1
|
Delta-6-desaturase Links Polyunsaturated Fatty Acid Metabolism With Phospholipid Remodeling and Disease Progression in Heart Failure. Circ Heart Fail 2014; 7:172-83. [DOI: 10.1161/circheartfailure.113.000744] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Saini-Chohan HK, Dakshinamurti S, Taylor WA, Shen GX, Murphy R, Sparagna GC, Hatch GM. Persistent pulmonary hypertension results in reduced tetralinoleoyl-cardiolipin and mitochondrial complex II + III during the development of right ventricular hypertrophy in the neonatal pig heart. Am J Physiol Heart Circ Physiol 2011; 301:H1415-24. [PMID: 21841017 DOI: 10.1152/ajpheart.00247.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) results in right ventricular (RV) hypertrophy followed by right heart failure and an associated mitochondrial dysfunction. The phospholipid cardiolipin plays a key role in maintaining mitochondrial respiratory and cardiac function via modulation of the activities of enzymes involved in oxidative phosphorylation. In this study, changes in cardiolipin and cardiolipin metabolism were investigated during the development of right heart failure. Newborn piglets (<24 h old) were exposed to a hypoxic (10% O(2)) environment for 3 days, resulting in the induction of PPHN. Two sets of control piglets were used: 1) newborn or 2) exposed to a normoxic (21% O(2)) environment for 3 days. Cardiolipin biosynthetic and remodeling enzymes, mitochondrial complex II + III activity, incorporation of [1-(14)C]linoleoyl-CoA into cardiolipin precursors, and the tetralinoleoyl-cardiolipin pool size were determined in both the RV and left ventricle (LV). PPHN resulted in an increased heart-to-body weight ratio, RV-to-LV plus septum weight ratio, and expression of brain naturetic peptide in RV. In addition, PPHN reduced cardiolipin biosynthesis and remodeling in the RV and LV, which resulted in decreased tetralinoleoyl-cardiolipin levels and reduced complex II + III activity and protein levels of mitochondrial complexes II, III, and IV in the RV. This is the first study to examine the pattern of cardiolipin metabolism during the early development of both the RV and LV of the newborn piglet and to demonstrate that PPHN-induced alterations in cardiolipin biosynthetic and remodeling enzymes contribute to reduced tetralinoleoyl-cardiolipin and mitochondrial respiratory chain function during the development of RV hypertrophy. These defects in cardiolipin may play an important role in the rapid development of RV dysfunction and right heart failure in PPHN.
Collapse
Affiliation(s)
- Harjot K Saini-Chohan
- Department of Pharmacology and Therapeutics, Manitoba Institute of Child Health, Winnepeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
4
|
Saini-Chohan HK, Holmes MG, Chicco AJ, Taylor WA, Moore RL, McCune SA, Hickson-Bick DL, Hatch GM, Sparagna GC. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res 2008; 50:1600-8. [PMID: 19001357 DOI: 10.1194/jlr.m800561-jlr200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.
