1
|
De Moraes Salgado C, Viana LR, Gomes-Marcondes MCC. Placental, Foetal, and Maternal Serum Metabolomic Profiles in Pregnancy-Associated Cancer: Walker-256 Tumour Model in a Time-Course Analysis. Int J Mol Sci 2023; 24:13026. [PMID: 37685833 PMCID: PMC10487647 DOI: 10.3390/ijms241713026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer during pregnancy presents a delicate coexistence, imposing ethical and professional challenges on both the patient and medical team. In this study, we aimed to explore in a pre-clinical model the impact of tumour evolution in serum, placental and foetal metabolomics profiles during pregnancy in a time-course manner. Pregnant Wistar rats were distributed into two experimental groups: Control (C) and Walker-256 tumour-bearing (W). The rats were euthanised on three different gestational periods: at 12 days post-conception (dpc), at 16 dpc, and at 19 dpc. Serum, placenta and foetal metabolomic profiles were performed by 1H-NMR spectra following the analyses using Chenomx NMR Analysis Software V8.3. The tumour evolution was exponential, affecting the placental metabolomic profile during all the pregnancy stages. The placental tissue in tumour-bearing dams developed at a lower speed, decreasing the foetus's weight. Associated with the serum metabolomic changes related to tumour growth, the placental metabolomic alterations impacted many metabolic pathways related to energy provision, protein synthesis and signalling, which directly harmed the foetus's development. The development of the foetus is clearly affected by the damage induced by the tumour evolution, which alters the metabolic profile of both the serum and the placenta, impairing early embryonic development.
Collapse
Affiliation(s)
| | - Laís Rosa Viana
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil;
| | - Maria Cristina Cintra Gomes-Marcondes
- Nutrition and Cancer Laboratory, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Sao Paulo 13083-862, Brazil;
| |
Collapse
|
2
|
Heynen JP, McHugh RR, Boora NS, Simcock G, Kildea S, Austin MP, Laplante DP, King S, Montina T, Metz GAS. Urinary 1H NMR Metabolomic Analysis of Prenatal Maternal Stress Due to a Natural Disaster Reveals Metabolic Risk Factors for Non-Communicable Diseases: The QF2011 Queensland Flood Study. Metabolites 2023; 13:metabo13040579. [PMID: 37110237 PMCID: PMC10145263 DOI: 10.3390/metabo13040579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Prenatal stress alters fetal programming, potentially predisposing the ensuing offspring to long-term adverse health outcomes. To gain insight into environmental influences on fetal development, this QF2011 study evaluated the urinary metabolomes of 4-year-old children (n = 89) who were exposed to the 2011 Queensland flood in utero. Proton nuclear magnetic resonance spectroscopy was used to analyze urinary metabolic fingerprints based on maternal levels of objective hardship and subjective distress resulting from the natural disaster. In both males and females, differences were observed between high and low levels of maternal objective hardship and maternal subjective distress groups. Greater prenatal stress exposure was associated with alterations in metabolites associated with protein synthesis, energy metabolism, and carbohydrate metabolism. These alterations suggest profound changes in oxidative and antioxidative pathways that may indicate a higher risk for chronic non-communicable diseases such obesity, insulin resistance, and diabetes, as well as mental illnesses, including depression and schizophrenia. Thus, prenatal stress-associated metabolic biomarkers may provide early predictors of lifetime health trajectories, and potentially serve as prognostic markers for therapeutic strategies in mitigating adverse health outcomes.
