1
|
Zhang J, Zhao L, Li Y, Dong H, Zhang H, Zhang Y, Ma T, Yang L, Gao D, Wang X, Jiang H, Li C, Wang A, Jin Y, Chen H. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. Am J Physiol Cell Physiol 2021; 322:C231-C245. [PMID: 34936504 DOI: 10.1152/ajpcell.00267.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chen X, Wu M, Liang N, Lu J, Qu S, Chen H. Thyroid Hormone-Regulated Expression of Period2 Promotes Liver Urate Production. Front Cell Dev Biol 2021; 9:636802. [PMID: 33869182 PMCID: PMC8047155 DOI: 10.3389/fcell.2021.636802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
The relationship between thyroid hormones and serum urate is unclear. Our aim is to analyze the correlation between uric acid and thyroid hormones in gout patients and to explore the effect and mechanism of triiodothyronine on liver uric acid production. Eighty men patients with gout were selected to analyze the correlation between blood urate and thyroid function-related hormone levels. Stepwise multiple linear regression was used to analyze factors affecting blood urate in patients with gout. Levels of urate in serum, liver, and cell culture supernatant were measured after triiodothyronine treatment. Purine levels (adenine, guanine, and hypoxanthine) were also measured. Expression levels of Period2 and nucleotide metabolism enzymes were analyzed after triiodothyronine treatment and Period2-shRNA lentivirus transduction. Chromatin immunoprecipitation was used to analyze the effects of triiodothyronine and thyroid hormone receptor-β on Period2 expression. The results showed that in patients FT3 influenced the serum urate level. Furthermore, urate level increased in mouse liver and cell culture supernatant following treatment with triiodothyronine. Purine levels in mouse liver increased, accompanied by upregulation of enzymes involved in nucleotide metabolism. These phenomena were reversed in Period2 knockout mice. Triiodothyronine promoted the binding of thyroid hormone receptor-β to the Period2 promoter and subsequent transcription of Period2. Triiodothyronine also enhanced nuclear expression of Sirt1, which synergistically enhanced Period2 expression. The study demonstrated that triiodothyronine is independently positively correlated with serum urate and liver uric acid production through Period2, providing novel insights into the purine metabolism underlying hyperuricemia/gout pathophysiology.
Collapse
Affiliation(s)
- Xiaoting Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mian Wu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nan Liang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junxi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Wang F, Xie N, Wu Y, Zhang Q, Zhu Y, Dai M, Zhou J, Pan J, Tang M, Cheng Q, Shi B, Guo Q, Li X, Xie L, Wang B, Yang D, Weng Q, Guo L, Ye J, Pan M, Zhang S, Zhou H, Zhen C, Liu P, Ning K, Brackenridge L, Hardiman PJ, Qu F. Association between circadian rhythm disruption and polycystic ovary syndrome. Fertil Steril 2020; 115:771-781. [PMID: 33358334 DOI: 10.1016/j.fertnstert.2020.08.1425] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the association of circadian rhythm disruption with polycystic ovary syndrome (PCOS) and the potential underlying mechanism in ovarian granulosa cells (GCs). DESIGN Multicenter questionnaire-based survey, in vivo and ex vivo studies. SETTING Twelve hospitals in China, animal research center, and research laboratory of a women's hospital. PATIENTS/ANIMALS A total of 436 PCOS case subjects and 715 control subjects were recruited for the survey. In vivo and ex vivo studies were conducted in PCOS-model rats and on ovarian GCs collected from women with PCOS and control subjects. INTERVENTION(S) The PCOS rat model was established with the use of testosterone propionate. MAIN OUTCOME MEASURE(S) Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), RNA sequencing, rhythmicity analysis, functional enrichment analysis. RESULT(S) There was a significant correlation between night shift work and PCOS. PCOS-model rats presented distinct differences in the circadian variation of corticotropin-releasing hormone, adrenocorticotropic hormone, prolactin, and a 4-h phase delay in thyrotropic hormone levels. The motif enrichment analysis of ATAC-seq revealed the absence of clock-related transcription factors in specific peaks of PCOS group, and RNA sequencing ex vivo at various time points over 24 hours demonstrated the differential rhythmic expression patterns of women with PCOS. Kyoto Encyclopedia of Genes and Genomes analysis further highlighted metabolic dysfunction, including both carbohydrate and amino acid metabolism and the tricarboxylic acid cycle. CONCLUSION(S) There is a significant association of night shift work with PCOS, and genome-wide chronodisruption exists in ovarian GCs.