Collapse
Affiliation(s)
- Harjot K Saini-Chohan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Cardiac hypertrophy, congestive heart failure, diabetic cardiomyopathy and myocardial ischemia-reperfusion injury are associated with a disturbance in cardiac sarcolemmal membrane phospholipid homeostasis. The contribution of the different phospholipases and their related signaling mechanisms to altered function of the diseased myocardium is not completely understood. Resolution of this issue is essential for both the understanding of the pathophysiology of heart disease and for determining if components of the phospholipid signaling pathways could serve as appropriate therapeutic targets. This review provides an outline of the role of phospholipase A2, C and D and subsequent signal transduction mechanisms in different cardiac pathologies with a discussion of their potential as targets for drug development for the prevention/treatment of heart disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre & Departments of Human Anatomy & Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
6
|
Burgdorf C, Prey A, Richardt G, Kurz T. A HPLC-fluorescence detection method for determination of phosphatidic acid phosphohydrolase activity: application in human myocardium. Anal Biochem 2007; 374:291-7. [PMID: 18023403 DOI: 10.1016/j.ab.2007.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/15/2007] [Accepted: 10/30/2007] [Indexed: 11/13/2022]
Abstract
Phosphatidic acid phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) to diacylglycerol, the second messenger responsible for activation of protein kinase C. Despite the crucial role of PAP lipid signaling, there are no data on PAP signaling function in the human heart. Here we present a nonradioactive assay for the investigation of PAP activity in human myocardium using a fluorescent derivative of PA, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphate (BODIPY-PA), as substrate in an in vitro PAP-catalyzed reaction. Unreacted BODIPY-PA was resolved from the PAP products by a binary gradient HPLC system and BODIPY-diacylglycerol was detected by fluorimetry. The reaction proceeded at a linear rate for up to 60 min and increased linearly with increasing amounts of cardiac protein in a range of 0.25 to 8.0 microg. This assay proved to be sensitive for accurate quantitation of total PAP activity, PAP-1 activity, and PAP-2 activity in human atrial tissue and right ventricular endomyocardial biopsies. Total PAP activity was approximately fourfold higher in ventricular myocardium than in atrial tissue. There was negligible PAP-1 activity in atrial myocardium compared with ventricular myocardium, indicating regional differences in activities and distribution pattern of PAP-1 and PAP-2 in the human heart.
Collapse
Affiliation(s)
- Christof Burgdorf
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, 23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
7
|
Swift L, McHowat J, Sarvazyan N. Anthracycline-induced phospholipase A2 inhibition. Cardiovasc Toxicol 2007; 7:86-91. [PMID: 17652810 PMCID: PMC3031855 DOI: 10.1007/s12012-007-0012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The purpose of this essay is to overview our findings that membrane-associated calcium-independent phospholipase A2 is markedly inhibited by low, clinically relevant concentrations of anthracyclines. Our studies suggest that due to the essential role of this enzyme in membrane homeostasis, its inhibition can be one of the early culprits leading to anthracycline-induced cardiac dysfunction. The clinical importance and potential pharmaceutical use of this new phenomenon await further studies.
Collapse
Affiliation(s)
- Luther Swift
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Narine Sarvazyan
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| |
Collapse
|
8
|
Tappia PS. Phospholipid-mediated signaling systems as novel targets for treatment of heart disease. Can J Physiol Pharmacol 2007; 85:25-41. [PMID: 17487243 DOI: 10.1139/y06-098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phospholipases associated with the cardiac sarcolemmal (SL) membrane hydrolyze specific membrane phospholipids to generate important lipid signaling molecules, which are known to influence normal cardiac function. However, impairment of the phospholipases and their related signaling events may be contributory factors in altering cardiac function of the diseased myocardium. The identification of the changes in such signaling systems as well as understanding the contribution of phospholipid-signaling pathways to the pathophysiology of heart disease are rapidly emerging areas of research in this field. In this paper, I provide an overview of the role of phospholipid-mediated signal transduction processes in cardiac hypertrophy and congestive heart failure, diabetic cardiomyopathy, as well as in ischemia-reperfusion. From the cumulative evidence presented, it is suggested that phospholipid-mediated signal transduction processes could serve as novel targets for the treatment of the different types of heart disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada
| |
Collapse
|
9
|
Levick SP, Loch DC, Taylor SM, Janicki JS. Arachidonic Acid Metabolism as a Potential Mediator of Cardiac Fibrosis Associated with Inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 178:641-6. [PMID: 17202322 DOI: 10.4049/jimmunol.178.2.641] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An increase in left ventricular collagen (cardiac fibrosis) is a detrimental process that adversely affects heart function. Strong evidence implicates the infiltration of inflammatory cells as a critical part of the process resulting in cardiac fibrosis. Inflammatory cells are capable of releasing arachidonic acid, which may be further metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 monooxygenase enzymes to biologically active products, including PGs, leukotrienes, epoxyeicosatrienoic acids, and hydroxyeicosatetraenoic acids. Some of these products have profibrotic properties and may represent a pathway by which inflammatory cells initiate and mediate the development of cardiac fibrosis. In this study, we critically review the current literature on the potential link between this pathway and cardiac fibrosis.
