1
|
Vardjan N, Horvat A, Anderson JE, Yu D, Croom D, Zeng X, Lužnik Z, Kreft M, Teng YD, Kirov SA, Zorec R. Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma. Glia 2016; 64:1034-49. [PMID: 27018061 DOI: 10.1002/glia.22981] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica, BIOMEDICAL, Tehnološki park 24, Ljubljana, 1000, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Jamie E Anderson
- Departments of Neurosurgery and Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts
| | - Dou Yu
- Departments of Neurosurgery and Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts
| | - Deborah Croom
- Brain and Behaviour Discovery Institute, Medical College of Georgia, Augusta, Georgia.,Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia
| | - Xiang Zeng
- Departments of Neurosurgery and Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts
| | - Zala Lužnik
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| | - Marko Kreft
- Celica, BIOMEDICAL, Tehnološki park 24, Ljubljana, 1000, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Yang D Teng
- Departments of Neurosurgery and Physical Medicine & Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Division of SCI Research, VA Boston Healthcare System, Boston, Massachusetts
| | - Sergei A Kirov
- Brain and Behaviour Discovery Institute, Medical College of Georgia, Augusta, Georgia.,Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia
| | - Robert Zorec
- Celica, BIOMEDICAL, Tehnološki park 24, Ljubljana, 1000, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana, 1000, Slovenia
| |
Collapse
|
2
|
Degradation of the LDL receptors by PCSK9 is not mediated by a secreted protein acted upon by PCSK9 extracellularly. BMC Cell Biol 2007; 8:9. [PMID: 17328821 PMCID: PMC1820596 DOI: 10.1186/1471-2121-8-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 03/01/2007] [Indexed: 01/11/2023] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) post-transcriptionally degrades the low density lipoprotein receptors (LDLR). However, it is unknown whether PCSK9 acts directly on the LDLR or if PCSK9 activates another protein that in turn causes degradation of the LDLR. Results We have transiently transfected HepG2 cells with wild-type and mutant D374Y-PCSK9 plasmids to study the effect of the conditioned medium on the LDLR of untransfected HepG2 cells. The ability of the conditioned medium to reduce the internalization of LDL was abolished by removal of recombinant PCSK9 from the conditioned medium by affinity chromatography. Thus, PCSK9 is the only factor in the conditioned medium able to mediate degradation of the LDLR. Moreover, fractionation of the conditioned medium by gel filtration showed that the ability of the fractions to reduce the internalization of LDL, closely paralleled the amount of D374Y-PCSK9 in the fractions. Incubation of a secreted, truncated LDLR without cytoplasmic and transmembrane domains, as well as membrane fractions from HepG2 cells, with conditioned medium containing PCSK9, did not reduce the amount of LDLR as determined by western blot analysis. Thus, the LDLR is not degraded by PCSK9 on the cell surface. The LDLR of HepG2 cells incubated with conditioned medium was protected from PCSK9-mediated degradation by the addition of nocodazole or ammonium chloride, but was not protected when the conditioned medium was made hypertonic. These findings indicate that the intracellular degradation of the LDLR involves intracellular transport along microtubules, an acidic intracellular compartment and that it occurs even when endocytosis through clathrin-coated pits has been blocked. Conclusion Degradation of the LDLR by PCSK9 is not mediated by a secreted protein acted upon by PCSK9 extracellularly. Also the PCSK9-mediated degradation of the LDLR does not take place on the cell surface. Rather, the PCSK9-mediated degradation of the LDLR appears to take place intracellularly and occurs even when endocytosis through clathrin-coated pits is blocked by hypertonic medium.
Collapse
|
3
|
Grewal JS, Luttrell LM, Raymond JR. G Protein-coupled Receptors Desensitize and Down-regulate Epidermal Growth Factor Receptors in Renal Mesangial Cells. J Biol Chem 2001; 276:27335-44. [PMID: 11371570 DOI: 10.1074/jbc.m103578200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different types of plasma membrane receptors engage in various forms of cross-talk. We used cultures of rat renal mesangial cells to study the regulation of EGF receptors (EGFRs) by various endogenous G protein-coupled receptors (GPCRs). GPCRs (5-hydroxytryptamine(2A), lysophosphatidic acid, angiotensin AT(1), bradykinin B(2)) were shown to transactivate EGFRs through a protein kinase C-dependent pathway. This transactivation resulted in the initiation of multiple cellular signals (phosphorylation of the EGFRs and ERK and activation of cAMP-responsive element-binding protein (CREB), NF-kappaB, and E2F), as well as subsequent rapid down-regulation of cell-surface EGFRs and internalization and desensitization of the EGFRs without change in the total cellular complement of EGFRs. Internalization of the EGFRs and the down-regulation of cell-surface receptors in mesangial cells were blocked by pharmacological inhibitors of clathrin-mediated endocytosis and in HEK293 cells by transfection of cDNA constructs that encode dominant negative beta-arrestin-1 or dynamin. Whereas all of the effects of GPCRs on EGFRs were dependent to a great extent on protein kinase C, those initiated by EGF were not. These studies demonstrate that GPCRs can induce multiple signals through protein kinase C-dependent transactivation of EGFRs. Moreover, GPCRs induce profound desensitization of EGFRs by a process associated with the loss of cell-surface EGFRs through clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- J S Grewal
- Nephrology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
4
|
Bayer N, Schober D, Hüttinger M, Blaas D, Fuchs R. Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. J Biol Chem 2001; 276:3952-62. [PMID: 11073943 DOI: 10.1074/jbc.m004722200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Minor group human rhinoviruses (exemplified by human rhinovirus serotype 2 (HRV2)) use members of the low density lipoprotein receptor family for cell entry; all these receptors possess clathrin-coated pit localization signals. Viral infection should thus be inhibited under conditions of impaired clathrin-mediated endocytosis. However, Madshus et al. reported an increase in the cytopathic effect of HRV2 infection in HEp-2 cells upon suppression of clathrin-dependent endocytosis by hypotonic shock and potassium depletion (Madshus, I. H., Sandvig, K., Olsnes, S., and van Deurs, B. (1987) J. Cell. Physiol. 131, 14-22.) To resolve this apparent contradiction, we investigated the binding, internalization, conformational changes, and productive uncoating of HRV2 in HeLa cells subjected to hypotonic shock and potassium depletion. This treatment led to an increase in HRV2 binding, with internalization being barely affected. The generation of C-antigenic particles requiring pH </=5.6 was strongly reduced due to an elevation of the pH in endosomal compartments. However, K(+) depletion only slightly affected de novo viral protein synthesis, suggesting that productivity of viral RNA in the cytoplasm is enhanced and thus compensates for the reduction in C-antigenic particles. The distinct steps in the entry pathway of HRV2 are thus differently influenced by potassium depletion. Viral internalization under conditions of inhibited clathrin-dependent endocytosis without the need to disturb the ionic milieu was confirmed in HeLa cells overexpressing the nonfunctional dynamin-1 mutant K44A. Unexpectedly, overexpression of dynamin-1 K44A resulted in elevated endosomal pH compared with overexpression of wild-type dynamin.
Collapse
Affiliation(s)
- N Bayer
- Departments of Pathophysiology and Medical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
5
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1275] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|