Collapse
Affiliation(s)
- Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Institute for Women's Health, University College London, London, United Kingdom
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuhang Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Minchen Dai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China; Institute for Women's Health, University College London, London, United Kingdom
| | - Jiexue Pan
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mengling Tang
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Qi Cheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Biwei Shi
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qinyuan Guo
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Xinling Li
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Lifeng Xie
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Bing Wang
- Second Hospital of Jiaxing, Jiaxing, China
| | - Dongxia Yang
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Weng
- First People's Hospital of Yuhang District of Hangzhou, Hangzhou, China
| | - Lanzhong Guo
- Dongyang Women's and Children's Hospital, Dongyang, China
| | - Jisheng Ye
- Dongyang Women's and Children's Hospital, Dongyang, China
| | - Mingwo Pan
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuyi Zhang
- Baiyin City Maternity and Childcare Hospital, Baiyin, China
| | - Hua Zhou
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cailan Zhen
- People's Hospital of Lucheng, Lucheng, China
| | - Ping Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second Hospital, Chengdu, People's Republic of China
| | - Ke Ning
- Department of Social Science, Institute of Education, University College London, London, United Kingdom
| | - Lisa Brackenridge
- Institute for Women's Health, University College London, London, United Kingdom
| | - Paul J Hardiman
- Institute for Women's Health, University College London, London, United Kingdom
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Institute for Women's Health, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Cai C, Cai P, Chu G. Selection of suitable reference genes for core clock gene expression analysis by real-time qPCR in rat ovary granulosa cells. Mol Biol Rep 2019; 46:2941-2946. [PMID: 31016616 DOI: 10.1007/s11033-019-04755-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/08/2019] [Indexed: 01/19/2023]
Abstract
Selection of a suitable endogenous reference gene is essential for investigating expression of clock genes Bmal1, Clock, Pers, Crys, Rev-erbα/β, and RORα/β/γ involved in the circadian system. In this study, we treated rat ovary granulosa cells with dexamethasone to synchronize circadian oscillation in vitro and determined expression levels of Bmal1 and Per2 and six candidate reference genes (Actb, Beta actin; B2m, Beta-2-microglobulin; Ppia, Cyclophilin A; Gapdh, Glyceraldehyde-3-phosphate dehydrogenase; Hprt, Hypoxanthine guanine phosphoribosyl transferase and Tbp, TATA-box-binding protein) using quantitative real-time PCR. We then employed three software programs, GeNorm, NormFinder, and BestKeeper, to analyze the expression data for the selection of the best reference gene. According to GeNorm, Tbp and B2m were assessed as the most stable reference genes; Tbp and Hprt were best by NormFinder and BestKeeper, respectively. Thus, we recommend Tbp as the most suitable reference gene for studying clock genes expression in rat ovary granulosa cells in vitro.
Collapse
Affiliation(s)
- Chuanjiang Cai
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Pengpeng Cai
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
6
|
Nagao S, Iwata N, Soejima Y, Takiguchi T, Aokage T, Kozato Y, Nakano Y, Nada T, Hasegawa T, Otsuka F. Interaction of ovarian steroidogenesis and clock gene expression modulated by bone morphogenetic protein-7 in human granulosa cells. Endocr J 2019; 66:157-164. [PMID: 30518737 DOI: 10.1507/endocrj.ej18-0423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A functional link between clock gene expression and ovarian steroidogenesis was studied using human granulosa KGN cells. Similarities between changes in the mRNA and protein expression levels of Bmal1 and Clock and those of Per2 and Cry1 were found in KGN cells after treatment with forskolin. Among the interrelationships between the expression levels of clock and steroidogenic factors, Clock mRNA had a strongly positive correlation with P450arom and a negative correlation with 3βHSD. Knockdown of Clock gene by siRNA resulted in a significant reduction of estradiol production by inhibiting P450arom expression, while it induced a significant increase of progesterone production by upregulating 3βHSD in KGN cells treated with forskolin. Moreover, BMP-7 had an enhancing effect on the expression of Clock mRNA and protein in KGN cells. Thus, the expression levels of Clock, being upregulated by forskolin and BMP-7, were functionally linked to estradiol production and progesterone suppression by human granulosa cells.
