1
|
Hoang NMH, Nguyen HD, Jo W, Kim MS. Role of prolactin in the protective effect of amisulpride against 1,2-Diacetylbenzene's neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104418. [PMID: 38493881 DOI: 10.1016/j.etap.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.
Collapse
Affiliation(s)
- Ngoc Minh-Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Wonhee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Hu X, Luo J, Huang J, Sun Y, Li H, Qiao Y, Wu H, Li J, Zhou L, Zheng S. Liver organoid culture methods. Cell Biosci 2023; 13:197. [PMID: 37915043 PMCID: PMC10619312 DOI: 10.1186/s13578-023-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Organoids, three-dimensional structures cultured in vitro, can recapitulate the microenvironment, complex architecture, and cellular functions of in vivo organs or tissues. In recent decades, liver organoids have been developed rapidly, and their applications in biomedicine, such as drug screening, disease modeling, and regenerative medicine, have been widely recognized. However, the lack of repeatability and consistency, including the lack of standardized culture conditions, has been a major obstacle to the development and clinical application of liver organoids. It is time-consuming for researchers to identify an appropriate medium component scheme, and the usage of some ingredients remains controversial. In this review, we summarized and compared different methods for liver organoid cultivation that have been published in recent years, focusing on controversial medium components and discussing their advantages and drawbacks. We aimed to provide an effective reference for the development and standardization of liver organoid cultivation.
Collapse
Affiliation(s)
- Yiqing Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jia Luo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jiacheng Huang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yaohan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yinbiao Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianhui Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
3
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Ni Y, Chen Q, Cai J, Xiao L, Zhang J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol Cell Endocrinol 2021; 520:111084. [PMID: 33232781 DOI: 10.1016/j.mce.2020.111084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
The endocrine system plays a central role in many aspects of lactation, including mammogenesis (mammary gland development), lactogenesis (onset of lactation), and galactopoiesis (maintenance of milk secretion). Many hormones of the endocrine system directly or indirectly regulate lactation process. The secretion of prolactin (PRL), one of the most important lactation-related hormones, is inhibited by hypothalamus-pituitary dopaminergic system and stimulated by hypothalamus-pituitary oxytocinergic system. This hormone is essential in all stages of lactation. The growth hormone (GH) regulates metabolism and the distribution of nutrients between tissues mammary glands, and stimulates the production of IGF-I from the liver which binds to IGF-IR of mammary epithelial cells (MECs) to indirectly promote lactation. The synthesis and secretion of estrogen (E) are affected by the hypothalamus-pituitary axis. The hormone regulates duct morphogenesis and MECs proliferation. It also modulates the synthesis and secretion of PRL and GH, which together regulate the lactation in female animals. In this article, we reviewed the three main lactation-related hormones (PRL, GH, and E), summarize their regulation by the hypothalamus-pituitary axis and how they influence lactation.
Collapse
Affiliation(s)
- Yifan Ni
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Cai
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Xiao Z, Wang Z, Hu B, Mao Z, Zhu D, Feng Y, Zhu Y. MiR-1299 promotes the synthesis and secretion of prolactin by inhibiting FOXO1 expression in drug-resistant prolactinomas. Biochem Biophys Res Commun 2019; 520:79-85. [PMID: 31582213 DOI: 10.1016/j.bbrc.2019.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Prolactinoma is a clinically common intracranial tumor. When serum prolactin levels are not controlled despite administration of a dopamine agonist, the condition is referred to as drug-resistant prolactinoma. The mechanism underlying persistent prolactin secretion in drug-resistant prolactinoma remains unclear. MicroRNAs play an important role in tumorigenesis and development as well as chemotherapeutic resistance. This study was conducted to investigate the mechanism by which miRNA regulates prolactin secretion in drug-resistant prolactinoma. We first found that miR-1299 was elevated in drug-resistant prolactinoma and inhibited FOXO1 in a targeted manner through miRNA sequencing and luciferase assays. We then confirmed that FOXO1 binds to the promoter of the prolactin gene to inhibit its expression through chromatin immunoprecipitation-quantitative PCR and cytological experiments. Finally, inhibition or overexpression of miR-1299 in primary tumor cells confirmed that drug-resistant prolactinoma promoted prolactin secretion by promoting miR-1299 expression and reducing intracellular FOXO1. These results indicate that FOXO1 and miR-1299 are potential therapeutic targets for drug-resistant prolactinoma as well as other pituitary diseases.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yajuan Feng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Guo Y, Lv Q, Zou XQ, Yan ZX, Yan YX. Mechanical Strain Regulates Osteoblast Proliferation Through Ca 2+-CaMK-CREB Signal Pathway. ACTA ACUST UNITED AC 2018; 31:100-106. [PMID: 28031098 DOI: 10.1016/s1001-9294(16)30033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective To investigate the effects of mechanical strain on Ca2+-calmodulin dependent kinase (CaMK)-cAMP response element binding protein (CREB) signal pathway and proliferation of osteoblasts.Methods Using a four-point bending device, MC3T3-E1 cells were exposed to mechanical tensile strains of 2500 µs and 5000 µs at 0.5 Hz respectively. The intracellular free Ca2+ ([Ca2+]i) concentration and calmodulin activity were assayed by fluorospectrophotometry, CaMK II β, CREB, and phosphorylated (activated) CREB (p-CREB) were assessed by Western blot, and cells proliferation was assayed with MTT. Pretreatment with verapamil was carried out to block Ca2+ channel, and inhibitor U73122 was used to inhibit phospholipase C (PLC).Results Mechanical strains of 2500 µs and 5000 µs for 1 to 10 minutes both increased [Ca2+]i level of the cells. The 2500 µs strain, a periodicity of 1 h/d for 3 days, activated calmodulin, elevated protein levels of CaMK II β and p-CREB, and promoted cells proliferation, which were attenuated by pretreatment of verapamil or U73122. The effects of 5000 µs strain on calmodulin, CaMK II β, p-CREB and proliferation were contrary to 2500 µs strain.Conclusion The mechanical strain regulates osteoblasts proliferation through Ca2+-CaMK-CREB signal pathway via Ca2+ channel and PLC/IP3 transduction cascades.
