1
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Melo L, Hagar A, Klaunig J. Gene expression signature of exercise and change of diet on non-alcoholic fatty liver disease in mice. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Non-alcoholic fatty liver diseases (NAFLD) are particularly prevalent in the general Western adult population, with around one third of the population suffering from the disease. Evidence shows that NAFLD is associated with metabolic syndromes such as obesity, insulin resistance, and hypertension. Currently, the sole therapy for NAFLD involves exercise intervention. Studies showed that, with and without weight loss, exercise interventions produced a significant cutback in intrahepatic lipid content in humans, but better controlled studies that can investigate the cellular and molecular mechanisms are still lacking. In the current study we perform RNA sequencing analysis on liver samples from C57BL/6 mice submitted to aerobic exercise and diet interventions that are human-translatable and determine the genetic expression signature of exercise in the NAFLD onset. We show that aerobic exercise affects genes and pathways related to liver metabolism, muscle contraction and relaxation, immune response and inflammation, and development of liver cancer, counteracting non-alcoholic steatohepatitis and hepatocellular carcinoma development. While genes and pathways implicating immune response are activated by aerobic exercise in all interventions, the most effective intervention in terms of improvement of NASH is the combination of aerobic exercise with change of diet.
Collapse
Affiliation(s)
- L. Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, 2719E 10th St, Indiana University, Bloomington, IN, 47405, USA
- University of Pittsburgh Medical School, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - A. Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, 1020 E Kirkwood Ave, Bloomington, IN 47405, USA
- Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - J.E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, 2719E 10th St, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
4
|
Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca 2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release. Cardiovasc Toxicol 2021; 21:642-654. [PMID: 34037972 DOI: 10.1007/s12012-021-09655-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs for treating acute promyelocytic leukemia patients, but its clinical use is hampered due to cardiotoxicity. The present investigation unveils the mechanism underlying ATO-induced oxidative stress that promotes calcineurin (a ubiquitous Ca2+/calmodulin-dependent serine/threonine phosphatase expressed only during sustained Ca2+ elevation) expression, inflammatory cytokine release and apoptosis in H9c2 cardiomyoblasts, and its possible modulation with phloretin (PHL, an antioxidant polyphenol present in apple peel). ATO caused Ca2+ overload resulting in elevated expression of calcineurin and its downstream transcriptional effector NFATc causing the release of cytokines such as IL-2, IL-6, MCP-1, IFN-γ, and TNF-α in H9c2 cardiomyoblast. There was a visible increase in the nuclear fraction of NF-κB and ROS-mediated apoptotic cell death. The expression levels of cardiac-specific genes (troponin, desmin, and caveolin-3) and genes of the apoptotic signaling pathway (BCL-2, BAX, IGF1, AKT, ERK1, -2, RAF1, and JNK) in response to ATO and PHL were studied. The putative binding mode and the potential ligand-target interactions of PHL with calcineurin using docking software (Autodock and iGEMDOCKv2) showed the high binding affinity of PHL to calcineurin. PHL co-treatment significantly reduced Ca2+ influx and normalized the expression of calcineurin, NFATc, NF-κB, and other cytokines. PHL co-treatment resulted in activation of BCL-2, IGF1, AKT, RAF1, ERK1, and ERK2 and inhibition of BAX and JNK. Overall, these results revealed that PHL has a protective effect against ATO-induced apoptosis and we propose calcineurin as a druggable target for the interaction of PHL in ATO cardiotoxicity in H9c2 cells.
Collapse
|
5
|
Lu Y, Wang J, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Protective Effects of Polyphenols against Ischemia/Reperfusion Injury. Molecules 2020; 25:molecules25153469. [PMID: 32751587 PMCID: PMC7435883 DOI: 10.3390/molecules25153469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality across the world. It manifests as an imbalance between blood demand and blood delivery in the myocardium, which leads to cardiac ischemia and myocardial necrosis. While it is not easy to identify the first pathogenic cause of MI, the consequences are characterized by ischemia, chronic inflammation, and tissue degeneration. A poor MI prognosis is associated with extensive cardiac remodeling. A loss of viable cardiomyocytes is replaced with fibrosis, which reduces heart contractility and heart function. Recent advances have given rise to the concept of natural polyphenols. These bioactive compounds have been studied for their pharmacological properties and have proven successful in the treatment of cardiovascular diseases. Studies have focused on their various bioactivities, such as their antioxidant and anti-inflammatory effects and free radical scavenging. In this review, we summarized the effects and benefits of polyphenols on the cardiovascular injury, particularly on the treatment of myocardial infarction in animal and human studies.
Collapse
|
7
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
8
|
Issa H, Hénaut L, Abdallah JB, Boudot C, Lenglet G, Avondo C, Ibrik A, Caus T, Brazier M, Mentaverri R, Zibara K, Kamel S. Activation of the calcium-sensing receptor in human valvular interstitial cells promotes calcification. J Mol Cell Cardiol 2019; 129:2-12. [DOI: 10.1016/j.yjmcc.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 01/10/2023]
|
9
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br J Nutr 2018; 120:881-890. [DOI: 10.1017/s0007114518002088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe animal gut effectively prevents the entry of hazardous substances and microbes while permitting the transfer of nutrients, such as water, electrolytes, vitamins, proteins, lipids, carbohydrates, minerals and microbial metabolites, which are intimately associated with intestinal homoeostasis. The gut maintains biological functions through its nutrient-sensing receptors, including the Ca-sensing receptor (CaSR), which activates a variety of signalling pathways, depending on cellular context. CaSR coordinates food digestion and nutrient absorption, promotes cell proliferation and differentiation, regulates energy metabolism and immune response, stimulates hormone secretion, mitigates secretory diarrhoea and enhances intestinal barrier function. Thus, CaSR is crucial to the maintenance of gut homoeostasis and protection of intestinal health. In this review, we focused on the emerging roles of CaSR in the modulation of intestinal homoeostasis including related underlying mechanisms. By elucidating the relationship between CaSR and animal gut homoeostasis, effective and inexpensive methods for treating intestinal health imbalance through nutritional manipulation can be developed. This article is expected to provide experimental data of the effects of CaSR on animal or human health.
Collapse
|
11
|
Wang J, Tian L, He L, Chen N, Ramakrishna S, So KF, Mo X. Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci Rep 2018; 8:8669. [PMID: 29875468 PMCID: PMC5989206 DOI: 10.1038/s41598-018-26837-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
- Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
| | - Lingling Tian
- Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Nuan Chen
- Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China.