Collapse
Affiliation(s)
- Satoko Nagao
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takaaki Takiguchi
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Tamami Aokage
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yuka Kozato
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
7
|
Peliciari-Garcia RA, Bargi-Souza P, Young ME, Nunes MT. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int 2017; 35:147-159. [PMID: 29111822 DOI: 10.1080/07420528.2017.1388253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myocardial gene expression and metabolism fluctuate over the course of the day in association with changes in energy supply and demand. Time-of-day-dependent oscillations in myocardial processes have been linked to the intrinsic cardiomyocyte circadian clock. Triiodothyronine (T3) is an important modulator of heart metabolism and function. Recently, our group has reported time-of-day-dependent rhythms in cardiac T3 sensitivity, as well as, T3-mediated acute alterations on core clock components. Hypo and hyperthyroidism are the second most prevalent endocrine disease worldwide. Considering the importance of the cardiomyocyte circadian clock and T3 to cardiac physiology, the aim of this study was to investigate the consequences of chronic hypo and hyperthyroidism on 24-h rhythms of circadian clock genes in the heart. Hypo and hyperthyroidism was induced in rats by thyroidectomy (Tx) and i.p. injections of supraphysiological dose of T3, respectively. Here we report alterations in mRNA levels of the major core clock components (Bmal1, Per2, Nr1d1, and Rora) for both experimental conditions (with the exception of Per2 during hyperthyroid condition). Oscillations in mRNA levels of key glucose and fatty-acid metabolism genes known to be clock controlled (Pdk4, Ucp3, Acot1, and Cd36) were equally affected by the experimental conditions, especially during the hypothyroid state. These findings suggest that chronic alterations in thyroid status significantly impacts 24-h rhythms in circadian clock and metabolic genes in the heart. Whether these perturbations contribute toward the pathogenesis of cardiac dysfunction associated with hypo and hyperthyroidism requires further elucidation.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- a Morphophysiology & Pathology Sector, Department of Biological Sciences , Federal University of São Paulo , Diadema , Brazil.,b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Paula Bargi-Souza
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Martin E Young
- c Division of Cardiovascular Diseases, Department of Medicine , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Maria Tereza Nunes
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
8
|
Shimizu T, Watanabe K, Anayama N, Miyazaki K. Effect of lipopolysaccharide on circadian clock genes Per2 and Bmal1 in mouse ovary. J Physiol Sci 2017; 67:623-628. [PMID: 28213822 PMCID: PMC10717690 DOI: 10.1007/s12576-017-0532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022]
Abstract
In mammals, circadian rhythms are associated with multiple physiological events. The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on circadian systems in the ovary. Immature female mice were received an intra-peritoneal injection of equine chorionic gonadotropin (eCG) and LPS. Total RNA was collected from the ovary at 6-h intervals throughout a 48 h of experimental period. The expression of the circadian genes period 2 (Per2) and brain and muscle ARNT-like 1 (Bmal1) such as circadian genes was measured by quantitative PCR. Although expression of Per2 and Bmal1 in the ovary did not display clear diurnal oscillation, LPS suppressed the amplitude of Per2 expression. Additionally, LPS inhibited the expression of cytochrome P450 aromatase (CYP19) and luteinizing hormone receptor (LHr) genes in the ovary of eCG-treated mice. Our data suggest that Per2 may be associated with the inhibition of CYP19 and LHr expression by LPS in the ovaries of immature mice.
Collapse
Affiliation(s)
- Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan.
| | - Kaya Watanabe
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan
| | - Nozomi Anayama
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan
| | - Koyomi Miyazaki
- Biomedical Research Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 3058568, Japan
| |
Collapse
|
9
|
Chen M, Xu Y, Miao B, Zhao H, Gao J, Zhou C. Temporal effects of human chorionic gonadotropin on expression of the circadian genes and steroidogenesis-related genes in human luteinized granulosa cells. Gynecol Endocrinol 2017; 33:570-573. [PMID: 28277108 DOI: 10.1080/09513590.2017.1296423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE It has been shown in animal models that circadian clock exists in corpora luteum which is essential for maintaining pregnancy. However, it is unknown whether circadian clock exists in corpora luteum and its relation with steroidogenesis in human ovary. STUDY DESIGN Human luteinized granulosa cells from patients who underwent in vitro fertilization treatment were purified and cultured in vitro. Accumulation patterns of circadian gene and steroidogenesis-related gene mRNAs in human luteinized granulosa cells were observed during the 48 hours after treatment with human chorionic gonadotropin (hCG) by quantitative PCR. RESULTS We found that the circadian genes CLOCK, PER2, and BMAL1 were expressed in cultured human luteinized granulosa cells. Among these genes, only expression of PER2 displayed oscillating patterns with a 16-h period in these cells after stimulation by hCG. Expression of CLOCK and BMAL1 did not show significant oscillating patterns. Expression of the steroidal acute regulatory protein (STAR) gene showed an oscillating pattern that was similar to that of PER2. Expression of CYP11A1, HSD3B2, and CYP19A1 increased significantly after hCG stimulation; however, none of these genes displayed significant oscillating patterns. CONCLUSIONS Molecular circadian clock exists in human luteinized granulosa cells and may be related with steroidogenesis in human ovary.