Collapse
Affiliation(s)
- Yong Guo
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, China
| | - Qi Lv
- Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| | - Xian-Qiong Zou
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Zhi-Xiong Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yu-Xian Yan
- Depantment of Bioengineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, China; Experiment Management Center, Logistical College of People Armed Police Forces, Tianjin 300162, China
| |
Collapse
|
7
|
Grass Carp Prolactin Gene: Structural Characterization and Signal Transduction for PACAP-induced Prolactin Promoter Activity. Sci Rep 2018; 8:4655. [PMID: 29545542 PMCID: PMC5854708 DOI: 10.1038/s41598-018-23092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/05/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, structural analysis of grass carp prolactin (PRL) gene was performed and the signaling mechanisms for pituitary adenylate cyclase-activating peptide (PACAP) regulation of PRL promoter activity were investigated. In αT3-1 cells, PRL promoter activity could be induced by oPACAP38 which was blocked by PACAP antagonist but not the VIP antagonist. The stimulatory effect of oPACAP38 was mimicked by activation of AC/cAMP and voltage-sensitive Ca2+ channel (VSCC) signaling, or induction of Ca2+ entry. In parallel, PACAP-induced PRL promoter activity was negated or inhibited by suppressing cAMP production, inhibiting PKA activity, removal of extracellular Ca2+, VSCC blockade, calmodulin (CaM) antagonism, and inactivation of CaM kinase II. Similar sensitivity to L-type VSCC, CaM and CaM kinase II inhibition were also observed by substituting cAMP analog for oPACAP38 as the stimulant for PRL promoter activity. Moreover, PACAP-induced PRL promoter activity was also blocked by inhibition of PLC signaling, attenuation of [Ca2+]i immobilization via IP3 receptors, and blockade of PI3K/P70S6K pathway. The PACAP-induced PRL promoter activation may involve transactivation of the transcription factor CREB. These results suggest that PACAP can stimulate PRL promoter activation by PAC1 mediated functional coupling of the Ca2+/CaM/CaM kinase II cascades with the AC/cAMP/PKA pathway. Apparently, other signaling pathways, including PLC/IP3 and PI3K/P70S6K cascades, may also be involved in PACAP induction of PRL gene transcription.
Collapse
|
8
|
Wang L, Mitsui T, Ishida M, Izawa M, Arita J. Rasd1 is an estrogen-responsive immediate early gene and modulates expression of late genes in rat anterior pituitary cells. Endocr J 2017; 64:1063-1071. [PMID: 28835591 DOI: 10.1507/endocrj.ej17-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Here we investigated the role of Rasd1 in regulating estrogen-induced gene expression in primary cultures of rat anterior pituitary cells. Rasd1 mRNA expression in anterior pituitary cells decreased after treatment with forskolin or serum and increased after treatment with 17β-estradiol (E2). Increases in Rasd1 mRNA expression occurred as early as 0.5 h after E2 treatment, peaked at 1 h and were sustained for as long as 96 h. This rapid and profound increase in Rasd1 mRNA expression induced by E2 was also seen in GH4C1 cells, an estrogen receptor-positive somatolactotroph cell line. Among pituitary estrogen-responsive late genes studied, basal mRNA expression of Pim3 and Igf1 genes was decreased by RNA interference-mediated knockdown of Rasd1 expression, whereas basal expression of the Giot1 gene was increased. Moreover, Rasd1 knockdown enhanced stimulation of Pim3 mRNA expression and attenuated inhibition of Fosl1 mRNA expression 24 h after E2 treatment. These changes in mRNA expression were accompanied by enhanced activity of promoters containing CRE, AP-1 and SRE binding sequences. These results suggest that Rasd1 is an estrogen-responsive immediate early gene and modulates E2 induction of at least several late genes in anterior pituitary cells.