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| | - Xiumei Mo
- State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
12
|
Yang G, Min D, Yan J, Yang M, Lin G. Protective role and mechanism of snakegourd peel against myocardial infarction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:18-24. [PMID: 29655684 DOI: 10.1016/j.phymed.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/06/2017] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Injection of snakegourd peel (SP), an herb used in traditional Chinese medicine, is used to treat coronary artery disease and stable angina in China. However, its therapeutic role and mechanism of action for the treatment of myocardial infarction (MI) is not fully understood. PURPOSE The present study was designed to investigate the effect of SP on MI-induced cardiac injury and elucidate its underlying molecular mechanisms. METHODS To create an in vivo model of MI, we ligated the left coronary artery of Wistar rats. For our in vitro model of MI, we treated primary neonatal rat ventricular myocytes with hypoxia. Myocardial infarct size was measured by triphenyltetrazolium chloride (TTC) staining. Intracellular calcium concentration (Ca2+) was measured by confocal microscopy, and cardiomyocyte apoptosis was assessed by TUNEL assay. Western blot was applied to determine protein levels. RESULTS Three days post-MI, SP significantly improved MI-induced impairment of cardiac function, as indicated by increased left ventricular systolic pressure (LVSP), maximum rate of left ventricular pressure rise and fall (± dp/dt max), and decreased left ventricular end-diastolic pressure (LVEDP). In addition, SP treatment markedly reduced the infarct size and serum lactate dehydrogenase (LDH) activity; inhibited cardiomyocyte apoptosis and Caspase-3 activation both in vivo and in vitro; and decreased intracellular calcium overload, Cav1.2, phosphorylated JNK (p-JNK), and p38 MAPK (p-p38 MAPK) levels in ischemic myocardium. CONCLUSION SP alleviated cardiac ischemic injury and inhibited cardiomyocyte apoptosis by attenuating intracellular calcium overload, suppressing Caspase-3 activation, and downregulating protein expression of p-JNK and p-p38MAPK. These results suggest that SP may serve as a potential novel therapeutic drug for MI.
Collapse
Affiliation(s)
- Guanlin Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Dongyu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Junwei Yan
- The Affiliated Hospital of Tsingtao University of Vascular Surgery, Tsingtao 266070, China
| | - Ming Yang
- The Affiliated Hospital of Tsingtao University of Intensive Care Unit, Tsingtao 266070, China
| | - Guijun Lin
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
13
|
Rasmussen AQ, Jørgensen NR, Schwarz P. Identification and Functional Characterization of a Novel Mutation in the Human Calcium-Sensing Receptor That Co-Segregates With Autosomal-Dominant Hypocalcemia. Front Endocrinol (Lausanne) 2018; 9:200. [PMID: 29743878 PMCID: PMC5930847 DOI: 10.3389/fendo.2018.00200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The human calcium-sensing receptor (CASR) is the key controller of extracellular Cao2+ homeostasis, and different mutations in the CASR gene have been linked to different calcium diseases, such as familial hypocalciuric hypercalcemia, severe hyperparathyroidism, autosomal-dominant hypocalcemia (ADH), and Bartter's syndrome type V. In this study, two generations of a family with biochemically and clinically confirmed ADH who suffered severe muscle pain, arthralgia, tetany, abdominal pain, and fatigue were evaluated for mutations in the CASR gene. The study comprises genotyping of all family members, functional characterization of a potential mutant receptor by in vitro analysis related to the wild-type receptor to reveal an association between the genotype and phenotype in the affected family members. The in vitro analysis of functional characteristics includes measurements of inositol trisphosphate accumulation, Ca2+ mobilization in response to [Ca2+]o-stimulation and receptor expression. The results reveal a significant leftward shift of inositol trisphosphate accumulation as a result of the "gain-of-function" mutant receptor and surprisingly a normalization of the response in (Ca2+)i release in the downstream pathway and additionally the maximal response of (Ca2+)i release was significantly decreased compared to the wild type. However, no gross differences were seen in D126V and the D126V/WT CASR dimeric >250 kDa band expression compared to the WT receptor, however, the D126V and D126V/WT CASR immature ~140 kDa species appear to have reduced expression compared to the WT receptor. In conclusion, in this study, a family with a clinical diagnosis of ADH in two generations was evaluated to identify a mutation in the CASR gene and reveal an association between genotype and phenotype in the affected family members. The clinical condition was caused by a novel, activating, missense mutation (D126V) in the CASR gene and the in vitro functional characteristics of the mutation co-segregated with their individual phenotype.
Collapse
Affiliation(s)
- Anne Qvist Rasmussen
- Research Centre of Ageing and Osteoporosis, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Anne Qvist Rasmussen,
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Research, University of Southern, Odense, Denmark
| | - Peter Schwarz
- Research Centre of Ageing and Osteoporosis, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
14
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
15
|
Kim W, Wysolmerski JJ. Calcium-Sensing Receptor in Breast Physiology and Cancer. Front Physiol 2016; 7:440. [PMID: 27746743 PMCID: PMC5043011 DOI: 10.3389/fphys.2016.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in normal breast epithelial cells and in breast cancer cells. During lactation, activation of the CaSR in mammary epithelial cells increases calcium transport into milk and inhibits parathyroid hormone-related protein (PTHrP) secretion into milk and into the circulation. The ability to sense changes in extracellular calcium allows the lactating breast to actively participate in the regulation of systemic calcium and bone metabolism, and to coordinate calcium usage with calcium availability during milk production. Interestingly, as compared to normal breast cells, in breast cancer cells, the regulation of PTHrP secretion by the CaSR becomes rewired due to a switch in its G-protein usage such that activation of the CaSR increases instead of decreases PTHrP production. In normal cells the CaSR couples to Gαi to inhibit cAMP and PTHrP production, whereas in breast cancer cells, it couples to Gαs to stimulate cAMP and PTHrP production. Activation of the CaSR on breast cancer cells regulates breast cancer cell proliferation, death and migration, in part, by stimulating PTHrP production. In this article, we discuss the biology of the CaSR in the normal breast and in breast cancer, and review recent findings suggesting that the CaSR activates a nuclear pathway of PTHrP action that stimulates cellular proliferation and inhibits cell death, helping cancer cells adapt to elevated extracellular calcium levels. Understanding the diverse actions mediated by the CaSR may help us better understand lactation physiology, breast cancer progression and osteolytic bone metastases.
Collapse
Affiliation(s)
- Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
16
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
17
|
Breuksch I, Weinert M, Brenner W. The role of extracellular calcium in bone metastasis. J Bone Oncol 2016; 5:143-145. [PMID: 27761377 PMCID: PMC5063220 DOI: 10.1016/j.jbo.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
This review summarizes the role of extracellular calcium, as found present in the bone tissue, in the process of bone metastasis.