Collapse
Affiliation(s)
- Scott P Levick
- Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
10
|
White MC, McHowat J. Protease activation of calcium-independent phospholipase A2 leads to neutrophil recruitment to coronary artery endothelial cells. Thromb Res 2006; 120:597-605. [PMID: 17188740 PMCID: PMC2170458 DOI: 10.1016/j.thromres.2006.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/18/2006] [Accepted: 11/14/2006] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Thrombin or tryptase cleavage of protease-activated receptors (PAR) on human coronary artery endothelial cells (HCAEC) results in activation of a membrane-associated, calcium-independent phospholipase A2 (iPLA2) that selectively hydrolyzes plasmalogen phospholipids. Atherosclerotic plaque rupture results in a coronary ischemic event in which HCAEC in the ischemic area would be exposed to increased thrombin concentrations in addition to tryptase released by activated mast cells present in the plaque. MATERIALS AND METHODS HCAEC were stimulated with thrombin or tryptase in the absence or presence of bromoenol lactone (BEL), a selective iPLA2 inhibitor, and iPLA2 activation, accumulation of biologically active membrane phospholipid-derived metabolites, upregulation of cell surface P-selectin expression and neutrophil adherence were measured. RESULTS HCAEC exposed to thrombin or tryptase stimulation demonstrated an increase in iPLA2 activity and arachidonic acid release. Additionally, stimulated HCAEC demonstrated increased platelet-activating factor (PAF) production and cell surface P-selectin expression, resulting in increased adhesion of neutrophils to HCAEC monolayers. Pretreatment with bromoenol lactone to inhibit iPLA2, blocked membrane phospholipid-derived metabolite production, increased cell surface P-selectin expression and neutrophil adherence. CONCLUSIONS The similar biochemical and cellular responses in HCAEC exposed to thrombin or tryptase stimulation suggest that the cleavage of two separate PAR serve to extend the range of proteases to which the cells respond rather than resulting in separate intracellular events. This suggests that in conditions such as thrombosis and atherosclerosis that multiple mechanisms can activate the inflammatory response.
Collapse
Affiliation(s)
- Maureen C White
- Saint Louis University School of Medicine, Department of Pathology, 1402 S. Grand, St. Louis, MO 63104, United States.
| | | |
Collapse
|
11
|
Tappia PS, Singal T, Dent MR, Asemu G, Mangat R, Dhalla NS. Phospholipid-mediated signaling in diseased myocardium. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.6.701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Levick S, Loch D, Rolfe B, Reid RC, Fairlie DP, Taylor SM, Brown L. Antifibrotic activity of an inhibitor of group IIA secretory phospholipase A2 in young spontaneously hypertensive rats. THE JOURNAL OF IMMUNOLOGY 2006; 176:7000-7. [PMID: 16709861 DOI: 10.4049/jimmunol.176.11.7000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of fibrosis in the chronically hypertensive heart is associated with infiltration of inflammatory cells and cardiac hypertrophy. In this study, an inhibitor of the proinflammatory enzyme, group IIA human secretory phospholipase A2 (sPLA2-IIA), has been found to prevent collagen deposition as an important component of cardiovascular remodeling in a rat model of developing chronic hypertension. Daily treatment of young male spontaneously hypertensive rats (SHR) with an sPLA2-IIA inhibitor (KH064, 5-(4-benzyloxyphenyl)-4S-(phenyl-heptanoylamino)-pentanoic acid, 5 mg/kg/day p.o.) prevented increases in the content of perivascular (SHR 20.6 +/- 0.9%, n = 5; SHR+KH064 14.0 +/- 1.2%, n = 5) and interstitial (SHR 7.9 +/- 0.3%, n = 6; SHR+KH064 5.4 +/- 0.7%, n = 6) collagen in the left ventricle of rat hearts, but did not affect numbers of infiltrating monocytes/macrophages, left ventricular hypertrophy (SHR 2.88 +/- 0.08, n = 12; SHR+KH064 3.09 +/- 0.08 mg/g body weight, n = 9), increased systolic blood pressure, or thoracic aortic responses. This selective antifibrotic activity suggests that sPLA2-IIA may have an important but specific role in cardiac fibrosis, and that its inhibitors could be useful in dissecting molecular pathways leading to fibrotic conditions.