Collapse
Affiliation(s)
- Linghong Wang
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Tetsuo Mitsui
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Maho Ishida
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Michi Izawa
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Jun Arita
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
9
|
Otsuka M, Kadokawa H. GPR30 mediates estrone, estriol, and estradiol to suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion in the anterior pituitary of heifers. J Reprod Dev 2017; 63:519-525. [PMID: 28781349 PMCID: PMC5649102 DOI: 10.1262/jrd.2017-035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies demonstrated that G-protein-coupled receptor 30 (GPR30) on the plasma membrane of gonadotroph cells mediates picomolar, but not nanomolar, levels of estradiol (E2) to rapidly suppress gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion in the anterior pituitary (AP). While estrone (E1) and estriol (E3) are considered "weak" estrogens that exert suppressive effects through estrogen receptors α and β, it is conceivable that they also strongly suppress GnRH-induced LH secretion via GPR30. Both E1 and E3 are likely present within the blood at picomolar or nanomolar concentrations, indicating that such concentrations are sufficient to suppress GnRH-induced LH secretion. To evaluate this possibility, bovine AP cells were cultured under steroid-free conditions and then incubated with various concentrations (0.01 pM to 10 nM) of E2, E1, or E3, prior to stimulation with GnRH. Notably, GnRH-induced LH secretion from AP cells was inhibited by 1-100 pM E2, 1-10 pM E1, and 1-100 pM E3. GnRH-induced LH secretion from AP cells was not inhibited by lower (0.01-0.1 pM) or higher (1-10 nM) concentrations of E2, E1, and E3. These suppressive effects were inhibited by pre-treatment of AP cells with the GPR30 antagonist G36, but not with the estrogen receptor alpha antagonist. Treatment with E1 or E3 also yielded decreased cytoplasmic cAMP levels in cultured AP cells pre-treated with dopamine and phosphodiesterase inhibitors. Therefore, these results suggest that GPR30 mediates the suppressive effects of E1, E3, and E2 on GnRH-induced LH secretion from bovine AP.
Collapse
Affiliation(s)
- Midori Otsuka
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
10
|
Dou A, Wang Z, Zhang N, Liu J. Loss of Reelin suppresses cell survival and mobility in non-Hodgkin lymphoma. Oncol Rep 2017; 37:3572-3580. [DOI: 10.3892/or.2017.5626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/18/2017] [Indexed: 11/05/2022] Open
|
11
|
Xu F, Wang J, Cao Z, Song M, Fu Y, Zhu Y, Li Y. cAMP/PKA Signaling Pathway Induces Apoptosis by Inhibited NF-κB in Aluminum Chloride-Treated Lymphocytes In Vitro. Biol Trace Elem Res 2016; 170:424-31. [PMID: 26280903 DOI: 10.1007/s12011-015-0461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023]
Abstract
To explore the apoptosis mechanism in lymphocytes of rats induced by aluminum chloride (AlCl3) by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, the splenic lymphocytes of rats were cultured and exposed to different concentrations of AlCl3 for 24 h. The final concentrations of AlCl3 (AlCl3 · 6H2O) in supernatant were 0 (control group, CG), 0.3 mmol/L (low-dose group, LG), 0.6 mmol/L (mid-dose group, MG), and 1.2 mmol/L (high-dose group, HG), respectively. Lymphocytes Apoptosis rate, intracellular cAMP content, PKA, survivin, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2-associated X protein (Bax) mRNA expressions, and the mRNA and protein expressions of nuclear factor-κ-gene binding (NF-κB, p65) were detected, respectively. The results showed that apoptosis index of lymphocytes, cAMP content in intracellular and PKA mRNA expression were significantly upregulated, whereas NF-κB and survivin mRNA expressions, nuclear NF-κB (p65) protein expression, and the ratio of Bcl-2 and Bax mRNA expression were downregulated in the AlCl3-treated groups compared with those in CG. The results indicated that the activated cAMP/PKA signaling pathway induces apoptosis by inhibited NF-κB in AlCl3-treated lymphocytes in vitro.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanzhu Zhu
- Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Šošić-Jurjević B, Filipović B, Renko K, Miler M, Trifunović S, Ajdžanovič V, Kӧhrle J, Milošević V. Testosterone and estradiol treatments differently affect pituitary-thyroid axis and liver deiodinase 1 activity in orchidectomized middle-aged rats. Exp Gerontol 2015; 72:85-98. [PMID: 26384168 DOI: 10.1016/j.exger.2015.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022]
Abstract
We previously reported that orchidectomy (Orx) of middle-aged rats (15-16-month-old; MA) slightly affected pituitary-thyroid axis, but decreased liver deiodinase (Dio) type 1 and pituitary Dio2 enzyme activities. At present, we examined the effects of subsequent testosterone-propionate treatment (5mg/kg; Orx+T), and compared the effects of testosterone with the effects of estradiol-dipropionate (0.06mg/kg; Orx+E) treatment. Hormones were subcutaneously administered, daily, for three weeks, while Orx and sham-operated (SO) controls received only the vehicle. The applied dose of T did not alter serum TSH, T4 and T3 concentrations in Orx- MA, though it increased TSH when administrated to Orx young adults (2.5-month-old; Orx-YA). However, pituitaries of Orx-MA+T rats had higher relative intensity of immunofluorescence (RIF) for TSHβ; in their thyroids we found increased volume and