Collapse
Key Words
- AKT, AKT8 virus oncogene cellular homolog
- BMP's, bone morphogenetic proteins
- Bone metastasis
- COPD, chronic obstructive pulmonary disease
- CaSR
- CaSR, calcium-sensing receptor
- Calcium
- ERK, extracellular signal-regulated kinase
- ET-1, endothelin-1
- FGF, fibroblast growth factor
- IGF, insulin-like growth factor
- Ion channels
- JNK, jun N-terminal kinase
- M-CSF, macrophage colony-stimulating factor
- MAPK, mitogen-activated protein kinase
- PDGF, platelet-derived growth factor
- PGE-2, prostaglandin E-2
- PKA, protein kinase A
- PLC, phospholipase C
- PSA, prostate specific antigen
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- PTHrP, parathyroid hormone-related protein
- RANK, receptor activator of NF-κB
- RANKL, receptor activator of NF-κB ligand
- SK3, small conductance calcium-activated potassium channel 3
- TGFβ, transforming growth factor beta
- TRP, transient receptor potential
- cAMP, cyclic adenosine monophosphate
Collapse
|
18
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
19
|
Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 2016; 87:18-31. [DOI: 10.1016/j.biomaterials.2016.02.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
|
20
|
Tharmalingam S, Wu C, Hampson DR. The calcium-sensing receptor and integrins modulate cerebellar granule cell precursor differentiation and migration. Dev Neurobiol 2015; 76:375-89. [PMID: 26138678 DOI: 10.1002/dneu.22321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/09/2015] [Accepted: 06/28/2015] [Indexed: 12/31/2022]
Abstract
In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium-sensing receptor (CaSR), a homodimeric G-protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell-surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion-sensing G-protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - Chiping Wu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada, M5S 3M2.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 3M2
| |
Collapse
|
21
|
Baran N, ter Braak M, Saffrich R, Woelfle J, Schmitz U. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia. Mol Cell Endocrinol 2015; 407:18-25. [PMID: 25766501 DOI: 10.1016/j.mce.2015.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. OBJECTIVE The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. PATIENTS A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. MAIN OUTCOME MEASURE P136L CaR mutation was predicted to cause gain of function of CaR. RESULTS Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. CONCLUSIONS The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family.
Collapse
Affiliation(s)
- Natalia Baran
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Michael ter Braak
- Institut of Pharmacology, University of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Saffrich
- Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, University of Bonn, Adenauerallee 119, 53113 Bonn, Germany
| | - Udo Schmitz
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
22
|
Carmosino M, Gerbino A, Hendy GN, Torretta S, Rizzo F, Debellis L, Procino G, Svelto M. NKCC2 activity is inhibited by the Bartter's syndrome type 5 gain-of-function CaR-A843E mutant in renal cells. Biol Cell 2015; 107:98-110. [PMID: 25631355 DOI: 10.1111/boc.201400069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy; Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Effects of parathyroid hormone on calcium ions in rat bone marrow mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:258409. [PMID: 25136569 PMCID: PMC4087274 DOI: 10.1155/2014/258409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
The present study was conducted in order to explore the mechanisms whereby parathyroid hormone (PTH) maintains in vitro proliferation of bone marrow mesenchymal stem cells (BMSCs). Bone marrow was isolated from Sprague Dawley (SD) rat femurs, cultured in vitro, and passaged using a cell adherent culture method. The BMSC proliferation was evaluated by the methyl thiazolyl tetrazolium (MTT) assay and the fluorescence intensity of calcium ions in BMSCs was analyzed by laser scanning confocal microscopy (LSCM). Our results show that BMSC proliferation in the experimental group treated with PTH was more significant than controls. The calcium ion fluorescence intensity in BMSCs was significantly higher for the experimental group as compared to the control group. For each group, there was significant difference in the fluorescence intensity of calcium ions in BMSCs between 7 d and 14 d. In conclusion, parathyroid hormone increased the fluorescence intensity of calcium ions in BMSCs, which might represent a key mechanism whereby BMSC proliferation is maintained.
Collapse
|
24
|
Joeckel E, Haber T, Prawitt D, Junker K, Hampel C, Thüroff JW, Roos FC, Brenner W. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer 2014; 13:42. [PMID: 24576174 PMCID: PMC3945739 DOI: 10.1186/1476-4598-13-42] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Methods Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. Results The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Conclusions Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Walburgis Brenner
- Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr 1, Mainz 55131, Germany.
| |
Collapse
|
25
|
Ranieri M, Tamma G, Di Mise A, Vezzoli G, Soldati L, Svelto M, Valenti G. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient. PLoS One 2013; 8:e79113. [PMID: 24244430 PMCID: PMC3828282 DOI: 10.1371/journal.pone.0079113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 12/22/2022] Open
Abstract
In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Vezzoli
- Nephrology and Dialysis Unit, San Raffaele Hospital, Scientific Institute, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Centre of Excellence Genomic and Proteomics GEBCA, University of Bari, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Centre of Excellence Genomic and Proteomics GEBCA, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
26
|
Abstract
Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. In contrast, in breast cancer cells the CaSR upregulates PTHrP production. A switch in G-protein usage underlies the opposing effects of the CaSR on PTHrP expression in normal and malignant breast cells. During lactation, the CaSR in normal breast cells coordinates a feedback loop that matches the transport of calcium into milk and maternal calcium metabolism to the supply of calcium. A switch in CaSR G-protein usage during malignant transformation converts this feedback loop into a feed-forward cycle in breast cancer cells that may promote the growth of osteolytic skeletal metastases.
Collapse
Affiliation(s)
- Joshua N Vanhouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, Box 208020, New Haven, CT, USA.
| | | |
Collapse
|
27
|
LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol Cell Biochem 2013; 379:153-9. [PMID: 23564188 PMCID: PMC3666124 DOI: 10.1007/s11010-013-1637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
Calcium-sensing receptor (CaSR) belongs to the family C of G-protein coupled receptors. We have previously demonstrated that CaSR could induce apoptosis of cultured neonatal rat ventricular cardiomyocytes in simulated ischemia/reperfusion. It remains unknown whether the CaSR has function in lipopolysaccharide (LPS)-induced myocardial injure. The aim of this study was to investigate whether the CaSR plays a role in LPS-induced myocardial injury. Cultured neonatal rat cardiomyocytes were treated with LPS, with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Release of TNF-α and IL-6 from cardiomyocytes was observed. Levels of malonaldehyde (MDA), lactate dehydrogenase (LDH), and activity of superoxide dismutase (SOD) were measured. In addition, apoptosis of the cardiomyocytes, [Ca(2+)]i and level of CaSR expression were determined. The results showed that LPS increased cardiomyocytes apoptosis, [Ca(2+)]i, MDA, LDH, TNF-α, IL-6 release, and CaSR protein expression. Compared with LPS treatment alone, pretreatment with GdCl3 further increased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i, and the expression of the CaSR protein. Conversely, pretreatment with NPS2390 decreased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i and the expression of the CaSR protein. These results demonstrate that LPS could induce cardiomyocyte injury. Moreover, LPS-induced cardiomyocyte injury was related to CaSR-mediated cardiomyocytes apoptosis, TNF-α, IL-6 release, and increase of intracellular calcium.
