plasma membrane fraction and the alphaq/11 signal was 30-fold more enriched in the plasma membrane as compared with granule membrane. Neither CCK receptors nor alpha subunits of the sodium pump, both plasma membrane markers were present on granule membranes. Immunohistochemistry of pancreatic lobules showed that alphaq/11 localized to the zymogen granule-rich apical region of acinar cells together with a much stronger signal at the basolateral plasma membrane. When the substance-P-related peptide GPAnt-2a, an antagonist of Gq/11, was introduced into streptolysin-O permeabilized acini to bypass the plasma membrane, the amylase release induced by 10 microM free calcium was potentiated in a concentration-dependent manner. By contrast, another substance-P-related peptide, GPAnt-1, an antagonist of Go and Gi, showed no effect on calcium-induced amylase release from permeabilized acini. GPAnt-2a peptide also exerted an inhibitory effect on the total GTPase activity of the purified zymogen granules and a larger inhibitory effect on the GTPase activity of the Gq/11 protein immunopurified from zymogen granules. GPAnt-1, however, did not inhibit GTPase activity of either zymogen granules or immunopurified Gq/11. These results suggest that GPAnt-2a peptide augmented calcium-induced amylase release from permeabilized acini by inhibiting GTPase activity of the Gq/11 protein on zymogen granules. We conclude that Gq/11 protein on zymogen granules plays a tonic inhibitory role in calcium-regulated amylase secretion from pancreatic acini.
Collapse
Affiliation(s)
- H Ohnishi
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
13
|
Metz SA, Rabaglia ME, Stock JB, Kowluru A. Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem J 1993; 295 ( Pt 1):31-40. [PMID: 8216234 PMCID: PMC1134816 DOI: 10.1042/bj2950031] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many GTP-binding proteins (GBPs) are modified by mevalonic acid (MVA)-dependent isoprenylation, carboxyl methylation or palmitoylation. The effects of inhibitors of these processes on insulin release were studied. Intact pancreatic islets were shown to synthesize and metabolize MVA and to prenylate several candidate proteins. Culture with lovastatin (to inhibit synthesis of endogenous MVA) caused the accumulation in the cytosol of low-M(r) GBPs (labelled by the [alpha-32P]GTP overlay technique), suggesting a disturbance of membrane association. Concomitantly, lovastatin pretreatment reduced glucose-induced insulin release by about 50%; co-provision of 100-200 microM MVA totally prevented this effect. Perillic acid, a purported inhibitor of the prenylation of small GBPs, also markedly reduced glucose-induced insulin secretion. Furthermore, both N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC), which inhibited the base-labile carboxyl methylation of GBPs in islets or in transformed beta-cells, and cerulenic acid, an inhibitor of protein palmitoylation, also reduced nutrient-induced secretion; an inactive analogue of AFC (which did not inhibit carboxyl methylation in islets) had no effect on secretion. In contrast with nutrients, the effects of agonists that induce secretion by directly activating distal components in signal transduction (such as a phorbol ester or mastoparan) were either unaffected or enhanced by lovastatin or AFC. These data are compatible with the hypothesis that post-translational modifications are required for one or more stimulatory GBPs to promote proximal step(s) in fuel-induced insulin secretion, whereas one or more inhibitory GBPs might reduce secretion at a more distal locus.
Collapse
Affiliation(s)
- S A Metz
- Section of Endocrinology, Middleton Veterans Hospital, Madison, WI
| | | | | | | |
Collapse
|
14
|
Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46822-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Lankat-Buttgereit B, Göke R, Fehmann HC, Niess C, Göke B. Expression of the ras-related rab3a gene in insulinoma-derived cell lines. FEBS Lett 1992; 312:183-6. [PMID: 1330692 DOI: 10.1016/0014-5793(92)80931-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to search for the expression of the small-molecular-weight GTP-binding protein rab3a in endocrine pancreatic cell lines. Total RNA was isolated from five different cell lines (RINm5F, RIN 104836, beta-TC1, HIT-15, and INRI-G9) and from whole rat brain. The expression of rab3a was analyzed by Northern blots. Similar as in brain two transcripts of 1300 and 1800 bp were detected in RIN-cells at low stringency conditions with the predominant signal at 1300 bp. At high stringency the stronger signal was at 1800 bp. When a 300 bp PstI fragment derived from the coding region of rab3a was utilized as probe the 1800 bp signal was predominant under each condition. Only a faint band at 1800 bp occurred in preparations from beta TC1-cells and no signal at all was found in HIT-15 and INRI-G9-cells. In conclusion, rab3a is expressed in rat insulin-releasing insulinoma-derived RIN-cells with a specific 1800 bp transcription product.
Collapse
Affiliation(s)
- B Lankat-Buttgereit
- Laboratory of Molecular Endocrinology, Philipps University of Marburg, Germany
| | | | | | | | | |
Collapse
|