1
|
Shao B, Fu H, Aprahamian I. A molecular anion pump. Science 2024; 385:544-549. [PMID: 39088617 DOI: 10.1126/science.adp3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Pumping ions against a concentration gradient through protein-based transporters is a cornerstone of numerous biological processes. Mimicking this function by using artificial receptors remains a daunting challenge, mainly because of the difficulties in balancing between the requirement for high binding affinities and precise and on-demand ion capture and release properties. We report a trimeric hydrazone photoswitch-based receptor that converts light energy into work by actively transporting chloride anion against a gradient through a dichloromethane liquid membrane, functioning as a molecular pump. The system manifests ease of synthesis, bistability, excellent photoswitching properties, and superb ON-OFF binding properties (difference of up to six orders of magnitude).
Collapse
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
3
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Gene-Transcript Expression in Urine Supernatant and Urine Cell-Sediment Are Different but Equally Useful for Detecting Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030789. [PMID: 36765747 PMCID: PMC9913640 DOI: 10.3390/cancers15030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023] Open
Abstract
There is considerable interest in urine as a non-invasive liquid biopsy to detect prostate cancer (PCa). PCa-specific transcripts such as the TMPRSS2:ERG fusion gene can be found in both urine extracellular vesicles (EVs) and urine cell-sediment (Cell) but the relative usefulness of these and other genes in each fraction in PCa detection has not been fully elucidated. Urine samples from 76 men (PCa n = 40, non-cancer n = 36) were analysed by NanoString for 154 PCa-associated genes-probes, 11 tissue-specific, and six housekeeping. Comparison to qRT-PCR data for four genes (PCA3, OR51E2, FOLH1, and RPLP2) was strong (r = 0.51-0.95, Spearman p < 0.00001). Comparing EV to Cells, differential gene expression analysis found 57 gene-probes significantly more highly expressed in 100 ng of amplified cDNA products from the EV fraction, and 26 in Cells (p < 0.05; edgeR). Expression levels of prostate-specific genes (KLK2, KLK3) measured were ~20× higher in EVs, while PTPRC (white-blood Cells) was ~1000× higher in Cells. Boruta analysis identified 11 gene-probes as useful in detecting PCa: two were useful in both fractions (PCA3, HOXC6), five in EVs alone (GJB1, RPS10, TMPRSS2:ERG, ERG_Exons_4-5, HPN) and four from Cell (ERG_Exons_6-7, OR51E2, SPINK1, IMPDH2), suggesting that it is beneficial to fractionate whole urine prior to analysis. The five housekeeping genes were not significantly differentially expressed between PCa and non-cancer samples. Expression signatures from Cell, EV and combined data did not show evidence for one fraction providing superior information over the other.
Collapse
|
5
|
Abstract
Congenital disorders of glycosylation (CDG) are ultrarare, genetically and clinically heterogeneous metabolic disorders. Although the number of identified CDG is growing rapidly, there are few therapeutic options. Most treatments involve dietary supplementation with monosaccharides or other precursors. These approaches are relatively safe, but in many cases, the molecular and biochemical underpinnings are incomplete. Recent studies demonstrate that yeast, worm, fly, and zebrafish models of CDG are powerful tools in screening repurposed drugs, ushering a new avenue to search for novel therapeutic options. Here we present a perspective on compounds that are currently in use for CDG treatment or have a potential to be applied as therapeutics in the near future.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| |
Collapse
|
6
|
Moseng MA, Su CC, Rios K, Cui M, Lyu M, Glaza P, Klenotic PA, Delpire E, Yu EW. Inhibition mechanism of NKCC1 involves the carboxyl terminus and long-range conformational coupling. SCIENCE ADVANCES 2022; 8:eabq0952. [PMID: 36306358 PMCID: PMC9616490 DOI: 10.1126/sciadv.abq0952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The Na-K-2Cl cotransporter-1 (NKCC1) is an electroneutral Na+-dependent transporter responsible for simultaneously translocating Na+, K+, and Cl- ions into cells. In human tissue, NKCC1 plays a critical role in regulating cytoplasmic volume, fluid intake, chloride homeostasis, and cell polarity. Here, we report four structures of human NKCC1 (hNKCC1), both in the absence and presence of loop diuretic (bumetanide or furosemide), using single-particle cryo-electron microscopy. These structures allow us to directly observe various novel conformations of the hNKCC1 dimer. They also reveal two drug-binding sites located at the transmembrane and cytosolic carboxyl-terminal domains, respectively. Together, our findings enable us to delineate an inhibition mechanism that involves a coupled movement between the cytosolic and transmembrane domains of hNKCC1.
Collapse
Affiliation(s)
- Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kerri Rios
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA 02115, USA
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Przemyslaw Glaza
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Chmiel TA, Gardel ML. Confluence and tight junction dependence of volume regulation in epithelial tissue. Mol Biol Cell 2022; 33:ar98. [PMID: 35731553 PMCID: PMC9582799 DOI: 10.1091/mbc.e22-03-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
Epithelial cell volume regulation is a key component to tissue stability and dynamics. In particular, how cells respond to osmotic stresses is of significant physiological interest in kidney epithelial tissue. For individual mammalian cells, it is well established that Na-K-2Cl cotransporter (NKCC) channels mediate cell volume homeostasis in response to hyperosmotic stress. However, whether mature epithelium responds similarly is not well known. Here we show that while small colonies of madin darby canine kidney (MDCK) epithelial cells behave similarly to single cells and exhibit volume homeostasis that is dependent on the NKCC channel function, mature epithelial tissue does not. Instead, the cell volume decreases by 33% when confluent monolayers or acini formed from MDCK cells are subjected to hyperosmotic stress. We show that the tight junction protein zonula occludins-1 (ZO-1), and Rho-associated kinase (ROCK) are essential for osmotic regulation of cell volume in mature epithelium. Because these both are known to be essential for tight junction assembly, this strongly suggests a role for tight junctions in changing volume response in mature epithelium. Thus, tight junctions act either directly or indirectly in osmotic pressure response of epithelial tissue to suppress volume homeostasis common to isolated epithelial cells.