Collapse
|
28
|
Yan L, Zhu T, Sun T, Wang L, Pan S, Tao Z, Yang Z, Cao K. Activation of calcium-sensing receptors is associated with apoptosis in a model of simulated cardiomyocytes ischemia/reperfusion. J Biomed Res 2013; 24:301-7. [PMID: 23554644 PMCID: PMC3596596 DOI: 10.1016/s1674-8301(10)60042-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Indexed: 02/03/2023] Open
Abstract
Objective Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which maintain systemic calcium homeostasis and participate in hormone secretion, activation of ion channels, cell apoptosis, proliferation, and differentiation. Previous studies have shown that CaSRs induce apoptosis in isolated adult rat heart and in normal neonatal rat cardiomyocytes by G-protein-PLC-IP3 signaling transduction. However, little knowledge is presently available concerning the role of CaSRs in the apoptosis induced by ischemia and reperfusion in neonatal cardiomyocytes. Methods Primary neonatal rat ventricular cardiomyocytes were incubated in ischemiamimetic solution for 2 h, and then re-incubated in normal culture medium for 24 h to establish a model of simulated ischemia/reperfusion (I/R). Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The expression of CaSRs mRNA was detected by real-time reverse transcription polymerase chain reaction (RT-PCR). In addition, the expressions of caspase-3 and Bcl-2 were analyzed by western blot. Results The simulated I/R enhanced the expression of CaSRs and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSRs, further increased the expression of CaSRs and cardiomyocyte apoptosis, along with up-regulation of caspase-3 and down-regulation of Bcl-2. Conclusion CaSRs are associated with I/R injury and apoptosis in neonatal rat ventricular cardiomyocytes via suppressing Bcl-2 and promoting caspase-3 expression.
Collapse
Affiliation(s)
- Ling Yan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu Z, Yan L, Ge Y, Zhang Q, Yang N, Zhang M, Zhao Y, Sun P, Gao J, Tao Z, Yang Z. Effect of the calcium sensing receptor on rat bone marrow-derived mesenchymal stem cell proliferation through the ERK1/2 pathway. Mol Biol Rep 2012; 39:7271-9. [PMID: 22314915 DOI: 10.1007/s11033-012-1557-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
Migration and proliferation of bone marrowderived mesenchymal stem cells (BMSCs) is critical to treatment of ischemic injury. The calcium sensing receptor (CaSR) has an important role in maintaining systemic calcium homeostasis, which is related to cell proliferation, apoptosis and paracrine signaling. We hypothesize that CaSR may enhance BMSC proliferation. Rat BMSCs were incubated with various calcium concentrations for 48 h in vitro to activate CaSR. To investigate potential mechanisms responsible for growth enhancement by calcium, the rat BMSC cell cycle progression was analyzed by fluorescence-activated cell sorting (FACS), and induction of apoptosis confirmed by cytofluorimetric analysis using propidium iodide and Annexin V-FITC double staining. Since the mitogen-activated protein kinase (MAPK) signaling pathway was one of the most significantly affected by CaSR, MAPK activation was measured by western blotting. Calcium exposure significantly enhanced rat BMSCs proliferation, as well as the proportion of the population in S phase, in a dose-dependent manner, effects which were abolished by NPS2390 (a CaSR antagonist) and U0126 (a MEK1/2 inhibitor). These results demonstrate that CaSR is involved in rat BMSC proliferation, as seen by an increased proliferation index, decreased apoptosis, and ERK1/2 activation, and provide important insight into the cellular and molecular mechanisms by which CaSR affects cell proliferation. A CaSR agonist may prove useful to enhance BMSC survival during transplantation.
Collapse
Affiliation(s)
- Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of the calcium-sensing receptor in human disease. Clin Biochem 2012; 45:943-53. [PMID: 22503956 DOI: 10.1016/j.clinbiochem.2012.03.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Following the discovery of the calcium-sensing receptor (CaSR) in 1993, its pivotal role in disorders of calcium homeostasis such as Familial Hypocalciuric Hypercalcemia (FHH) was quickly demonstrated. Since then, it has become clear that the CaSR has immense functional versatility largely through its ability to activate many different signaling pathways in a ligand- and tissue-specific manner. This allows the receptor to play diverse and crucial roles in human physiology and pathophysiology, both in calcium homeostasis and in tissues and biological processes unrelated to calcium balance. This review covers current knowledge of the role of the CaSR in disorders of calcium homeostasis (FHH, neonatal severe hyperparathyroidism, autosomal dominant hypocalcemia, primary and secondary hyperparathyroidism, hypercalcemia of malignancy) as well as unrelated diseases such as breast and colorectal cancer (where the receptor appears to play a tumor suppressor role), Alzheimer's disease, pancreatitis, diabetes mellitus, hypertension and bone and gastrointestinal disorders. In addition, it examines the use or potential use of CaSR agonists or antagonists (calcimimetics and calcilytics) and other drugs mediated through the CaSR, in the management of disorders as diverse as hyperparathyroidism, osteoporosis and gastrointestinal disease.
Collapse
|
31
|
Smajilovic S, Yano S, Jabbari R, Tfelt-Hansen J. The calcium-sensing receptor and calcimimetics in blood pressure modulation. Br J Pharmacol 2012; 164:884-93. [PMID: 21410453 DOI: 10.1111/j.1476-5381.2011.01317.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Calcium is a crucial second messenger in the cardiovascular system. However, calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular concentration (Ca(2+)(o)), the calcium-sensing receptor (CaR). The most prominent physiological function of the CaR is to maintain the extracellular Ca(2+) level in a very tight range by regulating the circulating levels of parathyroid hormone (PTH). This control over PTH and Ca(2+) levels is partially lost in patients suffering from primary and secondary hyperparathyroidism. Allosteric modulators of the CaR (calcimimetics) are the first drugs in their class to become available for clinical use and have been shown to successfully treat certain forms of primary and secondary hyperparathyroidism. In addition, several studies suggest beneficial effects of calcimimetics on cardiovascular risk factors associated with hyperparathyroidism. Although a plethora of studies demonstrated the CaR in heart and blood vessels, exact roles of the receptor in the cardiovascular system still remain to be elucidated. However, several studies point toward a possibility that the CaR might be involved in the regulation of vascular tone. This review will summarize the current knowledge on the possible functions of the CaR and calcimimetics on blood pressure regulation.