Collapse
Affiliation(s)
- Joshua P Heynen
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Rebecca R McHugh
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Naveenjyote S Boora
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Gabrielle Simcock
- Midwifery Research Unit, Mater Research Institute, University of Queensland, Brisbane, QLD 4072, Australia
- School of Psychology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sue Kildea
- Midwifery Research Unit, Mater Research Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Molly Wardaguga Research Centre, Faculty of Health, Charles Darwin University, Alice Springs, NT 0870, Australia
| | - Marie-Paule Austin
- Perinatal and Woman's Health Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - David P Laplante
- Centre for Child Development and Mental Health, Lady Davis Institute for Medical Research, Jewish General Hospital, 4335 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E4, Canada
| | - Suzanne King
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Easton ZJW, Luo X, Li L, Regnault TRH. The impact of hyperglycemia upon BeWo trophoblast cell metabolic function: A multi-OMICS and functional metabolic analysis. PLoS One 2023; 18:e0283118. [PMID: 36930661 PMCID: PMC10022812 DOI: 10.1371/journal.pone.0283118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Pre-existing and gestationally-developed diabetes mellitus have been linked with impairments in placental villous trophoblast cell metabolic function, that are thought to underlie the development of metabolic diseases early in the lives of the exposed offspring. Previous research using placental cell lines and ex vivo trophoblast preparations have highlighted hyperglycemia is an important independent regulator of placental function. However, it is poorly understood if hyperglycemia directly influences aspects of placental metabolic function, including nutrient storage and mitochondrial respiration, that are altered in term diabetic placentae. The current study examined metabolic and mitochondrial function as well as nutrient storage in both undifferentiated cytotrophoblast and differentiated syncytiotrophoblast BeWo cells cultured under hyperglycemia conditions (25 mM glucose) for 72 hours to further characterize the direct impacts of placental hyperglycemic exposure. Hyperglycemic-exposed BeWo trophoblasts displayed increased glycogen and triglyceride nutrient stores, but real-time functional readouts of metabolic enzyme activity and mitochondrial respiratory activity were not altered. However, specific investigation into mitochondrial dynamics highlighted increased expression of markers associated with mitochondrial fission that could indicate high glucose-exposed trophoblasts are transitioning towards mitochondrial dysfunction. To further characterize the impacts of independent hyperglycemia, the current study subsequently utilized a multi-omics approach and evaluated the transcriptomic and metabolomic signatures of BeWo cytotrophoblasts. BeWo cytotrophoblasts exposed to hyperglycemia displayed increased mRNA expression of ACSL1, HSD11B2, RPS6KA5, and LAP3 and reduced mRNA expression of CYP2F1, and HK2, concomitant with increased levels of: lactate, malonate, and riboflavin metabolites. These changes highlighted important underlying alterations to glucose, glutathione, fatty acid, and glucocorticoid metabolism in BeWo trophoblasts exposed to hyperglycemia. Overall, these results demonstrate that hyperglycemia is an important independent regulator of key areas of placental metabolism, nutrient storage, and mitochondrial function, and these data continue to expand our knowledge on mechanisms governing the development of placental dysfunction.
Collapse
Affiliation(s)
- Zachary J W Easton
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Xian Luo
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London Health Science Centre-Victoria Hospital, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Li M, Wood CE, Keller-Wood M. Chronic maternal hypercortisolemia models stress-induced adverse birth outcome and altered cardiac function in newborn lambs. Am J Physiol Regul Integr Comp Physiol 2022; 323:R193-R203. [PMID: 35670476 PMCID: PMC9291417 DOI: 10.1152/ajpregu.00041.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal stress in pregnancy is thought to be a contributing factor in adverse pregnancy outcome, including stillbirth and prematurity. Previous studies in our laboratory have shown that chronic elevation in maternal cortisol concentration in ewes (by maternal infusion of 1 mg·kg-1·day-1) during the late gestion increased the incidence of stillbirth and altered fetal heart rate and blood pressure at birth. We designed the current study to test the effect of chronically elevated maternal cortisol on fetal cardiac adaption from in utero life to ex utero life. The combined risk of stillbirth or prematurity was significantly greater in the pregnancies with maternal hypercortisolemia: in this cohort, 40% of the lambs of cortisol-infused ewes died in utero or at birth compared to 25% of lambs of control ewes, and 24% of lambs of cortisol-infused ewes were born preterm, whereas no lamb was born preterm in the control group. Compared to control lambs, the lambs of cortisol-infused ewes born at full term exhibited a significant increase in mean aortic pressure just prior to birth, and a significant decrease in mean aortic pressure that was evident during the first 9 hours after birth. The QT interval was decreased prior to birth and increased immediately after birth in the newborns of cortisol-treated ewes compared to control lambs. These findings suggest that an excess in utero corticosteroid exposure adversely affects fetal cardiac adaptation to extrauterine life and that chronic maternal stress or hypersecretion of corticosteroids may contribute to adverse obstetric outcomes.