Collapse
Affiliation(s)
- Scott Levick
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Saavedra G, Zhang W, Peterson B, Cummings BS. Differential Roles for Cytosolic and Microsomal Ca2+-Independent Phospholipase A2in Cell Growth and Maintenance of Phospholipids. J Pharmacol Exp Ther 2006; 318:1211-9. [PMID: 16763094 DOI: 10.1124/jpet.106.105650] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Physiological roles of microsomal (iPLA(2)gamma) and cytosolic (iPLA(2)beta)Ca(2+)-independent phospholipase A(2) were determined in two different epithelial cell models. R- and S-enantiomers of the iPLA(2) inhibitor bromoenol lactone (BEL) were isolated and shown to selectively inhibit iPLA(2gamma) and iPLA(2beta), respectively. The effect of these enantiomers on cell growth was assessed in human embryonic kidney 293 and Caki-1 cells using 3-(4-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT). S-BEL (0-5.0 microM) decreased MTT staining 35% after 24 h compared with control cells, whereas treatment with either R-BEL or R/S-BEL induced 15% decreases. Neither R-BEL nor S-BEL induced cell death as determined by annexin V and propidium iodide staining. Transfection of cells with iPLA(2)beta siRNA reduced MTT staining approximately 35%, whereas transfection of cells with iPLA(2)gamma siRNA only decreased MTT staining 10 to 15% compared with control cells. The effect of iPLA(2)beta and iPLA(2)gamma siRNA on cell number and protein was also determined, and iPLA(2)beta siRNA decreased cell number and protein 25% compared with control cells. In contrast, iPLA(2)gamma siRNA decreased cell number, but not cellular protein, compared with control cells. Selective inhibition of iPLA(2)beta, but not iPLA(2)gamma, decreased several arachidonic acid-containing phospholipids, including 16:1-20:4, 16:0-20:4, 18:1-20:4, and 18:0-20:4 phosphatidylcholine, showing that the ability of iPLA(2)beta inhibitors to decrease cell growth correlates with their ability to decrease arachidonic acid-containing phospholipids. These data show that iPLA(2)beta inhibition results in greater decreases in cell growth and proliferation than iPLA(2)gamma, identifies specific phospholipids whose expressions are differentially regulated by iPLA(2)beta and iPLA(2)gamma, and suggests novel roles for iPLA(2)beta in cell growth.
Collapse
Affiliation(s)
- Geraldine Saavedra
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
14
|
Beckett CS, Pennington K, McHowat J. Activation of MAPKs in thrombin-stimulated ventricular myocytes is dependent on Ca2+-independent PLA2. Am J Physiol Cell Physiol 2006; 290:C1350-4. [PMID: 16338969 DOI: 10.1152/ajpcell.00487.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombin stimulation of isolated rabbit ventricular myocytes activates a membrane-associated, Ca2+-independent PLA2(iPLA2) that selectively hydrolyzes plasmalogen phospholipids and results in increased production of arachidonic acid and lysoplasmenylcholine. To determine whether MAPK regulates myocardial iPLA2activity, we isolated ventricular myocytes from rabbit heart by collagenase digestion and pretreated them with MAPK inhibitors before stimulating them with thrombin. Pretreatment with PD-98059 to inhibit p42/44 MAPK or SB-203580 to inhibit p38 MAPK had no significant effect on thrombin-stimulated, membrane-associated iPLA2activity. Thrombin stimulation resulted in significant increases in both p42/44 and p38 MAPK activity after 2 min. Pretreatment with the iPLA2-selective inhibitor bromoenol lactone completely inhibited thrombin-stimulated MAPK activity, suggesting that activation of MAPKs was dependent on iPLA2activation. Ventricular myocyte MAPK activity was increased by incubation of the myocytes with lysoplasmenylcholine, a metabolite produced by iPLA2-catalyzed membrane plasmalogen phospholipid hydrolysis. Altogether, these data suggest that activation of MAPKs occurs downstream of and is dependent on iPLA2activation in thrombin-stimulated rabbit ventricular myocytes.