Collapse
Affiliation(s)
- Sanela Smajilovic
- Laboratory of Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Denmark
| | | | | | | |
Collapse
|
32
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
33
|
Signaling through the extracellular calcium-sensing receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:103-42. [PMID: 22453940 DOI: 10.1007/978-94-007-2888-2_5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular calcium ([Formula: see text])-sensing receptor (CaSR) was the first GPCR identified whose principal physiological ligand is an ion, namely extracellular Ca(2+). It maintains the near constancy of [Formula: see text] that complex organisms require to ensure normal cellular function. A wealth of information has accumulated over the past two decades about the CaSR's structure and function, its role in diseases and CaSR-based therapeutics. This review briefly describes the CaSR and key features of its structure and function, then discusses the extracellular signals modulating its activity, provides an overview of the intracellular signaling pathways that it controls, and, finally, briefly describes CaSR signaling both in tissues participating in [Formula: see text] homeostasis as well as those that do not. Factors controlling CaSR signaling include various factors affecting the expression of the CaSR gene as well as modulation of its trafficking to and from the cell surface. The dimeric cell surface CaSR, in turn, links to various heterotrimeric and small molecular weight G proteins to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. CaSR signaling is impacted by its interactions with several binding partners in addition to signaling elements per se (i.e., G proteins), including filamin-A and caveolin-1. These latter two proteins act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton). Thus CaSR signaling likely does not take place randomly throughout the cell, but is compartmentalized and organized so as to facilitate the interaction of the receptor with its various signaling pathways.
Collapse
|
34
|
P38 mitogen-activated protein kinase inhibitor, FR167653, inhibits parathyroid hormone related protein-induced osteoclastogenesis and bone resorption. PLoS One 2011; 6:e23199. [PMID: 21886782 PMCID: PMC3160289 DOI: 10.1371/journal.pone.0023199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages (BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.
Collapse
|
35
|
Abstract
Compelling evidence of a cell surface receptor sensitive to extracellular calcium was observed as early as the 1980s and was finally realized in 1993 when the calcium-sensing receptor (CaR) was cloned from bovine parathyroid tissue. Initial studies relating to the CaR focused on its key role in extracellular calcium homeostasis, but as the amount of information about the receptor grew it became evident that it was involved in many biological processes unrelated to calcium homeostasis. The CaR responds to a diverse array of stimuli extending well beyond that merely of calcium, and these stimuli can lead to the initiation of a wide variety of intracellular signaling pathways that in turn are able to regulate a diverse range of biological processes. It has been through the examination of the molecular characteristics of the CaR that we now have an understanding of how this single receptor is able to convert extracellular messages into specific cellular responses. Recent CaR-related reviews have focused on specific aspects of the receptor, generally in the context of the CaR's role in physiology and pathophysiology. This review will provide a comprehensive exploration of the different aspects of the receptor, including its structure, stimuli, signalling, interacting protein partners, and tissue expression patterns, and will relate their impact on the functionality of the CaR from a molecular perspective.
Collapse
Affiliation(s)
- Aaron L Magno
- Department of Endocrinology and Diabetes, First Floor, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands 6009, Western Australia, Australia
| | | | | |
Collapse
|
36
|
Yan L, Zhu TB, Wang LS, Pan SY, Tao ZX, Yang Z, Cao K, Huang J. Inhibitory effect of hepatocyte growth factor on cardiomyocytes apoptosis is partly related to reduced calcium sensing receptor expression during a model of simulated ischemia/reperfusion. Mol Biol Rep 2010; 38:2695-701. [PMID: 21088907 DOI: 10.1007/s11033-010-0412-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 11/08/2010] [Indexed: 01/18/2023]
Abstract
Calcium-sensing receptors (CaSR) are G-protein coupled receptors which maintain systemic calcium haemeostasis, participate in hormone secretion, activation of iron channel, cell apoptosis, proliferation and differentiation. Previous studies have show CaSR induce apoptosis in isolated rat adult heart and in normal rat neonatal cardiomyocytes by G-protein-PLC-IP3 signaling transinduction. A few of studies had demonstrated that CaSR induce apoptosis in cultured neonatal rat cardiomyocytes during ischemia/reperfusion. Hepatocyte growth factor (HGF), as a mesenchymally derived heterodimeric glycoprotein, play vital role in mitogenesis, angiogenesis, cellular motility and growth and anti-apoptosis after postinfarction heart failure via activation of transmembrane tyrosine kinase cell surface receptor c-Met. However, little knowledge exists about whether anti-apoptotic role of HGF in preventing cardiomyocytes injury induced by ischemia/reperfusion is associated with downregulation of CaSR expression. We incubated primary neonatal rat ventricular cardiomyocytes in ischemia-mimetic solution for 2 h, then reincubated them in normal culture medium for 24 h to establish a model of simulated ischemia/reperfusion (I/R). Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The expression of CaSR mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we analyzed the expression of Caspase-3, Bcl-2 and Phosphoinositide 3-kinase (PI3K) by Western blotting. The simulated I/R enhances the expression of CaSR and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSR, further increase the expression of CaSR and Cardiomyocyte apoptosis, along with upregulation of Caspase-3, downregulation of Bcl-2 and inhibiting PI3K phosphorylation. Combination of GdCl3 with LY294002 (a selective PI3K inhibitor) increased Cardiomyocytes apoptosis but did not increased CaSR expression. Treatment of HGF decreased I/R- and GdCl3-induced apoptosis by suppressing Caspase-3 and promoting Bcl-2 and PI3K phosphorylation expression in accordance with downregulation of CaSR expression. HGF exerts protective role in I/R-induced apoptosis at least in part by inhibiting CaSR expression along with promoting Bcl-2, suppressing Caspase-3 expression and stimulating PI3K phosphorylation signaling pathway.