height of follicular epithelium, decreased volume of the colloid and higher RIF for T4-bound to thyroglobulin (Tg-T4). Liver Dio1 activity was increased. E-treatment did not affect serum hormone levels, pituitary RIF for TSHβ, or liver Dio1 activity in Orx-MA rats. Thyroids had decreased relative volume and height of follicular epithelium, increased relative volume of the colloid, decreased volume of sodium-iodide symporter-immunopositive epithelium and lower RIF for Tg-T4. Detected changes were statistically significant. In conclusion, androgenization enhanced pituitary TSHβ RIF, thyroid activation and liver Dio1 enzyme activity in Orx-MA, without elevating serum TSH as in Orx-YA rats. Estrogenization induced pituitary enlargement with no effect on pituitary TSHβ RIF, serum TSH or liver Dio1 activity. E also induced alterations in thyroid histology that indicate mild suppression of its functioning, and contributed to thyroid blood vessel enlargement in Orx-MA rats.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - B Filipović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - M Miler
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - V Ajdžanovič
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Abstract
Prolactin (PRL) has been long deemed as a hormone involved only in female reproduction. However, PRL is a surprising hormone and, since its identification in the 1970s, its attributed functions have greatly increased. However, its specific role in male health is still widely unknown. Recently, low PRL has been associated with reduced ejaculate and seminal vesicle volume in infertile subjects. In addition, in men consulting for sexual dysfunction, hypoprolactinemia has been associated with erectile dysfunction and premature ejaculation, findings further confirmed in the general European population and infertile men. Several metabolic derangements, recapitulating metabolic syndrome, have also been associated with low PRL both in men with sexual dysfunction and from the general European population. In men with sexual dysfunction, followed-up for more than 4 years, low PRL was identified as an independent predictor of the incidence of major adverse cardiovascular events. Finally, an association with anxiety or depressive symptoms has been found in men with sexual dysfunction and from the general European population. While a direct role for impaired PRL function in the pathogenesis of these reproductive, sexual, metabolic and psychological disorders is conceivable, the possibility that low PRL is a mirror of an increased dopaminergic or a decreased serotonergic tone cannot be ruled-out. Hyperactivity of the dopaminergic system can explain only a few of the aforementioned findings, whereas a hypo-serotonergic tone fits well with the clinical features associated with low PRL, and there is significant evidence supporting the hypothesis that PRL could be a mirror of serotonin in the brain.
Collapse
Affiliation(s)
- Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Giovanni Corona
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- Endocrinology Section, Maggiore Hospital, Largo Nigrisoli 2, 40133, Bologna, Italy
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
14
|
Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|
15
|
Mousavi S, Panjehpour M, Izadpanahi MH, Aghaei M. Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 2015; 75:735-47. [PMID: 25704103 DOI: 10.1002/pros.22955] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/04/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Adenosine, a purine nucleoside plays important roles in the pathogenesis of cancer initiation and promotion via interaction with four adenosine receptors. In the present study we examined the differential expression pattern of adenosine receptors in the malignant and adjacent normal human prostate tissues. METHODS Prostate cancer tissue samples and adjacent normal tissues were obtained from 20 patients undergoing radical prostatectomy and histopathological diagnosis was confirmed for each sample. Total RNA was extracted and reverse transcribed into cDNA and the mRNA expression levels of adenosine receptors were investigated by Taq-man real-time RT-PCR experiment. Quantitative protein analysis was done by Western blotting experiment. Moreover, the mRNA and protein expression levels of adenosine receptors were measured after androgen treatment. RESULT Taq-man real-time RT-PCR measurements show different expression levels of adenosine receptor transcripts. A2B adenosine receptor was predominantly expressed in tumor tissues (2.4-fold) followed by significantly expression of A3 (1.6-fold) and A2A adenosine receptors (1.5-fold) compared to adjacent normal tissues. The presence of adenosine receptors at protein levels in prostate cancer tissues compared with normal tissues was shown the following rank order: A2B > A3 > A2A > A1 . Androgen receptor regulates adenosine receptors mRNA and protein expression in AR-positive LNCaP cells, which was not seen in AR-negative PC-3 cells. CONCLUSION These results indicated for the first time, the differential mRNA expression profile and protein levels of adenosine receptors in the human prostate cancer. Interestingly, the A2B adenosine receptor followed by A3 is highly expressed in prostate tumor samples in comparison with the adjacent normal tissues. The findings support the possible key role of A2B adenosine receptor in promoting cancer cell growth and suggest that A2B may be a novel target for prostate cancer treatment.