Collapse
Affiliation(s)
- Mengchen Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainsville, FL, United States
| |
Collapse
|
6
|
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022; 14:nu14112304. [PMID: 35684104 PMCID: PMC9182938 DOI: 10.3390/nu14112304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids have an important role in development of the metabolic phenotype in utero. They act as environmental and maturational signals in adapting feto-placental metabolism to maximize the chances of survival both before and at birth. They influence placental nutrient handling and fetal metabolic processes to support fetal growth, fuel storage and energy production with respect to nutrient availability. More specifically, they regulate the transport, utilization and production of a range of nutrients by the feto-placental tissues that enables greater metabolic flexibility in utero while minimizing any further drain on maternal resources during periods of stress. Near term, the natural rise in fetal glucocorticoid concentrations also stimulates key metabolic adaptations that prepare tissues for the new energy demanding functions after birth. Glucocorticoids, therefore, have a central role in the metabolic communication between the mother, placenta and fetus that optimizes offspring metabolic phenotype for survival to reproductive age. This review discusses the effects of maternal and fetal glucocorticoids on the supply and utilization of nutrients by the feto-placental tissues with particular emphasis on studies using quantitative methods to assess metabolism in rodents and sheep in vivo during late pregnancy. It considers the routes of glucocorticoid overexposure in utero, including experimental administration of synthetic glucocorticoids, and the mechanisms by which these hormones control feto-placental metabolism at the molecular, cellular and systems levels. It also briefly examines the consequences of intrauterine glucocorticoid overexposure for postnatal metabolic health and the generational inheritance of metabolic phenotype.
Collapse
Affiliation(s)
- Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Correspondence:
| | - Owen R. Vaughan
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK;
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
7
|
Zhang L, Bi S, Liang Y, Huang L, Li Y, Huang M, Huang B, Deng W, Liang J, Gu S, Chen J, Du L, Chen D, Wang Z. Integrated Metabolomic and Lipidomic Analysis in the Placenta of Preeclampsia. Front Physiol 2022; 13:807583. [PMID: 35185616 PMCID: PMC8854797 DOI: 10.3389/fphys.2022.807583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 01/31/2023] Open
Abstract
Preeclampsia is one of the most common severe pregnancy complications in obstetrics, which is considered a placental source disease. However, the mechanisms underlying preeclampsia remain largely unknown. In this study, UPLC-MS/MS-based metabolomic and lipidomic analysis was used to explore the characteristic placental metabolites in preeclampsia. The results revealed that there were significant changes in metabolites between preeclampsia and normotensive placentas. Weighted correlation network analysis (WGCNA) identified the correlation network module of metabolites highly related to preeclampsia and the clinical traits reflecting disease severity. The metabolic perturbations were primarily associated with glycerophospholipid and glutathione metabolism, which might influent membrane structures of organisms and mitochondria function. Using linear models, three metabolites had an area under receiver operating characteristic curves (AUROC) ≥ 0.80 and three lipids had an AUROC ≥ 0.90. Therefore, metabolomics and lipidomics may offer a novel insight for a better understanding of preeclampsia and provide a useful molecular mechanism underlying preeclampsia.