Collapse
Affiliation(s)
- Theresa A. Chmiel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Margaret L. Gardel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Duong PC, McCabe TC, Riley GF, Holmes HL, Piermarini PM, Romero MF, Gillen CM. Sequence analysis and function of mosquito aeCCC2 and Drosophila Ncc83 orthologs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103729. [PMID: 35150868 PMCID: PMC9012228 DOI: 10.1016/j.ibmb.2022.103729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
Dipteran insects have genes that code for two different Na+-dependent cation-chloride cotransporter (CCC) paralogs. Aedes aegypti aeNKCC1 is an ortholog of Drosophila melanogaster Ncc69, a bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC). Aedes aegypti aeCCC2 and aeCCC3 are orthologs of Drosophila Ncc83. Prior work suggests that the transport properties of aeCCC2 differ from canonical NKCCs. In particular, Xenopus oocytes expressing aeCCC2 have increased Na+-dependent membrane currents compared to controls, whereas NKCCs are electroneutral. Here, we further evaluated the function and localization of aeCCC2 and Ncc83. In oocytes expressing aeCCC2 or Ncc83, membrane potential (Vm) hyperpolarized upon Na+ removal; following hypotonic exposure the change in Vm was greater than it was in controls. In voltage-clamp experiments, membrane currents were concentration dependent on Na+ with an apparent affinity (Km) of approximately 4.6 mM. In Malpighian tubules of larval and adult mosquitoes, aeCCC2 was localized along the basolateral aspect of principal cells. Sequence comparisons among transporters from Drosophila, Aedes, Anopheles, and Culex revealed 33 residues within the transmembrane domains (TMDs) that are fully conserved within paralogs but that differ between orthologs of NKCC1 and orthologs of aeCCC2/Ncc83. These residues are distributed across all 12 TMDs. Our results provide a foundation for further exploration of the structural basis for functional differences between insect Na+-dependent CCCs.
Collapse
Affiliation(s)
- Phu C Duong
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Tobias C McCabe
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Grace F Riley
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Heather L Holmes
- Physiology and Biomedical Engineering, Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | | |
Collapse
|
9
|
Kousovista R, Karali G, Vlasopoulou K, Karalis V. Validation of population pharmacokinetic models: a comparison of internal and external validation approaches for hydrochlorothiazide. Xenobiotica 2021; 51:1372-1388. [PMID: 34842039 DOI: 10.1080/00498254.2021.2012727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Model evaluation is an important issue in population analyses. Our aim was to perform and illustrate metrics and techniques for internal and external evaluation with an application to population pharmacokinetics of hydrochlorothiazide (HCTZ).2. A nonlinear mixed effects model was used to study the pharmacokinetics of HCTZ. In addition, different types of internal assessment tools and external metrics were used for model evaluation. External evaluation was performed using an alternative dataset that included data from an independent group of subjects. For comparison, a previously published population pharmacokinetic model for HCTZ was applied to the same data.3. A two-compartment model with first-order oral absorption using a constant time delay between administration and absorption and first-order elimination best described HCTZ pharmacokinetics. Age had a statistically significant effect on HCTZ clearance. The final model performed adequately in the internal and external assessment tests. The final model showed better predictive performance than the other previously published HCTZ model.4. Finally, a robust population pharmacokinetic model for HCTZ in adults was constructed and validated internally and externally. Incorporating analytical assessment of nonlinear pharmacokinetics into the modelling may be a promising approach to improve the predictive power of the model.
Collapse
Affiliation(s)
- Rania Kousovista
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
| | - Georgia Karali
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece.,Institute of Applied Mathematics and Computational Mathematics, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Katerina Vlasopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vangelis Karalis
- Institute of Applied Mathematics and Computational Mathematics, Foundation of Research and Technology Hellas, Heraklion, Greece.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Ababneh EI, Hassanein M, Saad AM, Cook EE, Ko JS, Fatica RA, Vachharajani TJ, Fernandez AP, Billings SD. Calciphylaxis in uraemic and nonuraemic settings: clinical risk factors and histopathological findings. Clin Exp Dermatol 2021; 47:700-708. [PMID: 34762763 DOI: 10.1111/ced.15009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Calciphylaxis is a life-threatening cutaneous ulcerative/necrotic disease characterized by vascular calcification/occlusion. It occurs most commonly in end-stage kidney disease (ESKD), known as uraemic calciphylaxis (UC) but can also occur in patients with chronic kidney disease (CKD) and normal kidney function (nonuraemic calciphylaxis; NUC). There are few large series of NUC in the literature. AIM To compare the clinicopathological features of UC and NUC. METHODS We retrospectively compared the clinicopathological features of 35 patients with NUC during the period 2010-2020 with those of 53 patients with UC (control group). Cases were classified as NUC in the absence of all of the following: ESKD, significant CKD (defined as serum creatinine > 3 mg/dL or creatinine clearance < 15 mL/min) and acute kidney injury requiring kidney replacement therapy or kidney transplantation. RESULTS NUC represented 40% of the total cases, and there was a higher number of women (P < 0.01) and a higher median body mass index (P = 0.06) compared with the control UC group. Elevated parathyroid hormone was present in 44% of patients with NUC. Most of the tested patients were positive for lupus anticoagulants (56%). NUC biopsies showed a higher rate of extravascular calcium deposits (73% vs. 47%, P = 0.03). Dermal reactive vascular proliferation was the most common dermal change (32%). CONCLUSIONS NUC is more common than previously reported and shows a higher predilection for obese postmenopausal women. Undiagnosed hyperparathyroidism shows a possible association with NUC. Lupus anticoagulants were positive in most patients. NUC biopsies are more likely than UC biopsies to display extravascular calcium deposition.