Collapse
Affiliation(s)
- Caroline S Beckett
- Department of Pathology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
15
|
Zhang L, Peterson BL, Cummings BS. The effect of inhibition of Ca2+-independent phospholipase A2 on chemotherapeutic-induced death and phospholipid profiles in renal cells. Biochem Pharmacol 2005; 70:1697-706. [PMID: 16226224 DOI: 10.1016/j.bcp.2005.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/22/2022]
Abstract
We demonstrate that cells derived from primary cultures of rabbit proximal tubules (RPTC), human embryonic kidney (HEK293) and human kidney carcinomas (Caki-1) express microsomal Ca(2+)-independent phospholipase A(2) (iPLA(2)gamma) and cytosolic Ca(2+)-independent phospholipase A(2) (iPLA(2)beta). Inhibition of iPLA(2) activity in these cells using the iPLA(2) inhibitor bromoenol lactone (BEL) (0-5.0microM) for 24h did not induce cell death as determined by annexin V and propidium iodide (PI) staining. However, BEL treatment prior to cisplatin (50muM) or vincristine (2microM) exposure reduced apoptosis 30-50% in all cells tested (RPTC, HEK293 and Caki-1 cells). To identify the phospholipids altered during cell death electrospray ionization-mass spectrometry and lipidomic analysis of HEK293 and Caki-1 cells was performed. Cisplatin treatment reduced 14:0-16:0 and 16:0-16:0 phosphatidylcholine (PtdCho) 50% and 35%, respectively, in both cell lines, 16:0-18:2 PtdCho in Caki-1 cells and increased 16:1-22:6 plasmenylcholine (PlsCho). BEL treatment prior to cisplatin exposure further decreased 14:0-16:0 PtdCho, 16:0-16:1 PlsCho and 16:0-18:1 PlsCho in HEK293 cells, and inhibited cisplatin-induced increases in 16:1-22:6 PlsCho in Caki-1 cells. Treatment of cells with BEL prior to cisplatin exposure also increased the levels of several arachidonic containing phospholipids including 16:0-20:4, 18:1-20:4, and 18:0-20:4 PtdCho, compared to cisplatin only treated cells. These data demonstrate that inhibition of iPLA(2) protects against chemotherapeutic-induced cell death in multiple human renal cell models, identifies specific phospholipids whose levels are altered during cell death, and demonstrates that alterations in these phospholipids correlate to the protection against cell death in the presence of iPLA(2) inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
16
|
Pavoine C, Defer N. The cardiac beta2-adrenergic signalling a new role for the cPLA2. Cell Signal 2005; 17:141-52. [PMID: 15494206 DOI: 10.1016/j.cellsig.2004.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/01/2004] [Accepted: 09/01/2004] [Indexed: 01/08/2023]
Abstract
The cardiac actions of catecholamines have long been attributed to the predominant beta(1)-AR subtype that couples to the classical Gs/AC/cAMP pathway. Recent research clearly indicates that cardiac beta(2)-ARs play a functional role in healthy heart and assume increasing importance in failing and aged heart. beta(2)-ARs are primarily coupled to an atypical compartmentalized cAMP pathway, regulated by phosphorylation and/or oligomerization of beta(2)-ARs, and under the control of additional beta(2)-AR/Gi-coupled lipidic pathways, the impact of which seems to vary depending on the animal species, the developmental and pathophysiological state. This review focuses, more especially, on one of the last identified beta(2)-AR/Gi pathway, namely the cPLA(2).