Collapse
Affiliation(s)
- Minghui Chen
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Yanwen Xu
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Benyu Miao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Hui Zhao
- b Department of Hepatic Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China
| | - Jun Gao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Canquan Zhou
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| |
Collapse
|
10
|
Zhang Z, Lai S, Wang Y, Li L, Yin H, Wang Y, Zhao X, Li D, Yang M, Zhu Q. Rhythmic expression of circadian clock genes in the preovulatory ovarian follicles of the laying hen. PLoS One 2017; 12:e0179019. [PMID: 28604799 PMCID: PMC5467841 DOI: 10.1371/journal.pone.0179019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
The circadian clock is reported to play a role in the ovaries in a variety of vertebrate species, including the domestic hen. However, the ovary is an organ that changes daily, and the laying hen maintains a strict follicular hierarchy. The aim of this study was to examine the spatial-temporal expression of several known canonical clock genes in the granulosa and theca layers of six hierarchy follicles. We demonstrated that the granulosa cells (GCs) of the F1-F3 follicles harbored intrinsic oscillatory mechanisms in vivo. In addition, cultured granulosa cells (GCs) from F1 follicles exposed to luteinizing hormone (LH) synchronization displayed Per2 mRNA oscillations, whereas, the less mature GCs (F5 plus F6) displayed no circadian change in Per2 mRNA levels. Cultures containing follicle-stimulating hormone (FSH) combined with LH expressed levels of Per2 mRNA that were 2.5-fold higher than those in cultures with LH or FSH alone. These results show that there is spatial specificity in the localization of clock cells in hen preovulatory follicles. In addition, our results support the hypothesis that gonadotropins provide a cue for the development of the functional cellular clock in immature GCs.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Shuang Lai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yagang Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Liang Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Xiaoling Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
- * E-mail:
| |
Collapse
|
11
|
Chen H, Gao L, Xiong Y, Yang D, Li C, Wang A, Jin Y. Circadian clock and steroidogenic-related gene expression profiles in mouse Leydig cells following dexamethasone stimulation. Biochem Biophys Res Commun 2017; 483:294-300. [PMID: 28025148 DOI: 10.1016/j.bbrc.2016.12.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that circadian clock genes are expressed in mammalian testes; however, it remains unclear if the expression patterns of these genes are cyclic. Furthermore, it is unknown whether Leydig cells, the primary androgen secreting cells in the testis, play a role in the rhythmicity of circadian clock and steroidogenic-related gene transcription. Here, we examine the circadian clock of mouse Leydig cells, and the link to steroidogenic-related gene transcription. We confirm, via sampling over a full circadian time (CT) period, a lack of circadian rhythmicity in mouse testes in comparison with the robust gene expression cycling of circadian clock genes in mouse livers. Immunofluorescence imaging of mouse testes collected at CT0 and CT12 show that the BMAL1 protein is exclusively expressed in mouse Leydig cells, and clearly linked to the circadian oscillation. Furthermore, dexamethasone treatment synchronized the expression of several of these canonical circadian clock and steroidogenic-related genes. Bioinformatic analyses revealed the presence of several circadian clock-related sequence motifs in the promoters of these steroidogenic-related genes. Our results suggest mouse Leydig cells may contain a functional circadian oscillator and the circadian clockwork in mouse Leydig cells regulates steroidogenic-related gene transcription by binding to the E-box, RORE, and D-box motifs in their promoters. However, additional research is required to determine the specific molecular mechanisms involved.