Collapse
Affiliation(s)
- E I Ababneh
- Department of, Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - M Hassanein
- Department of, Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH, USA.,Department of, Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - A M Saad
- Department of, Dermatology, Cleveland Clinic, Cleveland, OH, USA.,Department of Nephrology and Hypertension, University of Mississippi Medical Center, Mississippi, MO, USA
| | - E E Cook
- Department of, Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - J S Ko
- Department of, Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - R A Fatica
- Department of, Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - T J Vachharajani
- Department of, Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - A P Fernandez
- Department of Pathology, Detroit Medical Center, Detroit, MI, USA
| | - S D Billings
- Department of, Pathology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Guzel S, Cai CL, Aranda JV, Beharry KD. Dose Response of Bumetanide on Aquaporins and Angiogenesis Biomarkers in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia. Pharmaceuticals (Basel) 2021; 14:ph14100967. [PMID: 34681190 PMCID: PMC8538009 DOI: 10.3390/ph14100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular permeability factor, resulting in retinal edema, which is facilitated by AQPs. Bumetanide is a diuretic agent and AQP 1–4 blocker. We tested the hypothesis that bumetanide suppression of AQPs ameliorates intermittent hypoxia (IH)-induced angiogenesis and oxidative stress in human microvascular retinal endothelial cells (HMRECs). HMRECs were treated with a low-dose (0.05 µg/mL) or high-dose (0.2 µg/mL) of bumetanide and were exposed to normoxia (Nx), hyperoxia (50% O2), or IH (50% O2 with brief hypoxia 5% O2) for 24, 48, and 72 h. Angiogenesis and oxidative stress biomarkers were determined in the culture media, and the cells were assessed for tube formation capacity and AQP-1 and -4 expression. Both doses of bumetanide significantly decreased oxidative stress and angiogenesis biomarkers. This response was reflected by reductions in tube formation capacity and AQP expression. These findings confirm the role of AQPs in retinal angiogenesis. Therapeutic targeting of AQPs with bumetanide may be advantageous for IH-induced aberrant retinal development.
Collapse
Affiliation(s)
- Sibel Guzel
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA; (S.G.); (C.L.C.); (J.V.A.)
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
- State University of New York Eye Institute, Brooklyn, NY 11203, USA
- Correspondence: ; Tel.: +1-(718)-270-1475
| |
Collapse
|
12
|
Bazard P, Frisina RD, Acosta AA, Dasgupta S, Bauer MA, Zhu X, Ding B. Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss. Int J Mol Sci 2021; 22:6158. [PMID: 34200434 PMCID: PMC8201059 DOI: 10.3390/ijms22116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Sneha Dasgupta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
14
|
Affiliation(s)
- Chi‐ho To Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wing Kong Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chu‐yan Chan Bsc
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Mohammad Shahidullah Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| | - Chi‐wai Do Phd
- Laboratory of Experimental Optometry, Department of Optometry and Radiography, The Hong Kong Polytechnic University
| |
Collapse
|
15
|
Commander SJ, Wu H, Boakye-Agyeman F, Melloni C, Hornik CD, Zimmerman K, Al-Uzri A, Mendley SR, Harper B, Cohen-Wolkowiez M, Hornik CP. Pharmacokinetics of Hydrochlorothiazide in Children: A Potential Surrogate for Renal Secretion Maturation. J Clin Pharmacol 2021; 61:368-377. [PMID: 33029806 PMCID: PMC8232568 DOI: 10.1002/jcph.1739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Hydrochlorothiazide (HCTZ) is a thiazide diuretic used in adults and children for the treatment of hypertension and edema. The pharmacokinetic (PK) properties of HCTZ in children are not well characterized, particularly among children with obesity who frequently suffer from hypertension and may, therefore, benefit from HCTZ therapy. HCTZ is excreted in the kidney via organic anion transporters 1 and 3 (OAT1 and OAT3). The ontogeny of OAT1 and OAT3 remain unknown, but HCTZ clearance may serve as a surrogate marker of OAT1 and OAT3 maturation. Population PK modeling was performed in NONMEM, and the model was leveraged to conduct dose-exposure simulations. This study examined 83 plasma samples from 49 participants (69% male) taking enteral HCTZ. The median (range) postnatal age was 6.7 years (0.03-19.5 years), and 17 (34%) participants were obese or morbidly obese. The median (range) dose of HCTZ was 0.654 mg/kg (0.11-1.8 kg) and the median number of doses recorded per participant was 5 (1-8). HCTZ PK was well characterized by a 1-compartment PK model. Body weight and a maturation model based on postmenstrual age were significant covariates for apparent clearance, but the presence of obesity was not. Dosing simulations were performed with a standardized 1mg/kg. Simulated exposure (area under the curve and maximum HCTZ concentrations) decreased with age and was likely due to older children receiving the maximum absolute doses of HCTZ. Further studies with more patients in each age group are required to confirm these PK findings of HCTZ in the children.