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Cardiotonic Agents/pharmacology
- Caveolae/metabolism
- Caveolae/physiology
- Cyclic AMP/metabolism
- Dimerization
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Group IV Phospholipases A2
- Heart/drug effects
- Heart/physiology
- Humans
- Isoenzymes/chemistry
- Isoenzymes/physiology
- Models, Cardiovascular
- Myocardium/enzymology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Phospholipases A/chemistry
- Phospholipases A/physiology
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Signal Transduction/physiology
- Species Specificity
- Ventricular Dysfunction/metabolism
- Ventricular Dysfunction/physiopathology
Collapse
|
17
|
Dent MR, Singal T, Dhalla NS, Tappia PS. Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. J Cell Mol Med 2005; 8:526-36. [PMID: 15601581 PMCID: PMC6740262 DOI: 10.1111/j.1582-4934.2004.tb00477.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The phospholipase D (PLD) associated with the cardiac sarcolemmal (SL) membrane hydrolyses phosphatidylcholine to produce phosphatidic acid, an important phospholipid signaling molecule known to influence cardiac function. The present study was undertaken to examine PLD isozyme mRNA expression, protein contents and activities in congestive heart failure (CHF) subsequent to myocardial infarction (MI). MI was induced in rats by occlusion of the left anterior descending coronary artery. At 8 weeks after the surgical procedure, hemodynamic assessment revealed that these experimental rats were at a moderate stage of CHF. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that PLD1 and PLD2 mRNA amounts were unchanged in viable left ventricular (LV) tissue of the failing heart. Furthermore, this technique demonstrated the presence of PLD1 and PLD2 mRNA in the scar tissue. While SL PLD1 and PLD2 protein contents were elevated in the viable LV tissue of the failing heart, SL PLD1 activity was significantly decreased, whereas SL PLD2 activity was significantly increased. On the other hand, although PLD1 protein was undetectable, PLD2 protein and activity were detected in the scar tissue. Our findings suggest that differential changes in PLD isozymes may contribute to the pathophysiology of CHF and may also be involved in the processes of scar remodeling.
Collapse
Affiliation(s)
- Melissa R Dent
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, Manitoba, Canada, R2H 2A6
| | | | | | | |
Collapse
|
18
|
McHowat J, Swift LM, Crown KN, Sarvazyan NA. Changes in phospholipid content and myocardial calcium-independent phospholipase A2 activity during chronic anthracycline administration. J Pharmacol Exp Ther 2004; 311:736-41. [PMID: 15295018 DOI: 10.1124/jpet.104.069419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite numerous investigations, the causes underlying anthracycline cardiomyopathy are yet to be established. We have recently reported that acute treatment with anthracyclines inhibits membrane-associated calcium-independent phospholipase A(2) (iPLA(2)) activity both in vitro and in vivo. This study presents data that iPLA(2) activity is also suppressed during chronic drug administration. Adult Sprague-Dawley rats were given weekly 1 mg/kg i.v. injections of doxorubicin for a total of 8 weeks. One week after the last injection, the animals were sacrificed, and heart tissue was assessed for phospholipid content and iPLA(2) activity. Membrane-associated iPLA(2) activity in the myocardium of doxorubicin-treated animals was 40% lower than that in control hearts. In addition, doxorubicin treatment resulted in significant alterations in the distribution of fatty acyl moieties esterified to the sn-2 position of choline glycerophospholipids. The ethanolamine species remained unaffected. Elevation in the amount of arachidonate and linoleate esterified to the sn-2 position of choline plasmalogens was consistent with the hypothesis that iPLA(2) displays selectivity for plasmalogen phospholipids; therefore, enzyme inhibition may affect hydrolysis of these phospholipid subclasses. Notably, the changes in phospholipid content occurred at a low cumulative dose of 8 mg/kg at which appearance of structural lesions was minimal. Therefore, these alterations seem to be both specific and early signs of cardiomyocyte pathology. The results support our hypothesis that myocardial iPLA(2) inhibition may be one of the steps that leads to the functional and structural changes associated with chronic anthracycline treatment.