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongjie Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Sen A, Sellix MT. The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility. Endocrinology 2016; 157:3366-73. [PMID: 27501186 DOI: 10.1210/en.2016-1450] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The internal or circadian timing system is deeply integrated in female reproductive physiology. Considerable details of rheostatic timing function in the neuroendocrine control of pituitary hormone secretion, adenohypophyseal hormone gene expression and secretion, gonadal steroid hormone biosynthesis and secretion, ovulation, implantation, and parturition have been reported. The molecular clock, an autonomous feedback loop oscillator of interacting transcriptional regulators, dictates the timing and amplitude of gene expression in each tissue of the female hypothalamic-pituitary-gonadal (HPG) axis. Although multiple targets of the molecular clock have been identified, many associated with critical physiological functions in the HPG axis, the full extent of clock-driven gene expression and physiology in this critical system remains unknown. Environmental circadian disruption (ECD), the disturbance of temporal relationships within and between internal clocks (brain and periphery), and external timing cues (eg, light, nutrients, social cues) due to rotating/night shift work or transmeridian travel have been linked to reproductive dysfunction and subfertility. Moreover, ECD resulting from exposure to endocrine disrupting chemicals, environmental toxins, and/or irregular hormone levels during sexual development can also reduce fertility. Thus, perturbations that disturb clock function at the molecular, cellular or systemic level correlate with significant declines in female reproductive function. Here we briefly review the evidence for molecular clock function in each tissue of the female HPG axis (GnRH neuron, pituitary, uterus, oviduct, and ovary), describe the human epidemiological and animal data supporting the negative effects of ECD on fertility, and explore the potential for novel chronotherapeutics in women's health and fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester New York 14642
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester New York 14642
| |
Collapse
|
13
|
Zhang J, Liu J, Zhu K, Hong Y, Sun Y, Zhao X, Du Y, Chen ZJ. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS. Endocrine 2016; 53:574-84. [PMID: 27117143 DOI: 10.1007/s12020-016-0961-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/14/2016] [Indexed: 01/24/2023]
Abstract
Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and has been found to be essential to follicle growth and steroidogenesis. Sirtuin1 (SIRT1) has been reported to interact with BMAL1 and function in a circadian manner. Evidence has shown that SIRT1 regulates aromatase expression in estrogen-producing cells. We aimed to ascertain if there is a relationship between polycystic ovary syndrome (PCOS) and BMAL1, and whether and how BMAL1 takes part in estrogen synthesis in human granulosa cells (hGCs). Twenty-four women diagnosed with PCOS and 24 healthy individuals undergoing assisted reproduction were studied. BMAL1 expression in their granulosa cells (GCs) was observed by quantitative real-time polymerase chain reaction (qRT-PCR). The level of expression in the PCOS group was lower than that of the group without PCOS (p < 0.05). We also analyzed estrogen synthesis and aromatase expression in KGN cell lines. Both were downregulated after BMAL1 and SIRT1 knock-down and, conversely, upregulated after overexpression treatments of these two genes in KGN cells. Both BMAL1 and SIRT1 had a mutually positive regulation, as did the phosphorylation of JNK. Furthermore, JNK overexpression increased estrogen synthesis activity and the expression levels of aromatase, BMAL1, and SIRT1. In KGN and hGCs, estrogen synthesis and aromatase expression were downregulated after treatment with JNK and SIRT1 inhibitors. In addition, BMAL1, SIRT1, and JNK expression levels were all downregulated. Our results demonstrate the effects of BMAL1 on estrogen synthesis in hGCs and suggest a BMAL1-SIRT1-JNK positive feedback cycle in this process, which points out an important role of BMAL1 in the development of PCOS.