Collapse
Affiliation(s)
- Sarah Jane Commander
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Huali Wu
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Felix Boakye-Agyeman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chiara Melloni
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chi Dang Hornik
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kanecia Zimmerman
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amira Al-Uzri
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - Susan R Mendley
- Department of Pediatrics and Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Barrie Harper
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christoph P Hornik
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
16
|
Fortea E, Accardi A. A quantitative flux assay for the study of reconstituted Cl - channels and transporters. Methods Enzymol 2021; 652:243-272. [PMID: 34059284 DOI: 10.1016/bs.mie.2021.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The recent deluge of high-resolution structural information on membrane proteins has not been accompanied by a comparable increase in our ability to functionally interrogate these proteins. Current functional assays often are not quantitative or are performed in conditions that significantly differ from those used in structural experiments, thus limiting the mechanistic correspondence between structural and functional experiments. A flux assay to determine quantitatively the functional properties of purified and reconstituted Cl- channels and transporters in membranes of defined lipid compositions is described. An ion-sensitive electrode is used to measure the rate of Cl- efflux from proteoliposomes reconstituted with the desired protein and the fraction of vesicles containing at least one active protein. These measurements enable the quantitative determination of key molecular parameters such as the unitary transport rate, the fraction of proteins that are active, and the molecular mass of the transport protein complex. The approach is illustrated using CLC-ec1, a CLC-type H+/Cl- exchanger as an example. The assay enables the quantitative study of a wide range of Cl- transporting molecules and proteins whose activity is modulated by ligands, voltage, and membrane composition as well as the investigation of the effects of compounds that directly inhibit or activate the reconstituted transport systems. The present assay is readily adapted to the study of transport systems with diverse substrate specificities and molecular characteristics, and the necessary modifications needed are discussed.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Biochemistry, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
17
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
18
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
19
|
Ono D, Honma KI, Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J Neurochem 2020; 157:31-41. [PMID: 32198942 DOI: 10.1111/jnc.15012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
The mammalian central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN contains multiple circadian oscillators which synchronize with each other via several neurotransmitters. Importantly, an inhibitory neurotransmitter, γ-amino butyric acid (GABA), is expressed in almost all SCN neurons. In this review, we discuss how GABA influences circadian rhythms in the SCN. Excitatory and inhibitory effects of GABA may depend on intracellular Cl- concentration, in which several factors such as day-length, time of day, development, and region in the SCN may be involved. GABA also mediates oscillatory coupling of the circadian rhythms in the SCN. Recent genetic approaches reveal that GABA refines circadian output rhythms, but not circadian oscillations in the SCN. Since several efferent projections of the SCN have been suggested, GABA might work downstream of neuronal pathways from the SCN which regulate the temporal order of physiology and behavior.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Abstract
Heart failure and renal insufficiency often coexist in the same patient. Customarily, this condition is described as ‘cardio-renal syndrome’. In this situation mortality increases significantly as the renal dysfunction worsen. Treating these patients is challenging, due to their instability (congestion needs to be controlled, while maintaining, or not worsening, organ perfusion), making in-hospital and mid-term mortality hard to improve. Congestion represent the key characteristic of this syndrome, and its treatment is far from been standardized, considering that the condition represent, still, the first cause of re-hospitalization for these patients. Present treatment should be modified, because barely accounts for renal physiology and is responsible for ‘resistance to diuretics’, which eventually becomes iatrogenic, and non ‘sodium-dependent’ hyponatraemia. It is then important to emphasize the importance of the ‘sequential nephron blockade’, to decrease the number of ‘non-responder’ to diuretics, and the possible role of the ‘acquaretics’.
Collapse
Affiliation(s)
- Gennaro Cice
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Roma, Italy
| |
Collapse
|
21
|
Sabapathy V, Cheru NT, Corey R, Mohammad S, Sharma R. A Novel Hybrid Cytokine IL233 Mediates regeneration following Doxorubicin-Induced Nephrotoxic Injury. Sci Rep 2019; 9:3215. [PMID: 30824764 PMCID: PMC6397151 DOI: 10.1038/s41598-019-39886-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Nardos Tesfaye Cheru
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rebecca Corey
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA.
| |
Collapse
|
22
|
Shen CH, Lin JY, Chang YL, Wu SY, Peng CK, Wu CP, Huang KL. Inhibition of NKCC1 Modulates Alveolar Fluid Clearance and Inflammation in Ischemia-Reperfusion Lung Injury via TRAF6-Mediated Pathways. Front Immunol 2018; 9:2049. [PMID: 30271405 PMCID: PMC6146090 DOI: 10.3389/fimmu.2018.02049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The expression of Na-K-2Cl cotransporter 1 (NKCC1) in the alveolar epithelium is responsible for fluid homeostasis in acute lung injury (ALI). Increasing evidence suggests that NKCC1 is associated with inflammation in ALI. We hypothesized that inhibiting NKCC1 would attenuate ALI after ischemia-reperfusion (IR) by modulating pathways that are mediated by tumor necrosis-associated factor 6 (TRAF6). Methods: IR-ALI was induced by producing 30 min of ischemia followed by 90 min of reperfusion in situ in an isolated and perfused rat lung model. The rats were randomly allotted into four groups comprising two control groups and two IR groups with and without bumetanide. Alveolar fluid clearance (AFC) was measured for each group. Mouse alveolar MLE-12 cells were cultured in control and hypoxia-reoxygenation (HR) conditions with or without bumetanide. Flow cytometry and transwell monolayer permeability assay were carried out for each group. Results: Bumetanide attenuated the activation of p-NKCC1 and lung edema after IR. In the HR model, bumetanide decreased the cellular volume and increased the transwell permeability. In contrast, bumetanide increased the expression of epithelial sodium channel (ENaC) via p38 mitogen-activated protein kinase (p38 MAPK), which attenuated the reduction of AFC after IR. Bumetanide also modulated lung inflammation via nuclear factor-κB (NF-κB). TRAF6, which is upstream of p38 MAPK and NF-κB, was attenuated by bumetanide after IR and HR. Conclusions: Inhibition of NKCC1 by bumetanide reciprocally modulated epithelial p38 MAPK and NF-κB via TRAF6 in IR-ALI. This interaction attenuated the reduction of AFC via upregulating ENaC expression and reduced lung inflammation.
Collapse
Affiliation(s)
- Chih-Hao Shen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jr-Yu Lin
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
23
|
Noor ZN, Deitmer JW, Theparambil SM. Cytosolic sodium regulation in mouse cortical astrocytes and its dependence on potassium and bicarbonate. J Cell Physiol 2018; 234:89-99. [PMID: 30132845 DOI: 10.1002/jcp.26824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Sodium plays a major role in different astrocytic functions, including maintenance of ion homeostasis and uptake of neurotransmitters and metabolites, which are mediated by different Na+ -coupled transporters. In the current study, the role of an electrogenic sodium-bicarbonate cotransporter (NBCe1), a sodium-potassium-chloride transporter 1 (NKCC1) and sodium-potassium ATPase (Na+ -K+ -ATPase) for the maintenance of [Na+ ]i was investigated in cultured astrocytes of wild-type (WT) and of NBCe1-deficient (NBCe1-KO) mice using the Na+ -sensitive dye, asante sodium green-2. Our results suggest that cytosolic Na+ was higher in the presence of CO2 /HCO3 - (15 mM) than CO2 /HCO3 - -free, HEPES-buffered solution in WT, but not in NBCe1-KO astrocytes (12 mM). Surprisingly, there was a strong dependence of cytosolic [Na+ ] on the extracellular [HCO3 - ] attributable to NBCe1 activity. Pharmacological blockage of NKCC1 with bumetanide led to a robust drop in cytosolic Na+ in both WT and NBCe1-KO astrocytes by up to 6 mM. There was a strong dependence of the cytosolic [Na+ ] on the extracellular [K+ ]. Inhibition of the Na+ -K+ -ATPase led to larger increase in cytosolic Na+ , both in the absence of K+ as compared with the presence of ouabain and in NBCe1-KO astrocytes as compared with WT astrocytes. Our results show that cytosolic Na+ in mouse cortical astrocytes can vary considerably and depends greatly on the concentrations of HCO3 - and K+ , attributable to the activity of the Na+ -K+ -ATPase, of NBCe1 and NKCC1.
