1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Klionsky DJ, Albuhadily AK. Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. Autophagy 2024:1-12. [PMID: 38873924 DOI: 10.1080/15548627.2024.2367356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology- Iraq, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf, Kufa, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Wang J, Li M, Wang M, Yang J, Li D, Hao Y. MiR-181c-5p Regulates Lung Adenocarcinoma Progression via Targeting PRKN. Biochem Genet 2024; 62:1103-1114. [PMID: 37532837 DOI: 10.1007/s10528-023-10459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on lung adenocarcinoma. However, the contributions and possible mechanisms of miR-181c-5p to lung adenocarcinoma remain largely unclear. Our objective is to clarify the potential mechanism by which miR-181c-5p regulates lung adenocarcinoma progression. RT-qPCR was performed to determine the levels of miR-181c-5p in lung adenocarcinoma tissues and cells. CCK-8 and Transwell assays were conducted to evaluate the viability, migration, and invasion of H460 cells, respectively. The putative target association between miR-181c-5p and the Parkin gene (PRKN) was predicted using miRDB and confirmed by dual-luciferase reporter assay. MiR-181c-5p expression was found to be up-regulated in both lung adenocarcinoma tissues and cells. Suppression of miR-181c-5p resulted in the inhibition of viability, migration, and invasion in lung adenocarcinoma cells. PRKN level was negatively related to miR-181c-5p expression and mediated with the miR-181c-5p's functions on lung adenocarcinoma progression. MiR-181c-5p regulates lung adenocarcinoma progression via targeting PRKN, indicating miR-181c-5p is expected to be a diagnostic and predictive marker for lung adenocarcinoma, providing new insights into the development of treatment strategies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, 252600, Shandong Province, China
| | - Man Li
- Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, 252000, Shandong Province, China
| | - Meigui Wang
- Department of Obstetrics, Qingdao Central Hospital, No 127 Siliu South Road, Shibei District, Qingdao, 266013, Shandong, China
| | - Jing Yang
- Department of Radiotherapy, Qingdao Municipal Hospital, Qingdao, 266011, Shandong Province, China
| | - Deguang Li
- Department of Proctology, Rizhao City Central Hospital, Rizhao, 276800, Shandong Province, China
| | - Yunxia Hao
- Department of Oncology, Yantai Municipal Laiyang Central Hospital Affiliated to Weifang Medical College, Yantai, 265200, Shandong Province, China.
| |
Collapse
|
3
|
González-Prendes R, Derks MFL, Groenen MAM, Quintanilla R, Amills M. Assessing the relationship between the in silico predicted consequences of 97 missense mutations mapping to 68 genes related to lipid metabolism and their association with porcine fatness traits. Genomics 2023; 115:110589. [PMID: 36842749 DOI: 10.1016/j.ygeno.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In general, the relationship between the predicted functional consequences of missense mutations mapping to genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis demonstrated that nine out of 72 nominally associated SNPs were classified as "highly" or "very highly consistent" in silico-predicted functional mutations and did not show association with lipid traits expected to be affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample size of certain genotypic classes might have limited to some extent the reach of the current study, our data indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations on complex phenotypes.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Otaibi AA, Mubarak SA, Qarni AA, Hawwari A, Bakillah A, Iqbal J. ATP-Binding Cassette Protein ABCC10 Deficiency Prevents Diet-Induced Obesity but Not Atherosclerosis in Mice. Int J Mol Sci 2022; 23:ijms232213813. [PMID: 36430292 PMCID: PMC9694421 DOI: 10.3390/ijms232213813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Excess plasma lipid levels are a risk factor for various cardiometabolic disorders. Studies have shown that improving dyslipidemia lowers the progression of these disorders. In this study, we investigated the role of ATP-binding cassette transporter C10 (ABCC10) in regulating lipid metabolism. Our data indicate that deletion of the Abcc10 gene in male mice results in lower plasma and intestinal triglycerides by around 38% and 36%, respectively. Furthermore, deletion of ABCC10 ameliorates diet-induced obesity in mice and leads to a better response during insulin and glucose tolerance tests. Unexpectedly, ABCC10 deficiency does not affect triglyceride levels or atherosclerosis in ApoE-deficient mice. In addition, our studies demonstrate low oleate uptake by enterocytes (~25-30%) and less absorption (~37%) of triglycerides in the small intestine of ABCC10 knockout mice. Deletion of the Abcc10 gene also alters several lipid metabolism genes in the intestine, suggesting that ABCC10 regulates dietary fat absorption, which may contribute to diet-induced obesity in mice.