Collapse
Affiliation(s)
- Samira Mousavi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
16
|
Darashchonak N, Koepsell B, Bogdanova N, von Versen-Höynck F. Adenosine A2B receptors induce proliferation, invasion and activation of cAMP response element binding protein (CREB) in trophoblast cells. BMC Pregnancy Childbirth 2014; 14:2. [PMID: 24383849 PMCID: PMC3909477 DOI: 10.1186/1471-2393-14-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/18/2013] [Indexed: 12/04/2022] Open
Abstract
Background Placental hypoxia is a result of abnormal and shallow trophoblast invasion and involved in the pathophysiology of preeclampsia. Hypoxia increases extracellular adenosine levels and plays an important role in the regulation of angiogenesis, proliferation, vascular tone, endothelial permeability and inflammation. It was shown that adenosine concentrations are higher in preeclamptic patients. We tested the hypothesis that hypoxia and A2B adenosine receptor activation influence cyclic adenosine monophosphate (cAMP) production, proliferation, invasion and cAMP-PKA-CREB signaling in trophoblast cells (HTR-8/SVneo). Methods HTR-8/SVneo and human uterine microvascular endothelial cells (HUtMVEC) were used as model for experiments. We employed a cAMP assay, invasion assay, proliferation, RT-PCR and Western Blot. Statistical analyses were performed with ANOVA, Kruskal-Wallis-, Wilcoxon signed rank- or Mann–Whitney Test, as appropriate. Results Hypoxia (2% O2) in comparison to normoxia (21% O2) led to increased A2B mRNA levels (1.21 ± 0.06 fold, 1 h 2% O2; 1.66 ± 0.2 fold, 4 h 2% O2 and 1.2 ± 0.04 fold, 24 h 2% O2). A2B adenosine receptor activation (NECA) stimulated trophoblast proliferation at 2% O2 (1.27 ± 0.06 fold) and 8% O2 (1.17 ± 0.07 fold) after 24 h and at 2% O2 (1.22 ± 0.05 fold), 8% O2 (1.23 ± 0.09 fold) and 21% O2 (1.15 ± 0.04 fold) after 48 h of incubation. Trophoblast invasion into an endothelial monolayer was significantly expanded by activation of the receptor (NECA) at 8% O2 (1.20 ± 0.07 fold) and 21% O2 (1.22 ± 0.006 fold). A2B adenosine receptor stimulation (NECA) additionally led to increased CREB phosphorylation in trophoblast cells at 2% O2 (2.13 ± 0.45 fold), 8% O2 (1.55 ± 0.13 fold) and 21% O2 (1.71 ± 0.34 fold). Blocking of CREB signaling resulted in reduced proliferation and CREB phosphorylation. Conclusion These data expand the recent knowledge regarding the role of adenosine receptor A2B in human placental development, and may provide insight in mechanisms associated with pregnancy complications linked to impaired trophoblast invasion such as preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Frauke von Versen-Höynck
- Gynecology Research Unit, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
17
|
Jia H, Sun R, Shi W, Yan Y, Li H, Guo X, Xu B. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:68-79. [PMID: 24269344 DOI: 10.1016/j.jinsphys.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 05/16/2023]
Abstract
Mitochondrial manganese superoxide dismutase (mMnSOD) plays a vital role in the defense against reactive oxygen species (ROS) in eukaryotic mitochondria. In this study, we isolated and identified a mMnSOD gene from Apis cerana cerana, which we named AccSOD2. Several putative transcription factor-binding sites were identified within the 5'-flanking region of AccSOD2, which suggests that AccSOD2 may be involved in organismal development and/or environmental stress responses. Quantitative real-time PCR analysis showed that AccSOD2 is highly expressed in larva and pupae during different developmental stages. In addition, the expression of AccSOD2 could be induced by cold (4 °C), heat (42 °C), H2O2, ultraviolet light (UV), HgCl2, and pesticide treatment. Using a disc diffusion assay, we provide evidence that recombinant AccSOD2 protein can play a functional role in protecting cells from oxidative stress. Finally, the in vivo activities of AccSOD2 were measured under a variety of stressful conditions. Taken together, our results indicate that AccSOD2 plays an important role in cellular stress responses and anti-oxidative processes and that it may be of critical importance to honeybee survival.