Collapse
Affiliation(s)
- Zinnia N Noor
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
24
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
25
|
Red blood cells, compasses and snap shots. Blood Cells Mol Dis 2018; 71:67-70. [PMID: 29599084 DOI: 10.1016/j.bcmd.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
|
26
|
Jalali R, Lodder JC, Zandieh-Doulabi B, Micha D, Melvin JE, Catalan MA, Mansvelder HD, DenBesten P, Bronckers A. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice. Front Physiol 2017; 8:924. [PMID: 29209227 PMCID: PMC5702478 DOI: 10.3389/fphys.2017.00924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication.
Collapse
Affiliation(s)
- Rozita Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands.,Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Johannes C Lodder
- Department Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Netherlands
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section, NIDCR/NIH, Bethesda, MD, United States
| | - Marcelo A Catalan
- Secretory Mechanisms and Dysfunction Section, NIDCR/NIH, Bethesda, MD, United States.,Departamento de Ciencias Químicas y Farmaceúticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Huibert D Mansvelder
- Department Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Pamela DenBesten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Antonius Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
28
|
Kim KH, Yeo SG, Yoo BC, Myung JK. Identification of calgranulin B interacting proteins and network analysis in gastrointestinal cancer cells. PLoS One 2017; 12:e0171232. [PMID: 28152021 PMCID: PMC5289589 DOI: 10.1371/journal.pone.0171232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/17/2017] [Indexed: 01/14/2023] Open
Abstract
Calgranulin B is known to be involved in tumor development, but the underlying molecular mechanism is not clear. To gain insight into possible roles of calgranulin B, we screened for calgranulin B-interacting molecules in the SNU-484 gastric cancer and the SNU-81 colon cancer cells. Calgranulin B-interacting partners were identified by yeast two-hybrid and functional information was obtained by computational analysis. Most of the calgranulin B-interacting partners were involved in metabolic and cellular processes, and found to have molecular function of binding and catalytic activities. Interestingly, 46 molecules in the network of the calgranulin B-interacting proteins are known to be associated with cancer and FKBP2 was found to interact with calgranulin B in both SNU-484 and SNU-81 cells. Polyubiquitin-C encoded by UBC, which exhibited an interaction with calgranulin B, has been associated with various molecules of the extracellular space and plasma membrane identified in our screening, including Na-K-Cl cotransporter 1 and dystonin in SNU-484 cells, and ATPase subunit beta-1 in SNU-81 cells. Our data provide novel insight into the roles of calgranulin B of gastrointestinal cancer cells, and offer new clues suggesting calgranulin B acts as an effector molecule through which the cell can communicate with the tumor microenvironment via polyubiquitin-C.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Kyung Myung
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
29
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
30
|
Chatterjee R, Lin PH. Serum calcium and its complex association with incident type 2 diabetes. Am J Clin Nutr 2016; 104:957-958. [PMID: 27629050 PMCID: PMC5039814 DOI: 10.3945/ajcn.116.143321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ranee Chatterjee
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
31
|
Huang X, Dorhout Mees E, Vos P, Hamza S, Braam B. Everything we always wanted to know about furosemide but were afraid to ask. Am J Physiol Renal Physiol 2016; 310:F958-71. [PMID: 26911852 DOI: 10.1152/ajprenal.00476.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Furosemide is a widely used, potent natriuretic drug, which inhibits the Na(+)-K(+)-2Cl(-) cotransporter (NKCC)-2 in the ascending limb of the loop of Henle applied to reduce extracellular fluid volume expansion in heart and kidney disease. Undesirable consequences of furosemide, such as worsening of kidney function and unpredictable effects on sodium balance, led to this critical evaluation of how inhibition of NKCC affects renal and cardiovascular physiology. This evaluation reveals important knowledge gaps, involving furosemide as a drug, the function of NKCC2 (and NKCC1), and renal and systemic indirect effects of NKCC inhibition. Regarding renal effects, renal blood flow and glomerular filtration rate could become compromised by activation of tubuloglomerular feedback or by renin release, particularly if renal function is already compromised. Modulation of the intrarenal renin angiotensin system, however, is ill-defined. Regarding systemic effects, vasodilation followed by nonspecific NKCC inhibition and changes in venous compliance are not well understood. Repetitive administration of furosemide induces short-term (braking phenomenon, acute diuretic resistance) and long-term (chronic diuretic resistance) adaptations, of which the mechanisms are not well known. Modulation of NKCC2 expression and activity in kidney and heart failure is ill-defined. Lastly, furosemide's effects on cutaneous sodium stores and on uric acid levels could be beneficial or detrimental. Concluding, a considerable knowledge gap is identified regarding a potent drug with a relatively specific renal target, NKCC2, and renal and systemic actions. Resolving these questions would increase the understanding of NKCCs and their actions and improve rational use of furosemide in pathophysiology of fluid volume expansion.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Evert Dorhout Mees
- Department of Medicine/Nephrology, Utrecht University, Vorden, The Netherlands
| | - Pieter Vos
- Dianet Dialysis Centers, Utrecht, The Netherlands; and
| | - Shereen Hamza
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Branko Braam
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Hui H, Rao W, Zhang L, Xie Z, Peng C, Su N, Wang K, Wang L, Luo P, Hao YL, Zhang S, Fei Z. Inhibition of Na(+)-K(+)-2Cl(-) Cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling. Neurochem Int 2016; 94:23-31. [PMID: 26854573 DOI: 10.1016/j.neuint.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of mortality and morbidity worldwide and is characterized by immediate brain damage and secondary injuries, such as brain edema and ischemia. However, the exact pathological mechanisms that comprise these associated secondary injuries have not been fully elucidated. This study aimed to investigate the role of the Na(+)-K(+)-2Cl(-) cotransporter-1 (NKCC1) in the disruption of ion homeostasis and neuronal apoptosis in TBI. Using a traumatic neuron injury (TNI) model in vitro and a controlled cortex injury (CCI) model in vivo, the present study investigated changes in the expression and effects of NKCC1 in TBI using western blot, RNA interference, a lactate dehydrogenase (LDH) release assay, TdT-mediated dUTP Nick end-labeling (TUNEL) analysis, sodium imaging, brain water content, and neurological severity scoring. TBI induced the expression of NKCC1 to be significantly upregulated in the cortex, both in vitro and in vivo. Pharmacological inhibitor bumetanide (Bume) or NKCC1 RNA interference significantly attenuated TBI-induced intracellular Na(+) increase, inhibited neuronal apoptosis, and improved brain edema and neurological function. Furthermore, NKCC1 inhibition also significantly inhibited TBI-induced extracellular signal-regulated kinase (Erk) activation. Erk inhibition significantly protected neurons from TBI injury; however, Erk inhibition had no effect on NKCC1 expression or the neuroprotective effect of NKCC1 inhibition against TBI. This study demonstrates the role of NKCC1 in TBI-induced brain cortex injury, establishing that NKCC1 may play a neurotoxic role in TBI and that the inhibition of NKCC1 may protect neurons from TBI via the regulation of Erk signaling.