Collapse
Affiliation(s)
- Ling Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger E, Kamel S, Brown EM, Mentaverri R, Brazier M. Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 2010; 78:569-76. [PMID: 20584969 DOI: 10.1124/mol.109.063347] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Strontium ranelate exerts both an anticatabolic and an anabolic effect on bone cells. To further investigate the mechanism by which strontium ranelate inhibits bone resorption, the effects of varying concentrations of Sr(o)(2+) on osteoclastic differentiation were studied using RAW 264.7 cells and peripheral blood monocytic cells (PBMCs). We report that increasing concentrations of Sr(o)(2+) down-regulate osteoclastic differentiation and tartrate-resistant acid phosphatase activity, leading to inhibition of bone resorption (-48% when PBMCs were cultured for 14 days in the presence of 2 mM Sr(o)(2+)). Using a dominant-negative form of the calcium-sensing receptor (CaR) and a small interfering RNA approach, we provide evidences that the inhibition of osteoclast differentiation by Sr(o)(2+) is mediated by stimulation of the CaR. Moreover, our results suggest that the effects of Sr(o)(2+) on osteoclasts are, at least in part, mediated by inhibition of the receptor activator of nuclear factor-κB ligand (RANKL)-induced nuclear translocation of nuclear factor-κB and activator protein-1 in the early stages of osteoclastic differentiation. In conclusion, our data indicate that Sr(2+) directly inhibits the formation of mature osteoclasts through down-regulation of RANKL-induced osteoclast differentiation and decreases osteoclast differentiation through the activation of the CaR.
Collapse
Affiliation(s)
- Axelle Caudrillier
- Institut National de la Santé et de la Recherche Médicale, Amiens, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun W, Sun W, Liu J, Zhou X, Xiao Y, Karaplis A, Pollak MR, Brown E, Goltzman D, Miao D. Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 2010; 137:985-92. [PMID: 20150282 DOI: 10.1242/dev.045898] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether the calcium-sensing receptor (CaR) participates in tooth formation and dental alveolar bone development in mandibles in vivo, we examined these processes, as well as mineralization, in 2-week-old CaR-knockout (CaR(-/-)) mice. We also attempted to rescue the phenotype of CaR(-/-) mice by genetic means, in mice doubly homozygous for CaR and 25-hydroxyvitamin D 1alpha-hydroxylase [1alpha(OH)ase] or parathyroid hormone (Pth). In CaR(-/-) mice, which exhibited hypercalcemia, hypophosphatemia and increased serum PTH, the volumes of teeth and of dental alveolar bone were decreased dramatically, whereas the ratio of the area of predentin to total dentin and the number and surface of osteoblasts in dental alveolar bone were increased significantly, as compared with wild-type littermates. The normocalcemia present in CaR(-/-);1alpha(OH)ase(-/-) mice only slightly improved the defects in dental and alveolar bone formation observed in the hypercalcemic CaR(-/-) mice. However, these defects were completely rescued by the additional elimination of hypophosphatemia and by an increase in parathyroid hormone-related protein (PTHrP) expression in the apical pulp, Hertwig's epithelial root sheath and mandibular tissue in CaR(-/-); Pth(-/-) mice. Therefore, alterations in calcium, phosphorus and PTHrP contribute to defects in the formation of teeth and alveolar bone in CaR-deficient mice. This study indicates that CaR participates in the formation of teeth and in the development of dental alveolar bone in mandibles in vivo, although it appears to do so largely indirectly.
Collapse
Affiliation(s)
- Wen Sun
- Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, Jiangsu 210029, P R of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chakravarti B, Dwivedi SKD, Mithal A, Chattopadhyay N. Calcium-sensing receptor in cancer: good cop or bad cop? Endocrine 2009; 35:271-84. [PMID: 19011996 DOI: 10.1007/s12020-008-9131-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/30/2008] [Accepted: 10/21/2008] [Indexed: 12/28/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) is a versatile 'sensor' for di- and polycationic molecules in the body. CaR plays a key role in the defense against hypercalcemia by "sensing" extracellular calcium levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. Although mutation of CaR gene has so far not been associated with any malignancy, aberrant functions of CaR have implications in malignant progression. One situation is loss of CaR expression, resulting in loss of growth suppressing effects of elevated extracellular Ca(2+) by CaR, reported in parathyroid adenoma and in colon carcinoma. Another situation is activation of CaR, resulting in increased production of parathyroid hormone-related peptide (PTHrP), a primary causal factor in hypercalcemia of malignancy and a contributor to metastatic processes involving bone. CaR signaling and effects have been studied in several cancers including ovarian cancers, gastrinomas, and gliomas in addition to comparatively detailed studies in breast, prostate, and colon cancers. Studies on H-500 rat Leydig cells, a xenotransplantable model of humoral hypercalcemia of malignancy has shed much light on the mechanisms of CaR-induced cancer cell growth and survival. Pharmacological agonists and antagonists of CaR hold therapeutic promise depending on whether activation of CaR is required such as in case of colon cancer or inactivating the receptor is required as in the case of breast- and prostate tumors.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Chattar Manzil, Lucknow, India.
| | | | | | | |
Collapse
|
40
|
Saidak Z, Mentaverri R, Brown EM. The role of the calcium-sensing receptor in the development and progression of cancer. Endocr Rev 2009; 30:178-95. [PMID: 19237714 DOI: 10.1210/er.2008-0041] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaR) is responsive to changes in the extracellular Ca(2+) (Ca(2+)(o)) concentration. It is a member of the largest family of cell surface receptors, the G protein-coupled receptors, and it has been shown to be involved in Ca(2+)(o) homeostasis. Apart from its primary role in Ca(2+)(o) homeostasis, the CaR may be involved in phenomena that allow for the development of many types of benign or malignant tumors, from parathyroid adenomas to breast, prostate, and colon cancers. For example, whereas the CaR is expressed in both normal and malignant breast tissue, increased CaR levels have been reported in highly metastatic primary breast cancer cells and breast cancer cell lines, possibly contributing to their malignancy and associated alterations in their biological properties. In these settings the CaR exhibits oncogenic properties. Enhanced CaR expression and altered proliferation of prostate cancer cells in response to increased Ca(2+)(o) have also been described. In contrast, colon and parathyroid cancers often present with reduced or absent CaR expression, and activation of this receptor decreases cell proliferation, suggesting a role for the CaR as a tumor suppressor gene. Thus, the CaR may play an important role in the development of many types of neoplasia. Herein, we review the role of the CaR in various benign and malignant tumors in further detail, describing its contribution to parathyroid tumors, breast, prostate, and colon cancers, and we evaluate how pharmacological manipulations of this receptor may be of interest for the treatment of certain cancers in the future.