Collapse
Affiliation(s)
- Jane McHowat
- Department of Physiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
19
|
Dent MR, Dhalla NS, Tappia PS. Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 2004; 287:H719-27. [PMID: 15072958 DOI: 10.1152/ajpheart.01107.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volume overload due to arteriovenous (AV) shunt results in cardiac hypertrophy followed by the progression to heart failure. The phosphoinositide phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to 1,2-diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate (IP(3)), which are known to influence cardiac function. Therefore, we examined the time course of changes in DAG and IP(3) as well as PLC isozyme gene expression, protein content, and activities in cardiac hypertrophy and heart failure induced by AV shunt in Sprague-Dawley rats by the needle technique. An increase in the left ventricle (LV)-to-body weight ratio demonstrated that LV hypertrophy was established at 4 wk after the induction of the shunt. PLC-beta(1) activity was increased two- and sevenfold at 3 days and 1 and 2 wk after the induction of volume overload, respectively. These changes were associated with increases in the mRNA and sarcolemmal (SL) protein content; however, no changes in PLC-beta(1) were detected at 4 wk. On the other hand, a significant increase in PLC-gamma(1) activity as well as mRNA and SL protein was seen at 3 days and 4 wk. A progressive decrease in PLC-delta(1) activity with concomitant reductions in the gene expression and SL protein abundance was detected during 1 to 4 wk. Activity of gamma(1)- and delta(1)-isozymes was significantly depressed during the 8- and 16-wk time points, whereas beta(1)-isozyme was increased significantly during these time points. A progressive decrease in the SL PIP(2) content was observed during cardiac hypertrophy and heart failure. Our findings indicate that PLC isozyme signaling processes are increased in hypertrophy and decreased in heart failure due to volume overload.
Collapse
Affiliation(s)
- Melissa R Dent
- Department of Physiology, Faculty of Medicine, St Boniface General Hospital Research Centre University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | |
Collapse
|
20
|
Yu CH, Panagia V, Tappia PS, Liu SY, Takeda N, Dhalla NS. Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:65-72. [PMID: 12213494 DOI: 10.1016/s1388-1981(02)00270-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phospholipase D 2 (PLD2) is the major PLD isozyme associated with the cardiac sarcolemmal (SL) membrane. Hydrolysis of SL phosphatidylcholine (PC) by PLD2 produces phosphatidic acid (PA), which is then converted to 1,2 diacylglycerol (DAG) by the action of phosphatidate phosphohydrolase type 2 (PAP2). In view of the role of both PA and DAG in the regulation of Ca(2+) movements and the association of abnormal Ca(2+) homeostasis with congestive heart failure (CHF), we examined the status of both PLD2 and PAP2 in SL membranes in the infarcted heart upon occluding the left coronary artery in rats for 1, 2, 4, 8 and 16 weeks. A time-dependent increase in both SL PLD2 and PAP2 activities was observed in the non-infarcted left ventricular tissue following myocardial infarction (MI); however, the increase in PAP2 activity was greater than that in PLD2 activity. Furthermore, the contents of both PA and PC were reduced, whereas that of DAG was increased in the failing heart SL membrane. Treatment of the CHF animals with imidapril, an angiotensin-converting enzyme (ACE) inhibitor, attenuated the observed changes in heart function, SL PLD2 and PAP2 activities, as well as SL PA, PC and DAG contents. The results suggest that heart failure is associated with increased activities of both PLD2 and PAP2 in the SL membrane and the beneficial effect of imidapril on heart function may be due to its ability to prevent these changes in the phospholipid signaling molecules in the cardiac SL membrane.
Collapse
Affiliation(s)
- Chang-Hua Yu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|