Collapse
Affiliation(s)
- Hao Hui
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Zhen Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Cheng Peng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ning Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kai Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ye-lu Hao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Sai Zhang
- Department of Neurosurgery, Affiliated Hospital of Logistics, University of Chinese Armed Police Forces, Chenglin Road, Tianjin 300162, PR China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
33
|
Cuomo O, Vinciguerra A, Cerullo P, Anzilotti S, Brancaccio P, Bilo L, Scorziello A, Molinaro P, Di Renzo G, Pignataro G. Ionic homeostasis in brain conditioning. Front Neurosci 2015; 9:277. [PMID: 26321902 PMCID: PMC4530315 DOI: 10.3389/fnins.2015.00277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1–3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+-ATPase (PMCA), the Na+/H+ exchange (NHE), the Na+/K+/2Cl− cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading cause of death and disability. Up until now, all clinical trials testing potential stroke neuroprotectants failed. For this reason attention of researchers has been focusing on the identification of brain endogenous neuroprotective mechanisms activated after cerebral ischemia. In this context, ischemic preconditioning and ischemic post-conditioning represent two neuroprotecive strategies to investigate in order to identify new molecular target to reduce the ischemic damage.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pierpaolo Cerullo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Leonilda Bilo
- Division of Neurology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples Naples, Italy
| |
Collapse
|
34
|
Shrestha S, Park J, Ahn SJ, Kim Y. PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:218-229. [PMID: 25845372 DOI: 10.1002/arch.21238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 .
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Bioresource Sciences, Andong National University, Andong, Korea
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania
| | - Jiyeong Park
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| |
Collapse
|
35
|
Alahmari KA, Prabhakaran H, Prabhakaran K, Chandramoorthy HC, Ramugounder R. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes. Brain Res 2015; 1610:69-79. [PMID: 25817889 DOI: 10.1016/j.brainres.2015.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/07/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p < 0.05 vs. control). NKCC1 inhibitor (bumetanide), NKCC1-siRNA, antioxidants; DMTU, MnTBAP, tempol, catalase and Vit-E, NOS inhibitor; L-NAME, peroxinitrite scavenger; uric acid all significantly reversed the effects of NKCC1 activation (p < 0.05). From the current investigation we infer that manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling.
Collapse
Affiliation(s)
- Khalid A Alahmari
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, PO Box 3236, Abha, Saudi Arabia
| | - Harini Prabhakaran
- Volunteer Summer Research Intern at Department of Pharmacy, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Krishnan Prabhakaran
- Department of Pharmacy and Health Professions, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, Department of Clinical Biochemistry, College of Medicine, King Khalid University, PO Box 3236, Abha, Saudi Arabia
| | - Ramakrishnan Ramugounder
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, PO Box 3236, Abha, Saudi Arabia.
| |
Collapse
|
36
|
Kondo Y, Nakamoto T, Jaramillo Y, Choi S, Catalan MA, Melvin JE. Functional differences in the acinar cells of the murine major salivary glands. J Dent Res 2015; 94:715-21. [PMID: 25680367 DOI: 10.1177/0022034515570943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization.