Collapse
Affiliation(s)
- Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shilei Bi
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulian Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minshan Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoying Huang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weinan Deng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingying Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shifeng Gu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- *Correspondence: Lili Du,
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
- Dunjin Chen,
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Zhijian Wang,
| |
Collapse
|
8
|
Joseph S, Li M, Zhang S, Horne L, Stacpoole PW, Wohlgemuth SE, Edison AS, Wood C, Keller-Wood M. Sodium dichloroacetate stimulates cardiac mitochondrial metabolism and improves cardiac conduction in the ovine fetus during labor. Am J Physiol Regul Integr Comp Physiol 2022; 322:R83-R98. [PMID: 34851727 PMCID: PMC8791792 DOI: 10.1152/ajpregu.00185.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies in our laboratory have suggested that the increase in stillbirth in pregnancies complicated by chronic maternal stress or hypercortisolemia is associated with cardiac dysfunction in late stages of labor and delivery. Transcriptomics analysis of the overly represented differentially expressed genes in the fetal heart of hypercortisolemic ewes indicated involvement of mitochondrial function. Sodium dichloroacetate (DCA) has been used to improve mitochondrial function in several disease states. We hypothesized that administration of DCA to laboring ewes would improve both cardiac mitochondrial activity and cardiac function in their fetuses. Four groups of ewes and their fetuses were studied: control, cortisol-infused (1 g/kg/day from 115 to term; CORT), DCA-treated (over 24 h), and DCA + CORT-treated; oxytocin was delivered starting 48 h before the DCA treatment. DCA significantly decreased cardiac lactate, alanine, and glucose/glucose-6-phosphate and increased acetylcarnitine/isobutyryl-carnitine. DCA increased mitochondrial activity, increasing oxidative phosphorylation (PCI, PCI + II) per tissue weight or per unit of citrate synthase. DCA also decreased the duration of the QRS, attenuating the prolongation of the QRS observed in CORT fetuses. The effect to reduce QRS duration with DCA treatment correlated with increased glycerophosphocholine and serine and decreased phosphorylcholine after DCA treatment. There were negative correlations of acetylcarnitine/isobutyryl-carnitine to both heart rate (HR) and mean arterial pressure (MAP). These results suggest that improvements in mitochondrial respiration with DCA produced changes in the cardiac lipid metabolism that favor improved conduction in the heart. DCA may therefore be an effective treatment of fetal cardiac metabolic disturbances in labor that can contribute to impairments of fetal cardiac conduction.
Collapse
Affiliation(s)
- Serene Joseph
- 1Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Mengchen Li
- 2Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Sicong Zhang
- 3Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lloyd Horne
- 4Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Peter. W. Stacpoole
- 4Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Stephanie E. Wohlgemuth
- 5Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, Florida
| | - Arthur S. Edison
- 3Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Charles Wood
- 2Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Maureen Keller-Wood
- 1Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| |
Collapse
|
9
|
Mohammad S, Bhattacharjee J, Vasanthan T, Harris CS, Bainbridge SA, Adamo KB. Metabolomics to understand placental biology: Where are we now? Tissue Cell 2021; 73:101663. [PMID: 34653888 DOI: 10.1016/j.tice.2021.101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Metabolomics, the application of analytical chemistry methodologies to survey the chemical composition of a biological system, is used to globally profile and compare metabolites in one or more groups of samples. Given that metabolites are the terminal end-products of cellular metabolic processes, or 'phenotype' of a cell, tissue, or organism, metabolomics is valuable to the study of the maternal-fetal interface as it has the potential to reveal nuanced complexities of a biological system as well as differences over time or between individuals. The placenta acts as the primary site of maternal-fetal exchange, the success of which is paramount to growth and development of offspring during pregnancy and beyond. Although the study of metabolomics has proven moderately useful for the screening, diagnosis, and understanding of the pathophysiology of pregnancy complications, the placental metabolome in the context of a healthy pregnancy remains poorly characterized and understood. Herein, we discuss the technical aspects of metabolomics and review the current literature describing the placental metabolome in human and animal models, in the context of health and disease. Finally, we highlight areas for future opportunities in the emerging field of placental metabolomics.
Collapse
Affiliation(s)
- S Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - J Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - T Vasanthan
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - C S Harris
- Department of Biology & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - S A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - K B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|