Collapse
Affiliation(s)
- Zuzana Saidak
- Institut National de la Santé et de la Recherche Médicale ERI-12, 1, Amiens, France.
| | | | | |
Collapse
|
41
|
Smajilovic S, Tfelt-Hansen J. Novel Role of the Calcium-Sensing Receptor in Blood Pressure Modulation. Hypertension 2008; 52:994-1000. [DOI: 10.1161/hypertensionaha.108.117689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sanela Smajilovic
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| |
Collapse
|
42
|
Tfelt-Hansen J, Brown EM. THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review. Crit Rev Clin Lab Sci 2008; 42:35-70. [PMID: 15697170 DOI: 10.1080/10408360590886606] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of a G protein-coupled, calcium-sensing receptor (CaR) a decade ago and of diseases caused by CaR mutations provided unquestionable evidence of the CaR's critical role in the maintenance of systemic calcium homeostasis. On the cell membrane of the chief cells of the parathyroid glands, the CaR "senses" the extracellular calcium concentration and, subsequently, alters the release of parathyroid hormone (PTH). The CaR is likewise functionally expressed in bone, kidney, and gut--the three major calcium-translocating organs involved in calcium homeostasis. Intracellular signal pathways to which the CaR couples via its associated G proteins include phospholipase C (PLC), protein kinase B (AKT); and mitogen-activated protein kinases (MAPKs). The receptor is widely expressed in various tissues and regulates important cellular functions in addition to its role in maintaining systemic calcium homeostasis, i.e., protection against apoptosis, cellular proliferation, and membrane voltage. Functionally significant mutations in the receptor have been shown to induce diseases of calcium homeostasis owing to changes in the set point for calcium-regulated PTH release as well as alterations in the renal handling of calcium. Gain-of-function mutations cause hypocalcemia, whereas loss-of-function mutations produce hypercalcemia. Recent studies have shown that the latter clinical presentation can also be caused by inactivating autoantibodies directed against the CaR Newly discovered type II allosteric activators of the CaR have been found to be effective as a medical treatment for renal secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
43
|
Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int 2008; 74:276-88. [PMID: 17568787 DOI: 10.1038/sj.ki.5002287] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The identification of the calcium-sensing receptor (CaSR) and the clarification of its role as the major regulator of parathyroid gland function have important implications for understanding the pathogenesis and evolution of secondary hyperthyroidism in chronic kidney disease (CKD). Signaling through the CaSR has direct effects on three discrete components of parathyroid gland function, which include parathyroid hormone (PTH) secretion, PTH synthesis, and parathyroid gland hyperplasia. Disturbances in calcium and vitamin D metabolism that arise owing to CKD diminish the level of activation of the CaSR, leading to increases in PTH secretion, PTH synthesis, and parathyroid gland hyperplasia. Each represents a physiological adaptive response by the parathyroid glands to maintain plasma calcium homeostasis. Studies of genetically modified mice indicate that signal transduction via the CaSR is a key determinant of parathyroid cell proliferation and parathyroid gland hyperplasia. Because enlargement of the parathyroid glands has important implications for disease progression and disease severity, it is possible that clinical management strategies that maintain adequate calcium-dependent signaling through the CaSR will ultimately prove useful in diminishing parathyroid gland hyperplasia and in modifying disease progression.
Collapse
Affiliation(s)
- William G Goodman
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | |
Collapse
|
44
|
Bandyopadhyay S, Romero JR, Chattopadhyay N. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol Cell Endocrinol 2008; 287:57-64. [PMID: 18346843 DOI: 10.1016/j.mce.2008.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 11/19/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) holds immunotherapeutic promise in prostate cancer as it activates the host immune system. Increased production of GM-CSF by cancer cells may facilitate host immunosurveillence by the dendritic cells (DC). Here, we studied the effects of kaempferol (K) and quercetin (Q) on the production of GM-CSF in PC-3 cells. Human cytokine antibody array revealed that treatment with K or Q increased GM-CSF release by PC-3 cells. We further observed by ELISA that K and Q in a concentration-dependent manner increased GM-CSF production without affecting its mRNA levels. Inhibitors of vesicular traffic through the endoplasmic reticulum and Golgi-blocked GM-CSF secretory stimulation. A microtubule-stabilizing agent stimulated GM-CSF release, whereas tubulin and actin depolymerizers suppressed K- or Q-stimulated secretion of GM-CSF. Depletion of extracellular or intracellular calcium ion inhibited the GM-CSF secretion upregulated by both K and Q. Furthermore, we showed that K- and Q-stimulated GM-CSF production involves PLC, PKC, and MEK1/2 activation. Treating human DC with the conditioned medium of K- or Q-incubated PC-3 cells increased chemotaxis of DC, which was significantly attenuated when the conditioned medium was incubated with the neutralizing antibody against GM-CSF. Taken together, our results demonstrate that K and Q activate an immune response in the prostate cancer cells by stimulating GM-CSF production, which in turn could result in the recruitment of DCs to the tumor site.
Collapse
|
45
|
van den Hurk MJJ, Cruijsen PMJM, Schoeber JPH, Scheenen WJJM, Roubos EW, Jenks BG. Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells. Gen Comp Endocrinol 2008; 157:156-64. [PMID: 18508053 DOI: 10.1016/j.ygcen.2008.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/28/2008] [Accepted: 04/14/2008] [Indexed: 11/17/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) is expressed in various types of endocrine pituitary cell, but the intracellular mechanism this G protein-coupled receptor uses in these cells is not known. In the present study we investigated possible intracellular signal transduction pathway(s) utilized by the CaR of the endocrine melanotrope cells in the intermediate pituitary lobe of the South African-clawed toad Xenopus laevis. For this purpose, the effects of various pharmacological agents on CaR-evoked secretion of radiolabeled secretory peptides from cultured melanotrope cells were assessed. CaR-evoked secretion, induced by the potent CaR agonist L-phenylalanine (L-Phe), could not be inhibited by cholera toxin, nor by NPC-15437 and PMA, indicating that neither G(s)/PKA nor G(q)/PKC pathways are involved. However, pertussis toxin (G(i/o) protein inhibitor), genistein (inhibitor of PTKs), wortmannin/LY-294002 (PI3-K inhibitor) and U-0126 (inhibitor of extracellular signal-regulated kinase, ERK) all substantially inhibited CaR-evoked secretion, indicating that the Xenopus melanotrope cell possesses a PI3-K/MAPK system that plays some role in CaR-signaling. Since no direct effect of L-Phe on ERK phosphorylation could be shown it is concluded that CaR must act primarily through another, still unknown, signaling pathway in Xenopus melanotropes. Our results indicate that the PI3-K/MAPK system has a facilitating effect on CaR-induced secretion, possibly by sensitizing the CaR.
