1
|
DiLeo MR, Hall RE, Vellers HL, Daniels CL, Levitt DE. Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. Int J Mol Sci 2024; 25:12280. [PMID: 39596345 PMCID: PMC11594450 DOI: 10.3390/ijms252212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Bioenergetic pathways uniquely support sarcomere function which, in turn, helps to maintain functional skeletal muscle (SKM) mass. Emerging evidence supports alcohol (EtOH)-induced bioenergetic impairments in SKM and muscle precursor cells. We performed a scoping review to synthesize existing evidence regarding the effects of EtOH on SKM bioenergetics. Eligible articles from six databases were identified, and titles, abstracts, and full texts for potentially relevant articles were screened against inclusion criteria. Through the search, we identified 555 unique articles, and 21 met inclusion criteria. Three studies investigated EtOH effects on the adenosine triphosphate (ATP)-phosphocreatine (PCr) system, twelve investigated EtOH effects on glycolytic metabolism, and seventeen investigated EtOH effects on mitochondrial metabolism. Despite increased ATP-PCr system reliance, EtOH led to an overall decrease in bioenergetic function through decreased expression and activity of glycolytic and mitochondrial pathway components. However, effects varied depending on the EtOH dose and duration, model system, and sample type. The results detail the EtOH-induced shifts in energy metabolism, which may adversely affect sarcomere function and contribute to myopathy. These findings should be used to develop targeted interventions that improve SKM bioenergetic function, and thus sarcomere function, in people with Alcohol Use Disorder (AUD). Key areas in need of further investigation are also identified.
Collapse
Affiliation(s)
- Matthew R. DiLeo
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Rylea E. Hall
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Heather L. Vellers
- Mitochondrial Biology and Endurance Trainability Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Chelsea L. Daniels
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Danielle E. Levitt
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| |
Collapse
|
2
|
Costa PA, Everett NA, Turner AJ, Umpierrez LS, Baracz SJ, Cornish JL. Adolescent alcohol binge drinking and withdrawal: behavioural, brain GFAP-positive astrocytes and acute methamphetamine effects in adult female rats. Psychopharmacology (Berl) 2024; 241:1539-1554. [PMID: 38705893 PMCID: PMC11269403 DOI: 10.1007/s00213-024-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
RATIONALE Alcopop beverages are generally the first alcoholic beverage that young females drink which contain high levels of sugar and alcohol. The over-consumption of these drinks may encourage alcohol co-administration with methamphetamine (METH) impacting on drinking behaviour and glial function. AIMS The aims of this study were to evaluate the effect of adolescent binge alcohol exposure on consumption level, anxiety-like behaviour, cross-sensitization with METH and on astrocyte expression in reward related brain regions. METHODS Adolescent female Sprague-Dawley rats had daily 1-hour oral alcohol consumption of alcopop (ALCP; with sucrose) or ethanol-only (ETOH; without sucrose), transitioned from 5 to 15% (v/v) ethanol content for 34 days. Water and sucrose groups act as controls. During alcohol withdrawal, rats were tested for anxiety on the elevated plus maze (EPM) and locomotor activity following saline or METH (1 mg/kg i.p) treatment. Brains were then collected to assess astrocyte immunofluorescence for glial fibrillary acidic protein (GFAP) in reward-related brain regions. RESULTS Rats pretreated with 5% ALCP consumed significantly more volume and ethanol intake when compared to 5% EtOH rats. Both ALCP and EtOH groups had a higher preference ratio for 5% than 15% alcohol solutions and ALCP rats had greater ethanol intake at 15% than EtOH rats. Alcohol withdrawal showed no significant differences between groups on anxiety, METH cross-sensitization effects or GFAP intensity in the regions studied. CONCLUSIONS Overall, the addition of sucrose to alcoholic solutions encouraged female rats to consume larger volumes and greater ethanol intake compared to ethanol-only solutions, yet did not have long lasting effects on behaviour and astrocytes.