Collapse
Affiliation(s)
- Y Kondo
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Nakamoto
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Y Jaramillo
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Choi
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M A Catalan
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J E Melvin
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
38
|
Zhang X, Cong D, Shen D, Gao X, Chen L, Hu S. The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts. Lasers Surg Med 2014; 46:422-30. [PMID: 24700489 DOI: 10.1002/lsm.22248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Xufeng Zhang
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Damin Cong
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Dawei Shen
- Department of Neurosurgery; Shouguang City People's Hospital; Weifang 262700 China
| | - Xin Gao
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Lei Chen
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| | - Shaoshan Hu
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150086 China
| |
Collapse
|
39
|
Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2. Front Cell Neurosci 2014; 8:27. [PMID: 24567703 PMCID: PMC3915100 DOI: 10.3389/fncel.2014.00027] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Igor Medina
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Perrine Friedel
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Claudio Rivera
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T. Kahle
- Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's HospitalBoston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Nazim Kourdougli
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of HelsinkiHelsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| |
Collapse
|
40
|
Martos-Sitcha JA, Gregório SF, Carvalho ESM, Canario AVM, Power DM, Mancera JM, Martínez-Rodríguez G, Fuentes J. AVT is involved in the regulation of ion transport in the intestine of the sea bream (Sparus aurata). Gen Comp Endocrinol 2013; 193:221-8. [PMID: 23973797 DOI: 10.1016/j.ygcen.2013.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 11/22/2022]
Abstract
The intestine of marine fish plays a crucial role in ion homeostasis by selective processing of ingested fluid. Although arginine vasotocin (AVT) is suggested to play a role in ion regulation in fish, its action in the intestine has not been demonstrated. Thus, the present study investigated in vitro the putative role of AVT in intestinal ion transport in the sea bream (Sparus aurata). A cDNA encoding part of an AVT receptor was isolated and phylogenetic analysis revealed it clustered with the V1a2-type receptor clade. V1a2 transcripts were expressed throughout the gastrointestinal tract, from esophagus to rectum, and were most abundant in the rectum regardless of long-term exposure to external salinities of 12, 35 or 55p.p.t. Basolateral addition of AVT (10(-6)M) to the anterior intestine and rectum of sea bream adapted to 12, 35 or 55p.p.t. mounted in Ussing chambers produced rapid salinity and region dependent responses in short circuit current (Isc), always in the absorptive direction. In addition, AVT stimulation of absorptive Isc conformed to a dose-response curve, with significant effects achieved at 10(-8)M, which corresponds to physiological values of plasma AVT for this species. The effect of AVT on intestinal Isc was insensitive to the CFTR selective inhibitor NPPB (200μM) applied apically, but was completely abolished in the presence of apical bumetanide (200μM). We propose a role for AVT in the regulation of ion absorption in the intestine of the sea bream mediated by an absorptive bumetanide-sensitive mechanism, likely NKCC2.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Centre of Marine Sciences (CCMar), CIMAR - Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510 Puerto Real (Cádiz), Spain; Instituto de Ciencias Marinas de Andalucía, Consejo Superior Investigaciones Científicas (ICMAN-CSIC), E-11510 Puerto Real (Cádiz), Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Petrezselyova S, Dominguez A, Herynkova P, Macias JF, Sychrova H. Human NKCC2 cation-Cl-co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes. Yeast 2013. [DOI: 10.1002/yea.2976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Silvia Petrezselyova
- Department of Membrane Transport, Institute of Physiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Angel Dominguez
- Department of Microbiology and Genetics, IBSAL, CIETUS; University of Salamanca; Spain
| | - Pavla Herynkova
- Department of Membrane Transport, Institute of Physiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | | | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|
42
|
Abstract
A furosemide-sensitive Na-K-Cl cotransporter (NKCC2 isoform) accounts for almost all luminal NaCl reabsorption in the thick ascending limb of Henle's loop (TALH). The activity of this transport protein is regulated by humoral factors known as cotransport inhibitory factors. One family of these compounds is represented by the urinary phytoestrogens equol and genistein, which inhibit cotransport fluxes at concentrations similar to furosemide. Moreover, they possess salidiuretic potency similar to furosemide in the isolated perfused rat kidney, but are less potent than furosemide (in vivo). Thus, dietary phytoestrogens can be responsible, at least in part, for the low blood pressure of vegetarians.
Collapse
|
43
|
Klingspor S, Martens H, Caushi D, Twardziok S, Aschenbach JR, Lodemann U. Characterization of the effects of Enterococcus faecium on intestinal epithelial transport properties in piglets. J Anim Sci 2013; 91:1707-18. [PMID: 23345556 DOI: 10.2527/jas.2012-5648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotics have been shown to have positive effects on growth performance traits and the health of farm animals. The objective of the study was to examine whether the probiotic strain Enterococcus faecium NCIMB 10415 (E. faecium) changes the absorptive and secretory transport and barrier properties of piglet jejunum in vitro and thereby to verify tendencies observed in a former feeding trial with E. faecium. Further aims were to assess a potential mechanism of probiotics by testing effects of IL-α, which is upregulated in the peripheral blood mononuclear cells of E. faecium-supplemented piglets, and to test the hypothesis that IL-1α induces a change in ion transport. Sows and their piglets were randomly assigned to a control group and a probiotic group supplemented with E. faecium. The sows received the probiotic supplemented feed from d 28 before parturition and the piglets from d 12 after birth. Piglets were killed at the age of 12 ± 1, 26 ± 1, 34 ± 1, and 54 ± 1 d. Ussing chamber studies were conducted with isolated mucosae from the mid jejunum. Samples were taken for mRNA expression analysis of sodium-glucose-linked transporter 1 (SGLT1) and cystic fibrosis transmembrane conductance regulator (CFTR). The Na(+)/glucose cotransport was increased in the probiotic group compared with the control group at 26 (P = 0.04) and 54 d of age (P = 0.01). The PGE2-induced short circuit current (Isc) was greater at 54 d of age in the probiotic group compared with the control group (P = 0.03). In addition, effects of age on the absorptive (P < 0.01) and secretory (P < 0.01) capacities were observed. Neither SGLT1 nor CFTR mRNA expression was changed by probiotic supplementation. Mannitol flux rates as a marker of paracellular permeability decreased in both groups with increasing age and were less in the probiotic group at the 26 d of age (P = 0.04), indicating a tighter intestinal barrier. The ΔIsc induced by IL-1α was inhibited by bumetanide (P < 0.01), indicating an induction of Cl(-) secretion. Thus, in this experimental setup, E. faecium increased the absorptive and secretory capacity of jejunal mucosae and enhanced the intestinal barrier. Furthermore, the results indicated that IL-1α induces bumetanide-sensitive chloride secretion. The effects of cytokines as potential mediators of probiotic effects should, therefore, be the subject of further studies.
Collapse
Affiliation(s)
- S Klingspor
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Petrezselyova S, Kinclova-Zimmermannova O, Sychrova H. Vhc1, a novel transporter belonging to the family of electroneutral cation-Cl(-) cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:623-31. [PMID: 23022132 DOI: 10.1016/j.bbamem.2012.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022]
Abstract
Cation-Cl(-) cotransporters (CCCs) are integral membrane proteins which catalyze the coordinated symport of Cl(-) with Na(+) and/or K(+) ions in plant and mammalian cells. Here we describe the first Saccharomyces cerevisiae CCC protein, encoded by the YBR235w open reading frame. Subcellular localization studies showed that this yeast CCC is targeted to the vacuolar membrane. Deletion of the YBR235w gene in a salt-sensitive strain (lacking the plasma-membrane cation exporters) resulted in an increased sensitivity to high KCl, altered vacuolar morphology control and decreased survival upon hyperosmotic shock. In addition, deletion of the YBR235w gene in a mutant strain deficient in K(+) uptake produced a significant growth advantage over the parental strain under K(+)-limiting conditions, and a hypersensitivity to the exogenous K(+)/H(+) exchanger nigericin. These results strongly suggest that we have identified a novel yeast vacuolar ion transporter mediating a K(+)-Cl(-) cotransport and playing a role in vacuolar osmoregulation. Considering its identified function, we propose to refer to the yeast YBR235w gene as VHC1 (vacuolar protein homologous to CCC family 1).