Collapse
|
5
|
Yu LP, Shi TT, Li YQ, Mu JK, Yang YQ, Li WX, Yu J, Yang XX. The impact of Traditional Chinese Medicine on mitophagy in disease models. Curr Pharm Des 2021; 28:488-496. [PMID: 34620055 DOI: 10.2174/1381612827666211006150410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.
Collapse
Affiliation(s)
- Li-Ping Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ting-Ting Shi
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023. China
| | - Yan-Qin Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jian-Kang Mu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Ya-Qin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Wei-Xi Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500. China
| |
Collapse
|
6
|
Abstract
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Collapse
Affiliation(s)
- Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Zhang Q, Cai Z, Lhomme M, Sahana G, Lesnik P, Guerin M, Fredholm M, Karlskov-Mortensen P. Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels. Sci Rep 2020; 10:18434. [PMID: 33116219 PMCID: PMC7595098 DOI: 10.1038/s41598-020-75612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.
Collapse
Affiliation(s)
- Qianqian Zhang
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Zexi Cai
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), 47-83 boulevard de l'hôpital, 75013, Paris, France
| | - Goutam Sahana
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Philippe Lesnik
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Maryse Guerin
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark.
| |
Collapse
|
8
|
Edmunds LR, Huckestein BR, Kahn M, Zhang D, Chu Y, Zhang Y, Wendell SG, Shulman GI, Jurczak MJ. Hepatic insulin sensitivity is improved in high-fat diet-fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiol Rep 2020; 7:e14281. [PMID: 31724300 PMCID: PMC6854109 DOI: 10.14814/phy2.14281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Park2 is an E3 ubiquitin ligase known for its role in mitochondrial quality control via the mitophagy pathway. Park2 KO mice are protected from diet‐induced obesity and hepatic insulin sensitivity is improved in high‐fat diet (HFD)‐fed Park2 KO mice even under body weight‐matched conditions. In order to better understand the cellular mechanism by which Park2 KO mice are protected from diet‐induced hepatic insulin resistance, we determined changes in multiple pathways commonly associated with the pathogenesis of insulin resistance, namely levels of bioactive lipid species, activation of the endoplasmic reticulum (ER) stress response and changes in cytokine levels and signaling. We report for the first time that whole‐body insulin sensitivity is unchanged in regular chow (RC)‐fed Park2 KO mice, and that liver diacylglycerol levels are reduced and very‐long‐chain ceramides are increased in Park2 KO mice fed HFD for 1 week. Hepatic transcriptional markers of the ER stress response were reduced and plasma tumor necrosis factor‐α (TNFα), interleukin‐6 and −10 (IL6, IL10) were significantly increased in HFD‐fed Park2 KO mice; however, there were no detectable differences in hepatic inflammatory signaling pathways between groups. Interestingly, hepatic adenylate charge was reduced in HFD‐fed Park2 KO liver and was associated increased activation of AMPK. These data suggest that negative energy balance that contributed to protection from obesity during chronic HFD manifested at the level of the hepatocyte during short‐term HFD feeding and contributed to the improved hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Lia R Edmunds
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brydie R Huckestein
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yanxia Chu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Edmunds LR, Xie B, Mills AM, Huckestein BR, Undamatla R, Murali A, Pangburn MM, Martin J, Sipula I, Kaufman BA, Scott I, Jurczak MJ. Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Mol Metab 2020; 41:101051. [PMID: 32653576 PMCID: PMC7399260 DOI: 10.1016/j.molmet.2020.101051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Objective PARKIN is an E3 ubiquitin ligase that regulates mitochondrial quality control through a process called mitophagy. Recent human and rodent studies suggest that loss of hepatic mitophagy may occur during the pathogenesis of obesity-associated fatty liver and contribute to changes in mitochondrial metabolism associated with this disease. Whole-body Prkn knockout mice are paradoxically protected against diet-induced hepatic steatosis; however, liver-specific effects of Prkn deficiency cannot be discerned in this model due to pleotropic effects of germline Prkn deletion on energy balance and subsequent protection against diet-induced obesity. We therefore generated the first liver-specific Prkn knockout mouse strain (LKO) to directly address the role of hepatic Prkn. Methods