1
|
Kabir M, Bergman RN, Porter J, Stefanovski D, Paszkiewicz RL, Piccinini F, Woolcott OO, Yang H, Sashi Gopaul V, Stiles L, Kolka CM. Dapagliflozin prevents abdominal visceral and subcutaneous adipose tissue dysfunction in the insulin-resistant canine model. Obesity (Silver Spring) 2023; 31:1798-1811. [PMID: 37221655 PMCID: PMC10981466 DOI: 10.1002/oby.23771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Sodium-glucose cotransporter 2 inhibitors (SGLT2i) promote urinary glucose excretion, induce weight loss, and reduce fat accumulation. The effects of the SGLT2i dapagliflozin (DAPA) on subcutaneous (SC) and visceral (VIS) adipose tissue function remain unclear. The objective of this study is to evaluate SC and VIS adipose tissue function in an insulin-resistant canine model. METHODS A total of 12 dogs were fed a high-fat diet (HFD) for 6 weeks and then were given a single low dose of streptozotocin (18.5 mg/kg) to induce insulin resistance. Animals were then randomized and exposed to DAPA (n = 6, 1.25 mg/kg) or placebo (n = 6) once per day for 6 weeks while remaining on the HFD. RESULTS DAPA prevented further weight gain induced by the HFD and normalized fat mass. DAPA reduced fasting glucose and increased free fatty acids, adiponectin, and β-hydroxybutyrate. DAPA reduced adipocyte diameter and cell distribution. Furthermore, DAPA increased genes associated with beiging, lipolysis, and adiponectin secretion and the expression of the adiponectin receptor ADR2, in SC and VIS adipose tissue. DAPA increased AMP-activated protein kinase activity and maximal mitochondrial respiratory function, especially in the SC depot. Furthermore, DAPA reduced cytokines and ceramide synthesis enzymes in SC and VIS depots. CONCLUSIONS For the first time, to our knowledge, we identify mechanisms by which DAPA enhances adipose tissue function in regulating energy homeostasis in an insulin-resistant canine model.
Collapse
Affiliation(s)
- Morvarid Kabir
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Richard N Bergman
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Jay Porter
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Darko Stefanovski
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Rebecca L Paszkiewicz
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Francesca Piccinini
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - Orison O. Woolcott
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| | - HsiuChiung Yang
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - V Sashi Gopaul
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Cathryn M Kolka
- Cedars-Sinai Medical Center, Diabetes and Obesity Research Institute, Los Angeles, California, USA
| |
Collapse
|
2
|
Lu G, Hu R, Tao T, Hu M, Dong Z, Wang C. Regulatory role of atrial natriuretic peptide in brown adipose tissue: A narrative review. Obes Rev 2023; 24:e13522. [PMID: 36336901 DOI: 10.1111/obr.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) has been considered to exert an essential role as a cardiac secretory hormone in the regulation of hemodynamic homeostasis. As the research progresses, the role of ANP in the crosstalk between heart and lipid metabolism has become an interesting topic that is attracting the interest of researchers. The regulation of ANP in lipid metabolism shows favorable effects, particularly the activation of brown adipose tissue (BAT). The complex regulatory network of ANP on BAT has not been fully outlined. This narrative review critically evaluated the existing literature on the regulatory effects of ANP on BAT. In general, we have summarized the expression of ANP and its receptors in various human tissues, analyzed the progress of research on the relationship between the ANP and BAT, and described several potential pathways of ANP to BAT. Exogenous ANP, natriuretic peptide receptor C (NPRC) deficiency, cold exposure, bariatric surgery, and cardiac or renal insufficiency could all contribute to BAT expression by increasing circulating ANP levels.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Ruixiang Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Tian Tao
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Min Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
CB1 Ligand AM251 Induces Weight Loss and Fat Reduction in Addition to Increased Systemic Inflammation in Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms231911447. [PMID: 36232744 PMCID: PMC9569643 DOI: 10.3390/ijms231911447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with the global CB1 antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a “browning” of white adipose tissue (WAT) defined by UCP1 expression levels. Male Sprague Dawley rats consumed an HFD (21% fat) for 9 weeks before receiving daily intraperitoneal injections with vehicle or AM251 (3 mg/kg) for 6 weeks. mRNA expression of genes involved in metabolic functions were measured in skeletal muscle and adipose tissue, and blood was harvested for the measurement of hormones and cytokines. Muscle citrate synthase activity was also measured. AM251 treatment decreased fat pad weight (epididymal, peri-renal, brown), and plasma levels of leptin, glucagon, ghrelin, and GLP-1, and increased PAI-1 along with a range of pro-inflammatory and anti-inflammatory cytokines; however, AM251 did not alter plasma adiponectin levels, skeletal muscle citrate synthase activity or mRNA expression of the genes measured in muscle. AM251 treatment had no effect on white fat UCP1 expression levels. AM251 decreased fat pad mass, altered plasma hormone levels, but did not induce browning of WAT defined by UCP1 mRNA levels or alter gene expression in muscle treated acutely with adiponectin, demonstrating the complexity of the endocannabinoid system and metabolism. The CB1 ligand AM251 increased systemic inflammation suggesting limitations on its use in metabolic disorders.