Collapse
Affiliation(s)
- Jiaou Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Kai Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yan Hong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Xiaoming Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jingwu Road 324, Jinan, 250021, China
| |
Collapse
|
14
|
Kim D, Johnson AL. Vasoactive intestinal peptide promotes differentiation and clock gene expression in granulosa cells from prehierarchal follicles. Mol Reprod Dev 2016; 83:455-63. [PMID: 27021352 DOI: 10.1002/mrd.22641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 11/12/2022]
Abstract
Vasoactive intestinal peptide (VIP) signaling via cyclic adenosine monophosphate (cAMP) is reported to stimulate steroidogenesis in ovarian granulosa cells from a variety of vertebrate species, including the domestic hen. Prior to follicle selection in the hen ovary (i.e., cyclic recruitment) follicle-stimulating-hormone (FSH)-induced cAMP signaling is absent within the granulosa layer until immediately following follicle selection. As a consequence, granulosa cells remain in an undifferentiated state and are unable to initiate FSH-induced steroidogenesis. VIP receptors (VPAC1 and VPAC2), like the FSH receptor, are G protein-coupled receptors, so we predicted that VIP signaling in granulosa cells is also absent in follicles that have not yet been selected into the preovulatory hierarchy. Initial studies established that mRNA encoding VPAC1 and VPAC2 are expressed within the granulosa cells throughout follicle development. Nevertheless, undifferentiated granulosa cells from prehierarchal (6-8 mm) follicles do not accumulate cAMP in response to a 4-hr incubation with chicken VIP; the capacity for such receptor signaling is attained only following selection within actively differentiating granulosa cells. VIP treatment did, however, increase expression of mRNA encoding the Gallus circadian clock protein, BMAL1-but only in granulosa cells collected from selected follicles. These findings provide evidence that, at follicle selection, the acquisition of VIP-induced cAMP cell signaling helps initiate and promote the differentiation of of granulosa cells. Furthermore, we propose that VIP signaling may regulate BMAL1 expression and, thus, a daily rhythmicity within granulosa cells of preovulatory follicles. Mol. Reprod. Dev. 83: 455-463, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dongwon Kim
- Center for Reproductive Biology and Health, The Pennsylvania State University, Pennsylvania.,Cell and Developmental Biology Program in the Huck Institute of Life Science, The Pennsylvania State University, Pennsylvania
| | - Alan L Johnson
- Center for Reproductive Biology and Health, The Pennsylvania State University, Pennsylvania.,Cell and Developmental Biology Program in the Huck Institute of Life Science, The Pennsylvania State University, Pennsylvania.,Department of Animal Science, The Pennsylvania State University, Pennsylvania
| |
Collapse
|
15
|
Mereness AL, Murphy ZC, Forrestel AC, Butler S, Ko C, Richards JS, Sellix MT. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice. Endocrinology 2016; 157:913-27. [PMID: 26671182 PMCID: PMC5393362 DOI: 10.1210/en.2015-1645] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Animals
- Behavior, Animal
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Rhythm/genetics
- Cryptochromes/genetics
- Cryptochromes/metabolism
- Female
- Fertility/genetics
- Gene Expression
- Granulosa Cells/metabolism
- Infertility/genetics
- Luteinizing Hormone/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Ovarian Follicle/metabolism
- Ovary/anatomy & histology
- Ovulation/genetics
- Ovulation Induction
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Theca Cells/metabolism
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Zachary C Murphy
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Andrew C Forrestel
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Susan Butler
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - CheMyong Ko
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael T Sellix
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Chen H, Isayama K, Kumazawa M, Zhao L, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions ofAlas1, Ppargc1a, andIl6genes in rat granulosa cells. Chronobiol Int 2015; 32:739-49. [DOI: 10.3109/07420528.2015.1042582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|
18
|
Chan KA, Bernal AB, Vickers MH, Gohir W, Petrik JJ, Sloboda DM. Early life exposure to undernutrition induces ER stress, apoptosis, and reduced vascularization in ovaries of adult rat offspring. Biol Reprod 2015; 92:110. [PMID: 25810471 DOI: 10.1095/biolreprod.114.124149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis.