Littermate control (WT) and LKO mice were fed regular chow (RC) or high-fat diet (HFD) and changes in body weight and composition were measured over time. Liver mitochondrial content was assessed using multiple, complementary techniques, and mitochondrial respiratory capacity was assessed using Oroboros O2K platform. Liver fat was measured biochemically and assessed histologically, while global changes in hepatic gene expression were measured by RNA-seq. Whole-body and tissue-specific insulin resistance were assessed by hyperinsulinemic-euglycemic clamp with isotopic tracers. Results Liver-specific deletion of Prkn had no effect on body weight or adiposity during RC or HFD feeding; however, hepatic steatosis was increased by 45% in HFD-fed LKO compared with WT mice (P < 0.05). While there were no differences in mitochondrial content between genotypes on either diet, mitochondrial respiratory capacity and efficiency in the liver were significantly reduced in LKO mice. Gene enrichment analyses from liver RNA-seq results suggested significant changes in pathways related to lipid metabolism and fibrosis in HFD-fed Prkn knockout mice. Finally, whole-body insulin sensitivity was reduced by 35% in HFD-fed LKO mice (P < 0.05), which was primarily due to increased hepatic insulin resistance (60% of whole-body effect; P = 0.11). Conclusions These data demonstrate that PARKIN contributes to mitochondrial homeostasis in the liver and plays a protective role against the pathogenesis of hepatic steatosis and insulin resistance. Mitochondrial respiratory capacity is reduced in liver-specific Prkn knockout mice. Liver-specific Prkn knockout mice develop more severe steatosis during high-fat diet feeding. Pathogenesis of NAFLD, including insulin resistance and markers of fibrosis, is enhanced in liver-specific Prkn knockout mice.
Collapse
Affiliation(s)
- Lia R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingxian Xie
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda M Mills
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brydie R Huckestein
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ramya Undamatla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjana Murali
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martha M Pangburn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Martin
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iain Scott
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Thapa D, Xie B, Manning JR, Zhang M, Stoner MW, Huckestein BR, Edmunds LR, Zhang X, Dedousis NL, O'Doherty RM, Jurczak MJ, Scott I. Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiol Rep 2020; 7:e14043. [PMID: 31004398 PMCID: PMC6474842 DOI: 10.14814/phy2.14043] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/29/2023] Open
Abstract
Adropin is a liver- and brain-secreted peptide hormone with striking effects on fuel metabolism regulation in a number of tissues. Previous studies demonstrated that adropin secretion is decreased in obese mice subjected to a long-term high-fat diet (HFD), and that whole-body loss of adropin expression resulted in systemic insulin resistance. Treatment of obese mice with adropin improves glucose tolerance, which has been linked to increased glucose oxidation and inhibition of fatty acid utilization in isolated skeletal muscle homogenates. In this study, we used in vivo physiological measurements to determine how treatment of obese mice with adropin affects whole-body glucose metabolism. Treatment with adropin reduced fasting blood glucose and, as shown previously, increased glucose tolerance in HFD mice during standard glucose tolerance tests. Under hyperinsulinemic-euglycemic clamp conditions, adropin treatment led to a nonsignificant increase in whole-body insulin sensitivity, and a significant reduction in whole-body glucose uptake. Finally, we show that adropin treatment suppressed hepatic glucose production and improved hepatic insulin sensitivity. This correlated with reduced expression of fatty acid import proteins and gluconeogenic regulatory enzymes in the liver, suggesting that adropin treatment may impact the pathways that drive vital aspects of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Dharendra Thapa
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bingxian Xie
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manling Zhang
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Stoner
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brydie R Huckestein
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lia R Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueyang Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nikolaos L Dedousis
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iain Scott
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Ma X, McKeen T, Zhang J, Ding WX. Role and Mechanisms of Mitophagy in Liver Diseases. Cells 2020; 9:cells9040837. [PMID: 32244304 PMCID: PMC7226762 DOI: 10.3390/cells9040837] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA;