Collapse
|
4
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Miyai S, Hendawy AO, Sato K. Gene expression profile of peripheral blood mononuclear cells in mild to moderate obesity in dogs. Vet Anim Sci 2021; 13:100183. [PMID: 34258471 PMCID: PMC8251507 DOI: 10.1016/j.vas.2021.100183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Molecular mechanisms and early diagnosis on the development of mild to moderate of canine obesity are not understood although recent dog obesity is a widespread problem. To understand the differences between normal weight and mild to moderate obesity, the purpose of this study is to investigate the gene expression profiles of peripheral blood mononuclear cells (PBMC) in dogs. Methods This study comprised a sample of 12 privately-owned Miniature Dachshund, which were divided into two groups (obese and control) based on body condition scores (BCS). Serum biochemical parameters and PBMC gene expression profiles were compared between groups. Results A statistically significant between group differences was recorded for body weight (BW), BCS, serum Insulin and triglyceride (TG) levels (p < 0.05). RNA-seq revealed the upregulated 154 genes and the downregulated 198 genes in obese dogs at more than 3.5-fold change compared with control animals. Hemoglobin subunits alpha- and beta-like were detected in the downregulated genes. RT-PCR analysis showed downregulation of FOLH1, ALAS2 and LOC100855540 genes, and upregulation of BCL2L15 gene, suggesting that the metabolic difference between normal and mild to moderate obesity was involved in the hemoglobin metabolism. Conclusions This study revealed significant differences in the gene expression of BCL2L15, FOLH1, ALAS2, and hemoglobin subunits such as LOC100855540 between normal weight and mild to moderate obese dogs, which indicate that these genes may prevent the obesity in dogs and be potentially useful for diagnosis of mild to moderate obesity.
Collapse
Affiliation(s)
- Sayaka Miyai
- Department of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Corresponding author.
| | - Amin Omar Hendawy
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Animal and Poultry Production, Damanhour University, Damanhour, Egypt
| | - Kan Sato
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Laboratory of Animal Nutrition, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Paszkiewicz RL, Bergman RN, Santos RS, Frank AP, Woolcott OO, Iyer MS, Stefanovski D, Clegg DJ, Kabir M. A Peripheral CB1R Antagonist Increases Lipolysis, Oxygen Consumption Rate, and Markers of Beiging in 3T3-L1 Adipocytes Similar to RIM, Suggesting that Central Effects Can Be Avoided. Int J Mol Sci 2020; 21:E6639. [PMID: 32927872 PMCID: PMC7554772 DOI: 10.3390/ijms21186639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
With the increased prevalence of obesity and related co-morbidities, such as type 2 diabetes (T2D), worldwide, improvements in pharmacological treatments are necessary. The brain- and peripheral-cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been shown to induce weight loss and improve glucose homeostasis. We have previously demonstrated that RIM promotes adipose tissue beiging and decreased adipocyte cell size, even during maintenance on a high-fat diet. Given the adverse side-effects of brain-penetrance with RIM, in this study we aimed to determine the site of action for a non-brain-penetrating CB1R antagonist AM6545. By using in vitro assays, we demonstrated the direct effects of this non-brain-penetrating CB1R antagonist on cultured adipocytes. Specifically, we showed, for the first time, that AM6545 significantly increases markers of adipose tissue beiging, mitochondrial biogenesis, and lipolysis in 3T3-L1 adipocytes. In addition, the oxygen consumption rate (OCR), consisting of baseline respiratory rate, proton leak, maximal respiratory capacity, and ATP synthase activity, was greater for cells exposed to AM6545, demonstrating greater mitochondrial uncoupling. Using a lipolysis inhibitor during real-time OCR measurements, we determined that the impact of CB1R antagonism on adipocytes is driven by increased lipolysis. Thus, our data suggest the direct role of CB1R antagonism on adipocytes does not require brain penetrance, supporting the importance of focus on peripheral CB1R antagonism pharmacology for reducing the incidence of obesity and T2D.
Collapse
Affiliation(s)
- Rebecca L. Paszkiewicz
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Richard N. Bergman
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Roberta S. Santos
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Aaron P. Frank
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Orison O. Woolcott
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Malini S. Iyer
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| | - Darko Stefanovski
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Deborah J. Clegg
- The College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA;
| | - Morvarid Kabir
- Sports Spectacular Diabetes and Obesity Wellness and Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.L.P.); (R.N.B.); (R.S.S.); (A.P.F.); (O.O.W.); (M.S.I.)
| |
Collapse
|