1
|
Markova M, Hornemann S, Sucher S, Wegner K, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 2018; 108:279-291. [PMID: 29982277 DOI: 10.1093/ajcn/nqy100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/23/2018] [Indexed: 01/05/2023] Open
Abstract
Background Meal composition regulates the postprandial response of pancreatic and gastrointestinal hormones and plays an important role in patients with type 2 diabetes (T2D). Proteins have glucagon and insulinotropic effects, which may differ depending on amino acid composition, form of intake, and rate of digestibility and absorption. Objective The aim of this study was to test effects of isolated pea protein-based (PP) compared with casein protein-based (CP) meals differing in amino acid compositions on endocrine responses to meal tolerance tests (MTTs) in patients with T2D. Design Thirty-seven individuals with T2D [mean ± SD age: 64 ± 6 y; mean ± SD body mass index (kg/m2): 30.2 ± 3.6; mean ± SD glycated hemoglobin: 7.0% ± 0.6%] were randomly assigned to receive either high-animal-protein (∼80% of total protein) or high-plant-protein (∼72% of total protein) diets (30% of energy from protein, 40% of energy from carbohydrate, 30% of energy from fat) for 6 wk. MTTs were performed at study onset and after 6 wk. Participants received standardized high-protein (30% of energy) meals 2 times/d containing either CP-rich (∼85% wt:wt) or PP-rich (∼95% wt:wt) foods. Results The CP and PP meals produced differences in insulin, C-peptide, glucagon, and glucose-dependent insulinotropic peptide (GIP) release. Total areas under the curve after CP were significantly lower than after the PP lunch by 40% for insulin and 23% for glucagon. Indexes of insulin sensitivity and secretion were significantly improved for the second CP MTT. This was accompanied by differential rates of appearance of amino acids. The ingestion of PP resulted in significant increases in amino acids after both meals, with a decline between meals. By contrast, CP intake resulted in increases in most amino acids after breakfast, which remained elevated but did not increase further after lunch. Conclusions PP elicits greater postprandial increases in glucagon than does CP and consequently requires higher insulin to control glucose metabolism, which appears to be related to the rate of amino acid appearance. The metabolic impact of protein quality could be used as a strategy to lower insulin needs in patients with T2D. This trial was registered at www.clinicaltrials.gov as NCT02402985.
Collapse
Affiliation(s)
- Mariya Markova
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Silke Hornemann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Stephanie Sucher
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Katrin Wegner
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Olga Pivovarova
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Endocrinology, Diabetes, and Nutrition, Charité University Medicine, Berlin, Germany
| | - Natalia Rudovich
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Endocrinology, Diabetes, and Nutrition, Charité University Medicine, Berlin, Germany
- Division of Endocrinology and Diabetology, Clinic of Internal Medicine, Hospital of Buelach, Buelach, Switzerland
| | - Ralph Thomann
- Institut für Getreideverarbeitung GmbH, Nuthetal, Germany
| | | | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
- Institute for Food and Environmental Research, Nuthetal, Germany
| | - Andreas F H Pfeiffer
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
- Department of Endocrinology, Diabetes, and Nutrition, Charité University Medicine, Berlin, Germany
| |
Collapse
|
2
|
Assessment of Salivary Adipokines Resistin, Visfatin, and Ghrelin as Type 2 Diabetes Mellitus Biomarkers. Biochem Res Int 2018; 2018:7463796. [PMID: 29487749 PMCID: PMC5816886 DOI: 10.1155/2018/7463796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is emerging as a metabolic epidemic worldwide. Pathologically, dysregulation of many biological pathways precedes hyperglycemia and the clinical diagnosis of T2DM. Changing trajectories along the process of T2DM development necessitates frequent measurement of biomarkers for early identification of at-risk individuals and successful prevention. Increase in circulating inflammatory adipokines has been suggested as predictive of T2DM. Human saliva is an easily accessible biospecimen amenable for painless frequent collection and possesses nearly 50% of serum proteome. In this study, we measured the adipokines resistin, visfatin, TNF-α, and ghrelin as markers for T2DM in unstimulated whole saliva (UWS) using specific assay kits. Resistin and visfatin concentrations were significantly higher in T2DM saliva. Although the concentration of acylated or unacylated ghrelin was lower in diabetic saliva, the decrease was not significant. Since resistin and visfatin are biomarkers integral to T2DM pathology, their salivary assessments may receive clinical acceptance.
Collapse
|
3
|
Sucher S, Markova M, Hornemann S, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH. Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: A randomized clinical trial. Diabetes Obes Metab 2017; 19:944-952. [PMID: 28181738 DOI: 10.1111/dom.12901] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/18/2023]
Abstract
AIM To compare high animal protein (AP) with high plant protein (PP) diets, differing in amino acid composition, in people with type 2 diabetes (T2DM). MATERIALS AND METHODS We compared isocaloric diets containing 30% of energy either as AP or PP, using newly developed PP-enriched foods, both combined with 30% energy as fat and 40% as carbohydrates in 44 patients with T2DM over 6 weeks in a randomized parallel-group study. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamps and cardiovascular variables were measured. RESULTS Uric acid decreased in both groups, but significantly more in the AP than the PP group. There were no significant differences in other variables, although glycated haemoglobin levels, diastolic blood pressure and fasting non-esterified fatty acid levels improved significantly in the PP but not in the AP group. Insulin sensitivity (M-value), C-reactive protein and fasting glucose improved significantly in the AP but not in the PP group. Total and LDL cholesterol levels and systolic blood pressure decreased significantly in both groups, and the urinary albumin excretion rate decreased from baseline in participants with microalbuminuria. CONCLUSIONS Isocaloric diets high in AP or PP allow similar improvements in metabolism and cardiovascular risk factors in people with T2DM, indicating that the differences in amino acid composition do not affect the metabolic responses to the interventions.
