1
|
List EO, Berryman DE, List BP, Kopchick JJ. Early Investigations of 20-kDa Human Placental GH Show Promise. Endocr Metab Immune Disord Drug Targets 2023; 23:1674-1677. [PMID: 37190799 PMCID: PMC11483157 DOI: 10.2174/1871530323666230515153130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Brian P. List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
2
|
Young JA, Zhu S, List EO, Duran-Ortiz S, Slama Y, Berryman DE. Musculoskeletal Effects of Altered GH Action. Front Physiol 2022; 13:867921. [PMID: 35665221 PMCID: PMC9160929 DOI: 10.3389/fphys.2022.867921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH’s effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.
Collapse
Affiliation(s)
- Jonathan A. Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Shouan Zhu
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | | | - Yosri Slama
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Darlene E. Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- *Correspondence: Darlene E. Berryman,
| |
Collapse
|
3
|
Vickers MH, Perry JK. The 20-kDa Placental GH Variant: A New and Improved Growth Hormone? Endocrinology 2020; 161:5902562. [PMID: 32894774 DOI: 10.1210/endocr/bqaa147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
List EO, Berryman DE, Basu R, Buchman M, Funk K, Kulkarni P, Duran-Ortiz S, Qian Y, Jensen EA, Young JA, Yildirim G, Yakar S, Kopchick JJ. The Effects of 20-kDa Human Placental GH in Male and Female GH-deficient Mice: An Improved Human GH? Endocrinology 2020; 161:5859553. [PMID: 32556100 PMCID: PMC7375802 DOI: 10.1210/endocr/bqaa097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
A rare 20K isoform of GH-V (here abbreviated as GHv) was discovered in 1998. To date, only 1 research article has characterized this isoform in vivo, observing that GHv treatment in male high-fat fed rats had several GH-like activities, but unlike GH lacked diabetogenic and lactogenic activities and failed to increase IGF-1 or body length. Therefore, the current study was conducted to further characterize the in vivo activities of GHv in a separate species and in a GH-deficient model (GH-/- mice) and with both sexes represented. GHv-treated GH-/- mice had significant increases to serum IGF-1, femur length, body length, body weight, and lean body mass and reduced body fat mass similar to mice receiving GH treatment. GH treatment increased circulating insulin levels and impaired insulin sensitivity; in contrast, both measures were unchanged in GHv-treated mice. Since GHv lacks prolactin receptor (PRLR) binding activity, we tested the ability of GH and GHv to stimulate the proliferation of human cancer cell lines and found that GHv has a decreased proliferative response in cancers with high PRLR. Our findings demonstrate that GHv can stimulate insulin-like growth factor-1 and subsequent longitudinal body growth in GH-deficient mice similar to GH, but unlike GH, GHv promoted growth without inhibiting insulin action and without promoting the growth of PRLR-positive cancers in vitro. Thus, GHv may represent improvements to current GH therapies especially for individuals at risk for metabolic syndrome or PRLR-positive cancers.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens, Ohio
- Correspondence: Edward O. List, PhD, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701. E-mail:
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - Mathew Buchman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | | | | | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | | | | | - Gozde Yildirim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio
| |
Collapse
|
5
|
Rigamonti AE, Haenelt M, Bidlingmaier M, De Col A, Tamini S, Tringali G, De Micheli R, Abbruzzese L, Goncalves da Cruz CR, Bernardo-Filho M, Cella SG, Sartorio A. Obese adolescents exhibit a constant ratio of GH isoforms after whole body vibration and maximal voluntary contractions. BMC Endocr Disord 2018; 18:96. [PMID: 30587244 PMCID: PMC6307112 DOI: 10.1186/s12902-018-0323-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Growth hormone (GH) is a heterogeneous protein composed of several molecular isoforms, the most abundant ones being the 22 kDa- and 20 kDa-GH. Exercise-induced secretion of GH isoforms has been extensively investigated in normal-weight individuals due to antidoping purposes, particularly recombinant human GH (rhGH) abuse. On the other hand, the evaluation of exercise-induced responses in GH isoforms has never been performed in obese subjects. METHODS The acute effects of whole body vibration (WBV) or maximal voluntary contraction (MVC) alone and the combination of MVC with WBV (MVC + WBV) on circulating levels of 22 kDa- and 20 kDa-GH were evaluated in 8 obese male adolescents [mean age ± SD: 17.1 ± 3.3 yrs.; weight: 107.4 ± 17.8 kg; body mass index (BMI): 36.5 ± 6.6 kg/m2; BMI standard deviation score (SDS): 3.1 ± 0.6]. RESULTS MVC (alone or combined with WBV) significantly stimulated 22 kDa- and 20 kDa-GH secretion, while WBV alone was ineffective. In particular, 22 kDa- and 20 kDa-GH peaks were significantly higher after MVC + WBV and MVC than WBV. In addition, 22 kDa-GH (but not 20 kDa-GH) peak was significantly higher after MVC + WBV than MVC. Importantly, the ratio of circulating levels of 22 kDa- to 20 kDa-GH was constant throughout the time window of evaluation after exercise and similar among the three different protocols of exercise. CONCLUSIONS The results of the present study confirm the ability of MVC, alone and in combination with WBV, to stimulate both 22 kDa- and 20 kDa-GH secretion in obese patients, these responses being related to the exercise workload. Since the ratio of 22 kDa- to 20 kDa-GH is constant after exercise and independent from the protocols of exercise as in normal-weight subjects, hyposomatotropism in obesity does not seem to depend on an unbalance of circulating GH isoforms. Since the present study was carried out in a small cohort of obese sedentary adolescents, these preliminary results should be confirmed in further future studies enrolling overweight/obese subjects with a wider age range.
Collapse
Affiliation(s)
- A. E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M. Haenelt
- Endocrine Research Laboratories, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - M. Bidlingmaier
- Endocrine Research Laboratories, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - A. De Col
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - S. Tamini
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - G. Tringali
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - R. De Micheli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - L. Abbruzzese
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
- Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| | - C. R. Goncalves da Cruz
- Departamento de Biofisica e Biometria, Laboratório de Vibrações Mecânicas e Praticas Integrativas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Bernardo-Filho
- Departamento de Biofisica e Biometria, Laboratório de Vibrações Mecânicas e Praticas Integrativas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S. G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A. Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
- Istituto Auxologico Italiano, IRCCS, Division of Auxology and Metabolic Diseases, Verbania, Italy
| |
Collapse
|
6
|
Ribeiro de Oliveira Longo Schweizer J, Ribeiro-Oliveira A, Bidlingmaier M. Growth hormone: isoforms, clinical aspects and assays interference. Clin Diabetes Endocrinol 2018; 4:18. [PMID: 30181896 PMCID: PMC6114276 DOI: 10.1186/s40842-018-0068-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 11/11/2022] Open
Abstract
The measurement of circulating concentrations of growth hormone (GH) is an indispensable tool in the diagnosis of both GH deficiency and GH excess. GH is a heterogeneous protein composed of several molecular isoforms, but the physiological role of these different isoforms has not yet been fully understood. The 22KD GH (22 K-GH) is the main isoform in circulation, followed by 20KD GH (20 K-GH) and other rare isoforms. Studies have been performed to better understand the biological actions of the different isoforms as well as their importance in pathological conditions. Generally, the non-22 K- and 20 K-GH isoforms are secreted in parallel to 22 K-GH, and only very moderate changes in the ratio between isoforms have been described in some pituitary tumors or during exercise. Therefore, in a diagnostic approach, concentrations of 22 K-GH accurately reflect total GH secretion. On the other hand, the differential recognition of GH isoforms by different GH immunoassays used in clinical routine contributes to the known discrepancy in results from different GH assays. This makes the application of uniform decision limits problematic. Therefore, the worldwide efforts to standardize GH assays include the recommendation to use 22 K-GH specific GH assays calibrated against the pure 22 K-GH reference preparation 98/574. Adoption of this recommendation might lead to improvement in diagnosis and follow-up of pathological conditions, and facilitate the comparison of results from different laboratories.