Collapse
Affiliation(s)
- Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Rujiang Sun
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China; Yantai Research Institute, China Agricultural University, Yantai, Shandong 264670, PR China
| | - Weina Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
18
|
Kucka M, Bjelobaba I, Tomić M, Stojilkovic SS. The role of cyclic nucleotides in pituitary lactotroph functions. Front Endocrinol (Lausanne) 2013; 4:122. [PMID: 24062725 PMCID: PMC3772395 DOI: 10.3389/fendo.2013.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/30/2013] [Indexed: 11/13/2022] Open
Abstract
Lactotrophs are one of the five secretory anterior pituitary cell types specialized to synthesize and release prolactin. In vitro, these cells fire action potentials (APs) spontaneously and the accompanied Ca(2+) transients are of sufficient amplitude to keep the exocytotic pathway, the transcription of prolactin gene, and de novo hormone synthesis continuously active. Basal cyclic nucleotide production is also substantial in cultured cells but not critical for the APs secretion/transcription coupling in lactotrophs. However, elevated intracellular cAMP levels enhance the excitability of lactotrophs by stimulating the depolarizing non-selective cationic hyperpolarization-activated cyclic nucleotide-regulated and background channels, whereas cGMP inhibits it by activating Ca(2+)-controlled K(+) channels. Elevated cAMP also modulates prolactin release downstream of Ca(2+) influx by changing the kinetic of secretory pores: stimulate at low and inhibit at high concentrations. Induction of prolactin gene and lactotroph proliferation is also stimulated by elevated cAMP through protein kinase A. Together, these observations suggest that in lactotrophs cAMP exhibits complex regulatory effects on voltage-gated Ca(2+) influx and Ca(2+)-dependent cellular processes.
Collapse
Affiliation(s)
- Marek Kucka
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Marek Kucka, Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, MD 20892-4510, USA e-mail:
| | - Ivana Bjelobaba
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Melanija Tomić
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Ishida M, Mitsui T, Izawa M, Arita J. Activation of D2 dopamine receptors inhibits estrogen response element-mediated estrogen receptor transactivation in rat pituitary lactotrophs. Mol Cell Endocrinol 2013; 375:58-67. [PMID: 23701824 DOI: 10.1016/j.mce.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
Estrogen and dopamine are major opposing regulators of the endocrine functions of pituitary lactotrophs. Dopamine inhibits estrogen-induced changes in the synthesis and secretion of prolactin, and lactotroph proliferation. We studied the mechanism of the inhibitory effects of dopaminergic stimulation on estrogen-induced functional changes of rat lactotrophs in primary culture. The dopaminergic agonist, bromocriptine (BC), suppressed 17β-estradiol-stimulated lactotroph proliferation, prolactin promoter activity, and mRNA expression of some estrogen-responsive genes. In lactotroph-enriched pituitary cells, BC treatment inhibited the estrogen response element (ERE) DNA sequence-mediated estrogen receptor (ER) transcriptional activity. Using a lactotroph-specific ERE transcriptional assay, we found that BC inhibition of the ERE-mediated ER transcriptional activity partly involved D2 dopamine receptor-mediated, pertussis toxin-sensitive G protein-coupled, cAMP/protein kinase A-dependent signaling. BC treatment had no effect on the cellular concentration of ERα or its phosphorylation status at Ser-118. Similar transcriptional inhibition by BC was also found in GH4ZR7 cells, a D2 dopamine receptor-expressing somatomammotrophic cell line. These results suggest that activation of the D2 dopamine receptors inhibits estrogen-dependent lactotroph functions in part via attenuation of ERE-mediated ER transactivation.
Collapse
Affiliation(s)
- Maho Ishida
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan.
| | | | | | | |
Collapse
|
20
|
Zhang Y, Yan H, Lu W, Li Y, Guo X, Xu B. A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperones 2013; 18:503-16. [PMID: 23382010 PMCID: PMC3682018 DOI: 10.1007/s12192-013-0406-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress may be the most significant threat to the survival of living organisms. Glutathione S-transferases (GSTs) serve as the primary defences against xenobiotic and peroxidative-induced oxidative damage. In contrast to other well-defined GST classes, the Omega-class members are poorly understood, particularly in insects. Here, we isolated and characterised the GSTO2 gene from Apis cerana cerana (AccGSTO2). The predicted transcription factor binding sites in the AccGSTO2 promoter suggested possible functions in early development and antioxidant defence. Real-time quantitative PCR (qPCR) and western blot analyses indicated that AccGSTO2 was highly expressed in larvae and was predominantly localised to the brain tissue in adults. Moreover, AccGSTO2 transcription was induced by various abiotic stresses. The purified recombinant AccGSTO2 exhibited glutathione-dependent dehydroascorbate reductase and peroxidase activities. Furthermore, it could prevent DNA damage. In addition, Escherichia coli overexpressing AccGSTO2 displayed resistance to long-term oxidative stress exposure in disc diffusion assays. Taken together, these results suggest that AccGSTO2 plays a protective role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Yuanying Zhang
- />State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
- />School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000 People’s Republic of China
| | - Huiru Yan
- />State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Wenjing Lu
- />State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Yuzhen Li
- />State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Xingqi Guo
- />State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Baohua Xu
- />College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| |
Collapse
|
21
|
Radl D, De Mei C, Chen E, Lee H, Borrelli E. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia. Mol Endocrinol 2013; 27:953-65. [PMID: 23608643 DOI: 10.1210/me.2013-1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.