Collapse
Affiliation(s)
- Stephanie Sucher
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Department of Endocrinology and Diabetology, Clinic of Internal Medicine, Hospital of Buelach, Buelach, Switzerland
| | - Ralph Thomann
- Institut für Getreideverarbeitung GmbH, Nuthetal, Germany
| | | | - Sascha Rohn
- Institute for Food and Environmental Research, Nuthetal, Germany
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Potsdam, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| |
Collapse
|
4
|
Abstract
The gastrointestinal (GI) tract comprises a large endocrine organ that regulates not only nutrient sensing and metabolising but also satiety and energy homeostasis. More than 20 hormones secreted from the stomach, intestine, and pancreas as well as signaling mediators of the gut microbiome are involved in this process. A better understanding of how related pathways affect body weight and food intake will help us to find new strategies and drugs to treat obesity. For example, weight loss secondary to lifestyle intervention is often accompanied by unfavorable changes in multiple GI hormones, which may cause difficulties in maintaining a lower body weight status. Conversely, bariatric surgery favorably changes the hormone profile to support improved satiety and metabolic function. This partially explains stronger sustained body weight reduction resulting in better long-term results of improved metabolic functions. This review focuses on GI hormones and signaling mediators of the microbiome involved in satiety regulation and energy homeostasis and summarizes their changes following weight loss. Furthermore, the potential role of GI hormones as anti-obesity drugs is discussed.
Collapse
Affiliation(s)
- Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, Institute for Pediatric Endocrinology, Diabetes and Nutrition Medicine, University of Witten/Herdecke, Datteln, Germany,
| | | |
Collapse
|
5
|
Abstract
The enteroendocrine system is the primary sensor of ingested nutrients and is responsible for secreting an array of gut hormones, which modulate multiple physiological responses including gastrointestinal motility and secretion, glucose homeostasis, and appetite. This Review provides an up-to-date synopsis of the molecular mechanisms underlying enteroendocrine nutrient sensing and highlights our current understanding of the neuro-hormonal regulation of gut hormone secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the development of novel therapeutic strategies.
Collapse
|
6
|
Speakman JR. Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum Hered 2013; 75:57-79. [PMID: 24081222 DOI: 10.1159/000353585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified a total of about 40 single nucleotide polymorphisms (SNPs) that show significant linkage to body mass index, a widely utilised surrogate measure of adiposity. However, only 8 of these associations have been confirmed by follow-up GWAS using more sophisticated measures of adiposity (computed tomography). Among these 8, there is a SNP close to the gene FTO which has been the subject of considerable work to diagnose its function. The remaining 7 SNPs are adjacent to, or within, the genes NEGR1, TMEM18, ETV5, FLJ35779, LINGO2, SH2B1 and GIPR, most of which are less well studied than FTO, particularly in the context of obesity. This article reviews the available data on the functions of these genes, including information gleaned from studies in humans and animal models. At present, we have virtually no information on the putative mechanism associating the genes FLJ35779 and LINGO2 to obesity. All of these genes are expressed in the brain, and for 2 of them (SH2B1 and GIPR), a direct link to the appetite regulation system is known. SH2B1 is an enhancer of intracellular signalling in the JAK-STAT pathway, and GIPR is the receptor for an appetite-linked hormone (GIP) produced by the alimentary tract. NEGR1, ETV5 and SH2B1 all have suggested roles in neurite outgrowth, and hence SNPs adjacent to these genes may affect development of the energy balance circuitry. Although the genes have central patterns of gene expression, implying a central neuronal connection to energy balance, for at least 4 of them (NEGR1, TMEM18, SH2B1 and GIPR), there are also significant peripheral functions related to adipose tissue biology. These functions may contribute to their effects on the obese phenotype.
Collapse
Affiliation(s)
- John R Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nøhr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2013; 2:376-92. [PMID: 24327954 DOI: 10.1016/j.molmet.2013.08.006] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022] Open
Abstract
The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.
Collapse
Key Words
- 7TM, seven transmembrane segment
- BAC, bacterial artificial chromosome
- CCK, cholecystokinin
- CFMB, (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butamide
- CGRP, calcitonin gene-related peptide
- CHBA, 3-chloro-5-hydroxybenzoic acid
- Enteroendocrine
- G protein signaling
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GPCR
- Ghrelin
- Metabolites
- PTx, Bordetella pertussis toxin
- PYY, peptide YY
- Secretion
- hrGFP, humanized Renilla reniformis green fluorescent protein
Collapse
Affiliation(s)
- Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark ; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pivovarova O, Gögebakan Ö, Osterhoff MA, Nauck M, Pfeiffer AF, Rudovich N. In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue. ACTA ACUST UNITED AC 2012; 179:29-32. [DOI: 10.1016/j.regpep.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/25/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023]
|