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
- Correspondence: ; Tel.: +1-913-588-9813
| |
Collapse
|
12
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
13
|
Baranski TJ, Kraja AT, Fink JL, Feitosa M, Lenzini PA, Borecki IB, Liu CT, Cupples LA, North KE, Province MA. A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses. PLoS Genet 2018; 14:e1007222. [PMID: 29608557 PMCID: PMC5897035 DOI: 10.1371/journal.pgen.1007222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/12/2018] [Accepted: 01/25/2018] [Indexed: 12/30/2022] Open
Abstract
Human GWAS of obesity have been successful in identifying loci associated with adiposity, but for the most part, these are non-coding SNPs whose function, or even whose gene of action, is unknown. To help identify the genes on which these human BMI loci may be operating, we conducted a high throughput screen in Drosophila melanogaster. Starting with 78 BMI loci from two recently published GWAS meta-analyses, we identified fly orthologs of all nearby genes (± 250KB). We crossed RNAi knockdown lines of each gene with flies containing tissue-specific drivers to knock down (KD) the expression of the genes only in the brain and the fat body. We then raised the flies on a control diet and compared the amount of fat/triglyceride in the tissue-specific KD group compared to the driver-only control flies. 16 of the 78 BMI GWAS loci could not be screened with this approach, as no gene in the 500-kb region had a fly ortholog. Of the remaining 62 GWAS loci testable in the fly, we found a significant fat phenotype in the KD flies for at least one gene for 26 loci (42%) even after correcting for multiple comparisons. By contrast, the rate of significant fat phenotypes in RNAi KD found in a recent genome-wide Drosophila screen (Pospisilik et al. (2010) is ~5%. More interestingly, for 10 of the 26 positive regions, we found that the nearest gene was not the one that showed a significant phenotype in the fly. Specifically, our screen suggests that for the 10 human BMI SNPs rs11057405, rs205262, rs9925964, rs9914578, rs2287019, rs11688816, rs13107325, rs7164727, rs17724992, and rs299412, the functional genes may NOT be the nearest ones (CLIP1, C6orf106, KAT8, SMG6, QPCTL, EHBP1, SLC39A8, ADPGK /ADPGK-AS1, PGPEP1, KCTD15, respectively), but instead, the specific nearby cis genes are the functional target (namely: ZCCHC8, VPS33A, RSRC2; SPDEF, NUDT3; PAGR1; SETD1, VKORC1; SGSM2, SRR; VASP, SIX5; OTX1; BANK1; ARIH1; ELL; CHST8, respectively). The study also suggests further functional experiments to elucidate mechanism of action for genes evolutionarily conserved for fat storage. Human Genome Wide Association Studies have successfully found thousands of novel genetic variants associated with many diseases. While these undoubtedly point to new biology, the field has been slowed in exploiting these new findings to reach a better understanding of exactly how they confer increased risk. Many, if not most, appear to be regulatory not coding variants, so their immediate consequence is not obvious. A real rate limiting step is even identifying which gene these variants might be regulating, and in what tissues they are operating to increase disease risk. In the absence of any other information, a first order assumption is that they may be more likely to be regulating a nearby gene, and such variants are often initially annotated by the “nearest” gene until their function is more definitively validated. Exploiting the idea that many genes may have conserved function across species, we conducted a high-throughput screen of fruit-fly orthologs of human genes nearby 78 well validated GWAS variants for human obesity, in order to more precisely identify the gene(s) of action. We systematically knocked down the function of each of these nearby genes in the brain and fat-body of the flies, raised them on a standard diet, and compared their percent body fat with control flies, in order to validate which genes showed a fat response. 43% of the time when fly orthologs existed in the region, we were able to identify the causal gene. Interestingly, nearly half the time (46%), it was not the nearest gene but another nearby one that regulated fat.
Collapse
Affiliation(s)
- Thomas J. Baranski
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TJB); (MAP)
| | - Aldi T. Kraja
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jill L. Fink
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mary Feitosa
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Petra A. Lenzini
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ingrid B. Borecki
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Province
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TJB); (MAP)
| |
Collapse
|