Collapse
Affiliation(s)
- Priscila A Costa
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Nicholas A Everett
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Anita J Turner
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Laísa S Umpierrez
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Sarah J Baracz
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Jennifer L Cornish
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Tice AL, Steiner JL. Binge alcohol induces NRF2-related antioxidant response in the skeletal muscle of female mice. Biochem Biophys Res Commun 2024; 714:149968. [PMID: 38657445 DOI: 10.1016/j.bbrc.2024.149968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Tice AL, Gordon BS, Fletcher E, McNeill AG, Laskin GR, Laudato JA, Rossetti ML, Koutakis P, Steiner JL. Effects of chronic alcohol intoxication on aerobic exercise-induced adaptations in female mice. J Appl Physiol (1985) 2024; 136:721-738. [PMID: 38357729 DOI: 10.1152/japplphysiol.00599.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic alcohol intoxication decreases muscle strength/function and causes mitochondrial dysfunction. Aerobic exercise training improves mitochondrial oxidative capacity and increases muscle mass and strength. Presently, the impact of chronic alcohol on aerobic exercise-induced adaptations was investigated. Female C57BL/6Hsd mice were randomly assigned to one of four groups: control sedentary (CON SED; n = 26), alcohol sedentary (ETOH SED; n = 27), control exercise (CON EX; n = 28), and alcohol exercise (ETOH EX; n = 25). Exercise mice had running wheel access for 2 h a day, 7 days a week. All mice were fed either control or an alcohol-containing liquid diet. Grip strength testing and EchoMRI were performed before and after the interventions. After 6 wk, hindlimb muscles were collected for molecular analyses. A subset of mice performed a treadmill run to fatigue (RTF), then abstained from alcohol for 2 wk and repeated the RTF. Alcohol decreased lean mass and forelimb grip strength compared with control-fed mice. Alcohol blunted the exercise-induced increase in muscle mass (plantaris and soleus), type IIa fiber percentage in the plantaris, and run time to fatigue. Mitochondrial markers (Citrate synthase activity and Complex I-IV, COXIV and Cytochrome C protein expression) were increased with exercise regardless of ETOH in the gastrocnemius but not tibialis anterior muscle. Two weeks of alcohol abstinence improved RTF time in ETOH EX but not in ETOH SED. These data suggest that alcohol impairs some exercise-induced adaptations in skeletal muscle, but not all were negatively affected, indicating that exercise may be a beneficial behavior even while consuming alcohol.NEW & NOTEWORTHY Alcohol consumption during an aerobic exercise training period prevented training-induced increases in run to fatigue time and grip strength. Cessation of alcohol allowed for recovery of endurance performance within 2 wk. The worsened exercise performance after alcohol was unrelated to impairments in markers of mitochondrial health. Therefore, some adaptations to exercise training are impaired with alcohol use (endurance performance, muscle growth, and strength), while others remain mostly unaffected (mitochondrial health).
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Addison G McNeill
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Grant R Laskin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Joseph A Laudato
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michael L Rossetti
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | | | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
5
|
Levitt DE, Bourgeois BL, Rodríguez-Graciani KM, Molina PE, Simon L. Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. Int J Mol Sci 2024; 25:2448. [PMID: 38397125 PMCID: PMC10888832 DOI: 10.3390/ijms25042448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alcohol misuse and HIV independently induce myopathy. We previously showed that chronic binge alcohol (CBA) administration, with or without simian immunodeficiency virus (SIV), decreases differentiation capacity of male rhesus macaque myoblasts. We hypothesized that short-term alcohol and CBA/SIV would synergistically decrease differentiation capacity and impair bioenergetic parameters in female macaque myoblasts. Myoblasts from naïve (CBA-/SIV-), vehicle [VEH]/SIV, and CBA/SIV (N = 4-6/group) groups were proliferated (3 days) and differentiated (5 days) with 0 or 50 mM ethanol (short-term). CBA/SIV decreased differentiation and increased non-mitochondrial oxygen consumption rate (OCR) versus naïve and/or VEH/SIV. Short-term alcohol decreased differentiation; increased maximal and non-mitochondrial OCR, mitochondrial reactive oxygen species (ROS) production, and aldolase activity; and decreased glycolytic measures, ATP production, mitochondrial membrane potential (ΔΨm), and pyruvate kinase activity. Mitochondrial ROS production was closely associated with mitochondrial network volume, and differentiation indices were closely associated with key bioenergetic health and function parameters. Results indicate that short-term alcohol and CBA non-synergistically decrease myoblast differentiation capacity. Short-term alcohol impaired myoblast glycolytic function, driving the bioenergetic deficit. Results suggest potentially differing mechanisms underlying decreased differentiation capacity with short-term alcohol and CBA, highlighting the need to elucidate the impact of different alcohol use patterns on myopathy.