Collapse
Affiliation(s)
- Daniela Radl
- Department of Microbiology and Molecular Genetics, Institut National de la Santé et de la Recherche Médicale INSERM/UCI U904, France
| | | | | | | | | |
Collapse
|
22
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
23
|
Tong Y, Zheng Y, Zhou J, Oyesiku NM, Koeffler HP, Melmed S. Genomic characterization of human and rat prolactinomas. Endocrinology 2012; 153:3679-91. [PMID: 22635680 PMCID: PMC3404356 DOI: 10.1210/en.2012-1056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although prolactinomas can be effectively treated with dopamine agonists, about 20% of patients develop dopamine resistance or tumor recurrence after surgery, indicating a need for better understanding of underlying disease mechanisms. Although estrogen-induced rat prolactinomas have been widely used to investigate the development of this tumor, the extent that the model recapitulates features of human prolactinomas is unclear. To prioritize candidate genes and gene sets regulating human and rat prolactinomas, microarray results derived from human prolactinomas and pituitaries of estrogen-treated ACI rats were integrated and analyzed. A total of 4545 differentially expressed pituitary genes were identified in estrogen-treated ACI rats [false discovery rate (FDR) < 0.01]. By comparing pituitary microarray results derived from estrogen-treated Brown Norway rats (a strain not sensitive to estrogen), 4073 genes were shown specific to estrogen-treated ACI rats. Human prolactinomas exhibited 1177 differentially expressed genes (FDR < 0.05). Combining microarray data derived from human prolactinoma and pituitaries of estrogen-treated ACI rat, 145 concordantly expressed genes, including E2F1, Myc, Igf1, and CEBPD, were identified. Gene set enrichment analysis revealed that 278 curated pathways and 59 gene sets of transcription factors were enriched (FDR < 25%) in estrogen-treated ACI rats, suggesting a critical role for Myc, E2F1, CEBPD, and Sp1 in this rat prolactinoma. Similarly increased Myc, E2F1, and Sp1 expression was validated using real-time PCR and Western blot in estrogen-treated Fischer rat pituitary glands. In summary, characterization of individual genes and gene sets in human and in estrogen-induced rat prolactinomas validates the model and provides insights into genomic changes associated with this commonly encountered pituitary tumor.
Collapse
Affiliation(s)
- Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, Academic Affairs, Room 2015, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhang L, Meng F, Li Y, Kang M, Guo X, Xu B. Molecular characterization and immunohistochemical localization of a mitogen-activated protein kinase, Accp38b, from Apis cerana cerana. BMB Rep 2012; 45:293-8. [DOI: 10.5483/bmbrep.2012.45.5.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Mitsui T, Ishida M, Izawa M, Kagami Y, Arita J. Inhibition of Bcl3 gene expression mediates the anti-proliferative action of estrogen in pituitary lactotrophs in primary culture. Mol Cell Endocrinol 2011; 345:68-78. [PMID: 21787835 DOI: 10.1016/j.mce.2011.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 07/08/2011] [Indexed: 01/13/2023]
Abstract
In addition to their well-known stimulatory action, estrogens have an anti-proliferative effect. The present study was undertaken to investigate the mechanism by which 17β-estradiol (E2) inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation in vitro in the rat pituitary lactotroph, a typical estrogen-responsive cell. E2 treatment of pituitary cells did not change levels of IGF-1-induced phosphorylation of proliferation-related protein kinases such as Erk1/2 and Akt. We performed global gene expression profiling by DNA microarray analysis and identified 177 genes regulated by E2 in the presence of IGF-1. These results were verified by quantitative real time PCR. The estrogen-regulated genes included several NFκB family related genes. As pharmacological inhibition of the NFκB pathway blocked IGF-1-induced lactotroph proliferation, we chose to investigate whether one NFκB pathway gene, Bcl3, was involved in the anti-proliferative action of E2. RNA interference-mediated knockdown of Bcl3 expression attenuated IGF-1-induced lactotroph proliferation. Even minimal induced overexpression of Bcl3 blocked the anti-proliferative action of E2. In contrast, Nfkb2, another E2-downregulated protein, required maximal overexpression to block the anti-proliferative action of E2. These results suggest that inhibition of Bcl3 expression is involved in the anti-proliferative action of estrogens in pituitary lactotrophs in culture.
