1
|
Choueiri CM, Lau J, O'Connor E, DiBattista A, Wong BY, Spendiff S, Horvath R, Pena I, MacKenzie A, Lochmüller H. Development of a riboflavin-responsive model of riboflavin transporter deficiency in zebrafish. Hum Mol Genet 2024:ddae171. [PMID: 39656631 DOI: 10.1093/hmg/ddae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare and progressive neurodegenerative disease resulting from the disruption of RFVT2- and RFVT3- mediated riboflavin transport caused by biallelic mutations in SLC52A2 and SLC52A3, respectively. The resulting impaired mitochondrial metabolism leads to sensorimotor neurodegeneration and symptoms including muscle weakness, respiratory difficulty, and sensorineural deafness. Although over 70% of patients with RTD improve following high-dose riboflavin supplementation, remaining patients either stabilise or continue to deteriorate. This may be due to the rapid excretion of central nervous system (CNS) riboflavin by organic anion transporter 3 (OAT-3), highlighting the need for alternative or supplemental RTD treatments. Probenecid is a promising therapeutic candidate for RTD due to its known inhibitory effect on OAT-3. Therefore, this study aimed to generate morpholino-mediated knockdowns of human SLC52A3 ortholog slc52a3 in zebrafish larvae for use in therapeutic screening of riboflavin and probenecid. Knockdown of slc52a3 resulted in an RTD-like phenotype indicative of altered neurodevelopment, hearing loss, and reduced mobility. This RTD-like phenotype overlaps with the phenotype of CRISPR/Cas9-mediated knockout of slc52a3 in zebrafish, is maintained following slc52a3 morpholino + p53 morpholino co-injection, and is rescued following slc52a3 morpholino + human SLC52A3 mRNA co-injection, indicating specificity of the knockdown. Riboflavin treatment alone ameliorates locomotor activity and hearing ability in slc52a3 morphants. Riboflavin and probenecid co-treatment provides an additional small benefit to hearing but not to locomotion. Our findings demonstrate that this model recapitulates both the RTD phenotype and the riboflavin-responsiveness of RTD patients, and possible therapeutic benefit conferred by probenecid warrants further investigation.
Collapse
Affiliation(s)
- Catherine M Choueiri
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Jarred Lau
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Brittany Y Wong
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Izabella Pena
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Alexander MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa K1Y 4E9, Canada
- Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
- Centro Nacional de Análisis Genómico, Carrer Baldiri Reixac, 4, Barcelona Science Park - Tower I, Barcelona 08028, Spain
| |
Collapse
|
2
|
Bartmann L, Schumacher D, von Stillfried S, Sternkopf M, Alampour-Rajabi S, van Zandvoort MAMJ, Kiessling F, Wu Z. Evaluation of Riboflavin Transporters as Targets for Drug Delivery and Theranostics. Front Pharmacol 2019; 10:79. [PMID: 30787877 PMCID: PMC6372557 DOI: 10.3389/fphar.2019.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
The retention and cellular internalization of drug delivery systems and theranostics for cancer therapy can be improved by targeting molecules. Since an increased uptake of riboflavin was reported for various cancers, riboflavin and its derivatives may be promising binding moieties to trigger internalization via the riboflavin transporters (RFVT) 1, 2, and 3. Riboflavin is a vitamin with pivotal role in energy metabolism and indispensable for cellular growth. In previous preclinical studies on mice, we showed the target-specific accumulation of riboflavin-functionalized nanocarriers in cancer cells. Although the uptake mechanism of riboflavin has been studied for over a decade, little is known about the riboflavin transporters and their expression on cancer cells, tumor stroma, and healthy tissues. Furthermore, evidence is lacking concerning the representativeness of the preclinical findings to the situation in humans. In this study, we investigated the expression pattern of riboflavin transporters in human squamous cell carcinoma (SCC), melanoma and luminal A breast cancer samples, as well as in healthy skin, breast, aorta, and kidney tissues. Low constitutive expression levels of RFVT1-3 were found on all healthy tissues, while RFVT2 and 3 were significantly overexpressed in melanoma, RFVT1 and 3 in luminal A breast cancer and RFVT1-3 in SCC. Correspondingly, the SCC cell line A431 was highly positive for all RFVTs, thus qualifying as suitable in vitro model. In contrast, activated endothelial cells (HUVEC) only presented with a strong expression of RFVT2, and HK2 kidney cells only with a low constitutive expression of RFVT1-3. Functional in vitro studies on A431 and HK2 cells using confocal microscopy showed that riboflavin uptake is mostly ATP dependent and primarily driven by endocytosis. Furthermore, riboflavin is partially trafficked to the mitochondria. Riboflavin uptake and trafficking was significantly higher in A431 than in healthy kidney cells. Thus, this manuscript supports the hypothesis that addressing the riboflavin internalization pathway may be highly valuable for tumor targeted drug delivery.
Collapse
Affiliation(s)
- Lisa Bartmann
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | | | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Marc A M J van Zandvoort
- Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany.,Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases (CARIM), School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Zhuojun Wu
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, Schinkel AH. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 2006; 27:1247-53. [PMID: 17145775 PMCID: PMC1800714 DOI: 10.1128/mcb.01621-06] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The multidrug transporter breast cancer resistance protein (BCRP/ABCG2) is strongly induced in the mammary gland during pregnancy and lactation. We here demonstrate that BCRP is responsible for pumping riboflavin (vitamin B(2)) into milk, thus supplying the young with this important nutrient. In Bcrp1(-/-) mice, milk secretion of riboflavin was reduced >60-fold compared to that in wild-type mice. Yet, under laboratory conditions, Bcrp1(-/-) pups showed no riboflavin deficiency due to concomitant milk secretion of its cofactor flavin adenine dinucleotide, which was not affected. Thus, two independent secretion mechanisms supply vitamin B(2) equivalents to milk. BCRP is the first active riboflavin efflux transporter identified in mammals and the first transporter shown to concentrate a vitamin into milk. BCRP activity elsewhere in the body protects against xenotoxins by reducing their absorption and mediating their excretion. Indeed, Bcrp1 activity increased excretion of riboflavin into the intestine and decreased its systemic availability in adult mice. Surprisingly, the paradoxical dual utilization of BCRP as a xenotoxin and a riboflavin pump is evolutionarily conserved among mammals as diverse as mice and humans. This study establishes the principle that an ABC transporter can transport a vitamin into milk and raises the possibility that other vitamins and nutrients are likewise secreted into milk by ABC transporters.
Collapse
Affiliation(s)
- Antonius E van Herwaarden
- Division of Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
5
|
Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 2004; 84:987-1049. [PMID: 15269342 DOI: 10.1152/physrev.00040.2003] [Citation(s) in RCA: 299] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organic cations and anions (OCs and OAs, respectively) constitute an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. Renal secretion of these compounds, which occurs principally along the proximal portion of the nephron, plays a critical role in regulating their plasma concentrations and in clearing the body of potentially toxic xenobiotics agents. The transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. It is increasingly apparent that basolateral and luminal OC and OA transport reflects the concerted activity of a suite of separate transport processes arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney now allows the development of models describing the molecular basis of the renal secretion of OCs and OAs. This review examines recent work on this issue, with particular emphasis on attempts to integrate information concerning the activity of cloned transporters in heterologous expression systems to that observed in studies of physiologically intact renal systems.
Collapse
Affiliation(s)
- Stephen H Wright
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|