Collapse
Affiliation(s)
- Danielle E. Levitt
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Brianna L. Bourgeois
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Keishla M. Rodríguez-Graciani
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Abstract
PURPOSE Alcohol-related myopathy is one of the earliest alcohol-associated pathological tissue changes that is progressively exacerbated by cumulative long-term alcohol misuse. Acute and chronic alcohol use leads to changes in skeletal muscle mass and function. As discussed in this evidence-based review, alcohol-mediated mechanisms are multifactorial with effects on anabolic and catabolic signaling, mitochondrial bioenergetics, extracellular matrix remodeling, and epigenomic alterations. However, systematic studies are limited, especially regarding the acute effects of alcohol on skeletal muscle. SEARCH METHODS This review focuses on peer-reviewed manuscripts published between January 2012 and November 2022 using the search terms "alcohol" or "ethanol" and "skeletal muscle" in MEDLINE, PubMed, and Web of Science using EndNote reference management software. SEARCH RESULTS Eligible manuscripts included full-length research papers that discussed acute and chronic effects of alcohol on skeletal muscle mass and function in both clinical and preclinical studies. The review also includes alcohol-mediated skeletal muscle effects in the context of comorbidities. The three databases together yielded 708 manuscripts. Of these, the authors excluded from this review 548 papers that did not have "alcohol" or "muscle" in the title and 64 papers that were duplicates or did not discuss skeletal muscle. Thus, of all the manuscripts considered for this review, 96 are included and 612 are excluded. Additionally, relevant papers published earlier than 2012 are included to provide context to the review. DISCUSSION AND CONCLUSIONS Both acute and chronic alcohol use decrease protein synthesis and increase protein degradation. Alcohol also impairs mitochondrial function and extracellular matrix remodeling. However, there is a gap in the literature on the known alcohol-mediated mechanisms, including senescence, role of immune activation, and interorgan communication, on the development of alcohol-related myopathy. With increased life expectancy, changing alcohol use patterns, and increasing frequency of alcohol use among females, current observational studies are needed on the prevalence of alcohol-related myopathy. Additionally, the compounding effects of acute and chronic alcohol use on skeletal muscle with aging or exercise, in response to injury or disuse, and in the context of comorbidities including diabetes and human immunodeficiency virus (HIV), call for further investigation. Though evidence suggests that abstinence or reducing alcohol use can improve muscle mass and function, they are not restored to normal levels. Hence, understanding the pathophysiological mechanisms can help in the design of therapeutic strategies to improve skeletal muscle health.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
7
|
Bridges BO, Tice AL, Laudato JA, Gordon BS, Steiner JL. Mealtime alcohol consumption suppresses skeletal muscle mTORC1 signaling in female mice. Mol Cell Endocrinol 2023; 566-567:111914. [PMID: 36958649 DOI: 10.1016/j.mce.2023.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE To determine whether alcohol consumed within the meal influences the feeding induced increase in mTORC1 signaling. METHODS Alcohol provided in the liquid diet was consumed by alcohol naïve, fasted, C57BL/6Hsd female mice and gastrocnemius was collected 1hr after the refeeding. Subsequent experiments determined the extent to which changes in mTORC1 signaling persisted across the day. RESULTS Compared with control mice, protein synthesis, mTORC1 (Ser2448), 4EBP1 (Ser65), S6K1 (Thr389), rpS6 (Ser240/244), Akt (Thr308), and ULK1 (Ser757) were lower in EtOH. Similar suppressive patterns were observed in the hours following consumption of alcohol containing food throughout the dark cycle. Higher peak blood alcohol concentrations induced by intraperitoneal injection of alcohol extended the time and magnitude of mTORC1 pathway suppression. CONCLUSION Alcohol administered as part of the meal results in lower skeletal muscle mTORC1 signaling while subsequent models show that alcohol may influence this pathway across the day.
Collapse
Affiliation(s)
- Blake O Bridges
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Abigail L Tice
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Joseph A Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA.
| |
Collapse
|
8
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
9
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|