Collapse
Affiliation(s)
- Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Angelica B Bernal
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jim J Petrik
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Abstract
Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
20
|
Chen H, Zhao L, Kumazawa M, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. Am J Physiol Cell Physiol 2013; 304:C1131-40. [DOI: 10.1152/ajpcell.00008.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ovarian circadian oscillators have been implicated in the reproductive processes of mammals. However, there are few reports regarding the detection of ovarian clock-controlled genes (CCGs). The present study was designed to unravel the mechanisms through which CCG ovarian circadian oscillators regulate fertility, primarily using quantitative RT-PCR and RNA interference against Bmal1 in rat granulosa cells. Mature granulosa cells were prepared from mouse Per2-destabilized luciferase ( dLuc) reporter gene transgenic rats. A real-time monitoring system of Per2 promoter activity was employed to detect Per2-dLuc oscillations. The cells exposed to luteinizing hormone (LH) displayed clear Per2-dLuc oscillations and a rhythmic expression of clock genes ( Bmal1, Per1, Per2, Rev-erbα, and Dbp). Meanwhile, the examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Lhcgr, and p53) showed rhythmic transcript profiles except for Hsd3b2, indicating that these rhythmic expression genes may be CCGs. Notably, Bmal1 small interfering (si)RNA treatment significantly decreased both the amplitude of Per2-dLuc oscillations and Bmal1 mRNA levels compared with nonsilencing RNA treatment in luteinizing granulosa cells. Depletion of Bmal1 by siRNA decreased the transcript levels of clock genes ( Per1, Per2, Rev-erbα, and Dbp) and examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Hsd3b2, and Lhcgr). Accordingly, knockdown of Bmal1 also inhibited the synthesis of progesterone and prostaglandin E2, which are associated with crucial reproductive processes. Collectively, these data suggest that ovarian circadian oscillators regulate the synthesis of steroid hormones and prostaglandins through ovarian-specific CCGs in response to LH stimuli. The present study provides new insights into the physiologic significance of Bmal1 related to fertility in ovarian circadian oscillators.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Lijia Zhao
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Makoto Kumazawa
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan; and
| | | | - Masa-aki Hattori
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mori M, Kasa S, Isozaki Y, Kamori T, Yamaguchi S, Ueda S, Kuwano T, Eguchi M, Isayama K, Nishimura S, Tabata S, Yamauchi N, Hattori MA. Improvement of the cellular quality of cryopreserved bovine blastocysts accompanied by enhancement of the ATP-binding cassette sub-family B member 1 expression. Reprod Toxicol 2013; 35:17-24. [DOI: 10.1016/j.reprotox.2012.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 02/03/2023]
|
23
|
Sellix MT. Clocks underneath: the role of peripheral clocks in the timing of female reproductive physiology. Front Endocrinol (Lausanne) 2013; 4:91. [PMID: 23888155 PMCID: PMC3719037 DOI: 10.3389/fendo.2013.00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
The central circadian pacemaker in the suprachiasmatic nucleus (SCN) is a critical component of the neuroendocrine circuit controlling gonadotropin secretion from the pituitary gland. The SCN conveys photic information to hypothalamic targets including the gonadotropin releasing hormone neurons. Many of these target cells are also cell autonomous clocks. It has been suggested that, rather then being singularly driven by the SCN, the timing of gonadotropin secretion depends on the activity of multiple hypothalamic oscillators. While this view provides a novel twist to an old story, it does little to diminish the central role of rhythmic hypothalamic output in this system. It is now clear that the pituitary, ovary, uterus, and oviduct have functional molecular clocks. Evidence supports the notion that the clocks in these tissues contribute to the timing of events in reproductive physiology. The aim of this review is to highlight the current evidence for molecular clock function in the peripheral components of the female hypothalamo-pituitary-gonadal axis as it relates to the timing of gonadotropin secretion, ovulation, and parturition.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- *Correspondence: Michael T. Sellix, Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA e-mail:
| |
Collapse
|
24
|
Liu Z, Chu G. Chronobiology in mammalian health. Mol Biol Rep 2012; 40:2491-501. [DOI: 10.1007/s11033-012-2330-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/19/2012] [Indexed: 11/30/2022]
|
25
|
Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. Cell Tissue Res 2012; 350:539-48. [PMID: 22940729 DOI: 10.1007/s00441-012-1489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes to hypothalamo-pituitary signals and that they are regulated by one or both of the gonadotropins. The aim of this study has been to examine the spatio-temporal expression of the clock genes Per1 and Bmal1 during gonadotropin-independent and gonadotropin-dependent follicle development in the rat ovary. We have examined the ovaries of prepubertal rats, of prepubertal rats stimulated with equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and of hypophysectomised adult animals. Using quantitative reverse transcription with the polymerase chain reaction, in situ hybridisation histochemistry and immunohistochemistry, we have demonstrated that the expression of the two clock genes is low and arrhythmic in ovarian cells during early gonadotropin-independent follicle development in prepubertal animals and in hypophysectomised animals. We have also demonstrated that the expression of the clock genes becomes rhythmic following eCG stimulation in the theca interna cells and the secondary interstitial cells and that, following additional hCG stimulation, the expression of the clock genes also becomes rhythmic in the granulosa cells of preovulatory follicles. These findings link the initiation of clock gene rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that, in these compartments, entrainment of clock gene rhythms is gonadotropin-independent.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Herlev Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|