Collapse
Affiliation(s)
- Silvia Petrezselyova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | |
Collapse
|
45
|
Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F1143-59. [PMID: 21900458 DOI: 10.1152/ajprenal.00396.2011] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
46
|
Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem 2011; 117:437-48. [PMID: 21306384 DOI: 10.1111/j.1471-4159.2011.07211.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). An important early component of the edema associated with TBI is astrocyte swelling (cytotoxic edema). Mechanisms for such swelling, however, are poorly understood. Ion channels/transporters/exchangers play a major role in cell volume regulation, and a disturbance in one or more of these systems may result in cell swelling. To examine potential mechanisms in TBI-mediated brain edema, we employed a fluid percussion model of in vitro barotrauma and examined the role of the ion transporter Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) in trauma-induced astrocyte swelling as this transporter has been strongly implicated in the mechanism of cell swelling in various neurological conditions. Cultures exposed to trauma (3, 4, 5 atm pressure) caused a significant increase in NKCC1 activity (21%, 42%, 110%, respectively) at 3 h. At 5 atm pressure, trauma significantly increased NKCC1 activity at 1 h and it remained increased for up to 3 h. Trauma also increased the phosphorylation (activation) of NKCC1 at 1 and 3 h. Inhibition of MAPKs and oxidative/nitrosative stress diminished the trauma-induced NKCC1 phosphorylation as well as its activity. Bumetanide, an inhibitor of NKCC1, significantly reduced the trauma-induced astrocyte swelling (61%). Silencing NKCC1 with siRNA led to a reduction in trauma-induced NKCC1 activity as well as in cell swelling. These findings demonstrate the critical involvement of NKCC1 in the astrocyte swelling following in vitro trauma, and suggest that blocking NKCC1 activity may represent a useful therapeutic strategy for the cytotoxic brain edema associated with the early phase of TBI.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kong XQ, Gao XH, Sun W, An J, Zhao YX, Zhang H. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1. PLANT MOLECULAR BIOLOGY 2011; 75:567-78. [PMID: 21369877 DOI: 10.1007/s11103-011-9744-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 01/21/2011] [Indexed: 05/05/2023]
Abstract
Potassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K--Cl- cotransporters than to other cation-Cl- cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl- contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl- than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl- transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl- homeostasis and rice plant development.
Collapse
Affiliation(s)
- Xiang-Qiang Kong
- Kay Laborarory of Plant Stress Research, School of Life Science, Shandong Normal University, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 2011; 54:272-8. [PMID: 21056502 DOI: 10.1016/j.jhep.2010.06.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/15/2010] [Accepted: 06/28/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Astrocyte swelling and brain edema associated with increased intracranial pressure are major complications of acute liver failure (ALF). The mechanism for such astrocyte swelling/brain edema, however, is not well understood. We recently found that ammonia, a key etiological factor in ALF, caused the activation of the Na-K-Cl cotransporter-1 (NKCC1) in cultured astrocytes, and that inhibition of such activation led to a reduction in astrocyte swelling, suggesting that NKCC1 activation may be an important factor in the mechanism of brain edema in ALF. To determine whether NKCC activation is also involved in brain edema in vivo, we examined whether NKCC activation occurs in the thioacetamide (TAA) rat model of ALF and determined whether treatment with the NKCC inhibitor bumetanide reduces the severity of brain edema in TAA-treated rats. METHODS Brain water content was measured using the gravimetric method. NKCC1 phosphorylation and protein expression were measured by Western blots. NKCC activity was measured in brain cortical slices. RESULTS NKCC activity was elevated in brain cortical slices of TAA-treated rats as compared to sham animals. Western blot analysis showed significant increases in total as well as phosphorylated (activated) NKCC1 protein expression in the cortical tissue. These findings were associated with a significant increase in brain water content which was attenuated by treatment with the NKCC inhibitor bumetanide. CONCLUSIONS Our studies suggest the involvement of NKCC in the development of brain edema in experimental ALF, and that targeting NKCC may represent a useful therapeutic strategy in humans with ALF.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, University of Miami, School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
49
|
|
50
|
Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care 2010; 13:123-31. [PMID: 20458553 DOI: 10.1007/s12028-010-9376-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The Na(+)-K(+)-2Cl(-) cotransporter localized in the brain vascular endothelium has been shown to be important in the evolution of cerebral edema following experimental stroke. Previous in vivo studies have demonstrated that bumetanide, a selective Na(+)-K(+)-2Cl(-) cotransport inhibitor, attenuates ischemia-evoked cerebral edema. Recently, bumetanide has been shown to also inhibit water permeability via aquaporin-4 (AQP4) expressed in Xenopus laevis oocytes. We tested the hypothesis that the perivascular pool of AQP4 plays a significant role in the anti-edema effect of bumetanide by utilizing wild-type (WT) mice as well as mice with targeted disruption of alpha-syntrophin (alpha-Syn(-/-)) that lack the perivascular pool of AQP4. METHODS Isoflurane-anesthetized adult male WT C57Bl6 and alpha-Syn(-/-) mice were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by 24 or 48 h of reperfusion. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios), and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments. RESULTS Bumetanide significantly attenuated infarct volume and decreased ipsilateral hemispheric water content in WT mice compared to vehicle treatment. In alpha-Syn(-/-) mice, bumetanide treatment had no effect on infarct volume or ischemia-evoked cerebral edema. Bumetanide-treated WT mice had a significant attenuation of AQP4 protein expression at 48 h post-MCAO compared to vehicle-treated WT mice. CONCLUSIONS These data suggest that bumetanide exerts its neuroprotective and anti-edema effects partly via blockade of the perivascular pool of AQP4 and may have therapeutic potential for ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Elton R Migliati
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|