Collapse
Affiliation(s)
| | - Antônio Ribeiro-Oliveira
- 1Endocrinology Laboratory of Federal University of Minas Gerais. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, 30130-100 Brazil
| | - Martin Bidlingmaier
- 2Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany
| |
Collapse
|
7
|
Liao S, Vickers MH, Stanley JL, Baker PN, Perry JK. Human Placental Growth Hormone Variant in Pathological Pregnancies. Endocrinology 2018; 159:2186-2198. [PMID: 29659791 DOI: 10.1210/en.2018-00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH), an endocrine hormone, primarily secreted from the anterior pituitary, stimulates growth, cell reproduction, and regeneration and is a major regulator of postnatal growth. Humans have two GH genes that encode two versions of GH proteins: a pituitary version (GH-N/GH1) and a placental GH-variant (GH-V/GH2), which are expressed in the syncytiotrophoblast and extravillous trophoblast cells of the placenta. During pregnancy, GH-V replaces GH-N in the maternal circulation at mid-late gestation as the major circulating form of GH. This remarkable change in spatial and temporal GH secretion patterns is proposed to play a role in mediating maternal adaptations to pregnancy. GH-V is associated with fetal growth, and its circulating concentrations have been investigated across a range of pregnancy complications. However, progress in this area has been hindered by a lack of readily accessible and reliable assays for measurement of GH-V. This review will discuss the potential roles of GH-V in normal and pathological pregnancies and will touch on the assays used to quantify this hormone.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
8
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
9
|
Liao S, Vickers MH, Stanley JL, Ponnampalam AP, Baker PN, Perry JK. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology 2016; 157:1175-86. [PMID: 26671184 DOI: 10.1210/en.2015-1718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human placental GH variant (GH-V) is secreted continuously from the syncytiotrophoblast layer of the placenta during pregnancy and is thought to play a key role in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V administration on maternal and fetal growth and metabolic outcomes during pregnancy, we examined the dose-response relationship for GH-V administration in a mouse model of normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V (0.25, 1, 2, or 5 mg/kg · d) by osmotic pump from gestational days 12.5 to 18.5. Fetal linear growth was slightly reduced in the 5 mg/kg dose compared with vehicle and the 0.25 mg/kg groups, respectively, whereas placental weight was not affected. GH-V treatment did not affect maternal body weights or food intake. However, treatment with 5 mg/kg · d significantly increased maternal fasting plasma insulin concentrations with impaired insulin sensitivity observed at day 18.5 as assessed by homeostasis model assessment. At 5 mg/kg · d, there was also an increase in maternal hepatic GH receptor/binding protein (Ghr/Ghbp) and IGF binding protein 3 (Igfbp3) mRNA levels, but GH-V did not alter maternal plasma IGF-1 concentrations or hepatic Igf-1 mRNA expression. Our findings suggest that at higher doses, GH-V treatment can cause hyperinsulinemia and is a likely mediator of the insulin resistance associated with late pregnancy.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Mark H Vickers
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Joanna L Stanley
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Anna P Ponnampalam
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Philip N Baker
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Jo K Perry
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
10
|
Vakili H, Jin Y, Menticoglou S, Cattini PA. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity. J Biol Chem 2013; 288:22849-61. [PMID: 23782703 DOI: 10.1074/jbc.m113.474999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, Division of Endocrinology and Metabolic Disease, University of Manitoba, Winnipeg R3E 0J9, Canada
| | | | | | | |
Collapse
|
11
|
Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011; 18:409-16. [PMID: 21986512 DOI: 10.1097/med.0b013e32834c800d] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To examine the roles of the placental and pituitary hormones in the control of maternal metabolism and fetal growth. RECENT FINDINGS In addition to promoting growth of maternal tissues, placental growth hormone (GH-V) induces maternal insulin resistance and thereby facilitates the mobilization of maternal nutrients for fetal growth. Human placental lactogen (hPL) and prolactin increase maternal food intake by induction of central leptin resistance and promote maternal beta-cell expansion and insulin production to defend against the development of gestational diabetes mellitus. The effects of the lactogens are mediated by diverse signaling pathways and are potentiated by glucose. Pathologic conditions of pregnancy are associated with dysregulation of GH-V and hPL gene expression. SUMMARY The somatogenic and lactogenic hormones of the placenta and maternal pituitary gland integrate the metabolic adaptations of pregnancy with the demands of fetal and neonatal development. Dysregulation of placental growth hormone and/or placental lactogen in pathologic conditions of pregnancy may adversely impact fetal growth and postnatal metabolic function.
Collapse
Affiliation(s)
- Dorothee Newbern
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|