Collapse
Affiliation(s)
- Maarten J J van den Hurk
- Department of Cellular Animal Physiology, Donders Centre for Neuroscience, EURON European Graduate School for Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Ahlstrom M, Pekkinen M, Riehle U, Lamberg-Allardt C. Extracellular calcium regulates parathyroid hormone-related peptide expression in osteoblasts and osteoblast progenitor cells. Bone 2008; 42:483-90. [PMID: 18096456 DOI: 10.1016/j.bone.2007.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/24/2023]
Abstract
Parathyroid hormone-related peptide (PTHrP) has been shown to have anabolic effects on bone in women with postmenopausal osteoporosis. On the cellular level PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The calcium concentration is considerably higher in the vicinity of resorbing osteoclasts than in the plasma. Therefore the osteoblasts are likely to be confronted by elevated extracellular calcium concentrations in the areas of resorptive activity. The present study was designed to assess the possibility that extracellular calcium could regulate PTHrP expression in osteoblastic cells. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The PTHrP release into the culture media was measured by an immunoradiometric assay and the expression of PTHrP, osteocalcin and Runx2 mRNA was assayed by real-time PCR. Increasing the extracellular calcium from 1 mM to 5 mM for 24 h resulted in a 4-6-fold increase in the PTHrP release. PTHrP mRNA was also increased by elevated calcium levels. The effect of calcium stimulation on PTHrP release could be seen within 60 min of treatment. The extracellular calcium sensing receptor (CaR) agonist neomycin mimicked the effects of calcium and the MEK/MAPK inhibitor PD98059 abolished the effect of calcium and neomycin. High extracellular calcium increased the mineralization of hMSC and the expression of osteocalcin, but this effect was not mimicked by neomycin. Our results show that in hMSC, elevated extracellular calcium levels increases both released PTHrP and PTHrP mRNA expression. The effect of calcium on PTHrP can be mimicked by activation of the CaR and can be diminished by inhibition of the MAPK signalling pathway.
Collapse
Affiliation(s)
- Mikael Ahlstrom
- Calcium Research Unit, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
47
|
Abstract
Metastasis is a final stage of tumor progression. Breast and prostate cancer cells preferentially metastasize to bone, wherein they cause incurable osteolytic and osteoblastic lesions. The bone matrix is rich in factors, such as transforming growth factor-beta and insulin-like growth factors, which are released into the tumor microenvironment by osteolysis. These factors stimulate the growth of tumor cells and alter their phenotype, thus promoting a vicious cycle of metastasis and bone pathology. Physical factors within the bone microenvironment, including low oxygen levels, acidic pH, and high extracellular calcium concentrations, may also enhance tumor growth. These elements of the microenvironment are potential targets for chemotherapeutic intervention to halt tumor growth and suppress bone metastasis.
Collapse
Affiliation(s)
- Lauren A Kingsley
- University of Virginia Department of Medicine, Division of Endocrinology, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
48
|
Justinich CJ, Mak N, Pacheco I, Mulder D, Wells RW, Blennerhassett MG, MacLeod RJ. The extracellular calcium-sensing receptor (CaSR) on human esophagus and evidence of expression of the CaSR on the esophageal epithelial cell line (HET-1A). Am J Physiol Gastrointest Liver Physiol 2008; 294:G120-9. [PMID: 17962359 DOI: 10.1152/ajpgi.00226.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.
Collapse
|
49
|
Maiti A, Hait NC, Beckman MJ. Extracellular Calcium-sensing Receptor Activation Induces Vitamin D Receptor Levels in Proximal Kidney HK-2G Cells by a Mechanism That Requires Phosphorylation of p38α MAPK. J Biol Chem 2008; 283:175-183. [DOI: 10.1074/jbc.m707269200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
50
|
Lorch G, Gilmore JL, Koltz PF, Gonterman RM, Laughner R, Lewis DA, Konger RL, Nadella KS, Toribio RE, Rosol TJ, Foley J. Inhibition of epidermal growth factor receptor signalling reduces hypercalcaemia induced by human lung squamous-cell carcinoma in athymic mice. Br J Cancer 2007; 97:183-93. [PMID: 17533397 PMCID: PMC2360295 DOI: 10.1038/sj.bjc.6603828] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to evaluate the role of the epidermal growth factor receptor (EGFR) in parathyroid hormone-related protein (PTHrP) expression and humoral hypercalcaemia of malignancy (HHM), using two different human squamous-cell carcinoma (SCC) xenograft models. A randomised controlled study in which nude mice with RWGT2 and HARA xenografts received either placebo or gefitinib 200 mg kg−1 for 3 days after developing HHM. Effectiveness of therapy was evaluated by measuring plasma calcium and PTHrP, urine cyclic AMP/creatinine ratios, and tumour volumes. The study end point was at 78 h. The lung SCC lines, RWGT2 and HARA, expressed high levels of PTHrP mRNA as well as abundant EGFR protein, but very little erbB2 or erbB3. Both lines expressed high transcript levels for the EGFR ligand, amphiregulin (AREG), as well as, substantially lower levels of transforming growth factor-α (TGF-α), and heparin binding-epidermal growth factor (HB-EGF) mRNA. Parathyroid hormone-related protein gene expression in both lines was reduced 40–80% after treatment with 1 μM of EGFR tyrosine kinase inhibitor PD153035 and precipitating antibodies to AREG. Gefitinib treatment of hypercalcaemic mice with RWGT2 and HARA xenografts resulted in a significant reduction of plasma total calcium concentrations by 78 h. Autocrine AREG stimulated the EGFR and increased PTHrP gene expression in the RWGT2 and HARA lung SCC lines. Inhibition of the EGFR pathway in two human SCC models of HHM by an anilinoquinazoline demonstrated that the EGFR tyrosine kinase is a potential target for antihypercalcaemic therapy.
Collapse
MESH Headings
- Amphiregulin
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Squamous Cell/complications
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- EGF Family of Proteins
- ErbB Receptors/analysis
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Gefitinib
- Gene Expression Regulation, Neoplastic
- Glycoproteins/analysis
- Glycoproteins/metabolism
- Humans
- Hypercalcemia/drug therapy
- Hypercalcemia/etiology
- Hypercalcemia/genetics
- Intercellular Signaling Peptides and Proteins/analysis
- Intercellular Signaling Peptides and Proteins/metabolism
- Lung Neoplasms/complications
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Parathyroid Hormone-Related Protein/genetics
- Quinazolines/therapeutic use
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, ErbB-2/analysis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/analysis
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- G Lorch
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|