Collapse
Affiliation(s)
- Tetsuo Mitsui
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | | | | | | | | |
Collapse
|
26
|
Iguchi H, Mitsui T, Ishida M, Kanba S, Arita J. cAMP response element-binding protein (CREB) is required for epidermal growth factor (EGF)-induced cell proliferation and serum response element activation in neural stem cells isolated from the forebrain subventricular zone of adult mice. Endocr J 2011; 58:747-59. [PMID: 21701076 DOI: 10.1507/endocrj.k11e-104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis, which occurs not only in the developing brain but also in restricted regions in the adult brain including the forebrain subventricular zone (SVZ), is regulated by a variety of environmental factors, extracellular signals, and intracellular signal transduction pathways. We investigated whether the transcription factor cAMP response element (CRE)-binding protein (CREB) is involved in the regulation of cell proliferation of neural stem cells (NSCs) isolated from the SVZ of adult mice. Treatment of NSCs with the protein kinase A (PKA) inhibitors H89 and KT5720 inhibited epidermal growth factor (EGF)-stimulated NSC proliferation. Similar inhibition was observed when a dominant-negative mutant of CREB (MCREB) was expressed. EGF treatment increased CRE-mediated transcriptional activity, but this increase was much less than that caused by treatment with the adenylate cyclase activator forskolin, which changed neither basal nor EGF-stimulated proliferation of NSCs. Neither PKA inhibitors nor MCREB expression blocked EGF-induced phosphorylation of extracellular signal-regulated kinase (ERK), a protein kinase mediating EGF's mitogenic action. However, MCREB suppressed EGF-induced expression of several immediately early genes including c-fos, c-jun, jun-B, and fra-1 and subsequent AP-1 transcriptional activation. MCREB expression also inhibited the ability of EGF to stimulate transcriptional activation mediated by the serum response element (SRE), a promoter sequence regulating c-fos gene expression. These results suggest that basal activity of CREB is required for the mitogenic signaling of EGF in NSCs at a level between ERK activation and SRE-mediated transcriptional activation.
Collapse
Affiliation(s)
- Hironobu Iguchi
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
27
|
Ishida M, Mitsui T, Izawa M, Arita J. Absence of ligand-independent transcriptional activation of the estrogen receptor via the estrogen response element in pituitary lactotrophs in primary culture. J Steroid Biochem Mol Biol 2010; 118:93-101. [PMID: 19883758 DOI: 10.1016/j.jsbmb.2009.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 11/25/2022]
Abstract
The estrogen receptor (ER) is a ligand-activated transcription factor that enhances gene expression by binding to specific regulatory DNA sequences called estrogen response elements (EREs). In some cell lines, the ER is also activated in a ligand-independent manner by multiple signaling pathways. In this study, we developed a novel adenovirus-mediated assay for promoter activation, termed LASETA, which we then used to examine whether ligand-independent activation of the ER occurred in normal pituitary lactotrophs in primary culture. In the LASETA adenovirus vector, the loxP-flanked stop sequence was deleted by prolactin (PRL) promoter-regulated expression of Cre recombinase. This led to lactotroph-specific expression of a reporter gene driven by an ERE-containing promoter. Estrogen-induced expression of the reporter protein luciferase in LASETA was specific for lactotrophs and was ER-dependent. LASETA was shown to be reliable even with varying Cre recombinase expression levels, which were caused by changes in PRL promoter activity. Using LASETA, we observed no change in ERE-mediated ER activity in the absence of estrogen after treatment of normal lactotrophs with agents such as insulin-like growth factor-1, epidermal growth factor, the adenylate cyclase activator forskolin, the extracellular signal-regulated kinase kinase inhibitor U0126, and the protein kinase A inhibitor H89. The ERE-mediated ligand-independent ER activity was induced by the growth factors and forskolin in the somatolactotroph tumor cell line GH4C1 cells. These results suggest that ERE-mediated ligand-independent activation of ER does not occur in normal lactotrophs in primary culture, and is a phenomenon likely restricted to transformed cells.
Collapse
Affiliation(s)
- Maho Ishida
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | |
Collapse
|
28
|
|
29
|
Hagiwara H, Ishida M, Arita J, Mitsushima D, Takahashi T, Kimura F, Funabashi T. The cAMP response element-binding protein in the bed nucleus of the stria terminalis modulates the formalin-induced pain behavior in the female rat. Eur J Neurosci 2009; 30:2379-86. [PMID: 19968712 DOI: 10.1111/j.1460-9568.2009.07002.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract Differences in male and female responses to pain are widely recognized in many species, including humans, but the cerebral mechanisms that generate these responses are unknown. Using the formalin test, we confirmed that proestrus female rats showed nociceptive behavior, modulated by estrogen that was distinct from male rats, particularly during the interphase period. We then explored the brain areas, which were involved in the female pattern of nociceptive behavior. We found that, after a formalin injection and at the time corresponding to the behavioral interphase, the number of phosphorylated cAMP response element-binding protein (pCREB)-immunoreactive neurons observed by immunocytochemistry increased in the dorsolateral division of the bed nucleus of the stria terminalis (BSTLD) in female but not male rats. There were no significant sex differences in pCREB expression following formalin in any region other than the BSTLD. The increased pCREB in female rats was eliminated after an ovariectomy and restored with 17beta-estradiol treatment. Neither an orchidectomy nor 17beta-estradiol treatment affected the pCREB response in male rats. The increase in pCREB expression in the BSTLD in female rats after formalin injection was confirmed with immunoblotting. To determine the role of CREB in the BSTLD, adenovirus-mediated expression of a dominant-negative form of CREB (mCREB) was carried out. The nociceptive behavior during interphase was significantly attenuated by injection of virus carrying mCREB into the BSTLD in female rats but not in male rats. These results suggest a novel role for CREB in the BSTLD as a modulator of the pain response in a female-specific, estrogen-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|