1
|
Fenne KT, Clauss M, Schäfer Olstad D, Johansen EI, Jensen J. An Acute Bout of Endurance Exercise Does Not Prevent the Inhibitory Effect of Caffeine on Glucose Tolerance the following Morning. Nutrients 2023; 15:nu15081941. [PMID: 37111160 PMCID: PMC10143402 DOI: 10.3390/nu15081941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Caffeine reduces glucose tolerance, whereas exercise training improves glucose homeostasis. The aim of the present study was to investigate the effect of caffeine on glucose tolerance the morning after an acute bout of aerobic exercise. Methods: The study had a 2 × 2 factorial design. Oral glucose tolerance tests (OGTT) were performed after overnight fasting with/without caffeine and with/without exercise the evening before. Eight healthy young active males were included (Age 25.5 ± 1.5 years; 83.9 ± 9.0 kg; VO2max: 54.3 ± 7.0 mL·kg-1·min-1). The exercise session consisted of 30 min cycling at 71% of VO2max followed by four 5 min intervals at 84% with 3 min of cycling at 40% of VO2max between intervals. The exercise was performed at 17:00 h. Energy expenditure at each session was ~976 kcal. Lactate increased to ~8 mM during the exercise sessions. Participants arrived at the laboratory the following morning at 7.00 AM after an overnight fast. Resting blood samples were taken before blood pressure and heart rate variability (HRV) were measured. Caffeine (3 mg/kg bodyweight) or placebo (similar taste/flavor) was ingested, and blood samples, blood pressure and HRV were measured after 30 min. Next, the OGTTs were initiated (75 g glucose dissolved in 3 dL water) and blood was sampled. Blood pressure and HRV were measured during the OGTT. Caffeine increased the area under curve (AUC) for glucose independently of whether exercise was done the evening before (p = 0.03; Two-way ANOVA; Interaction: p = 0.835). Caffeine did not significantly increase AUC for C-peptides compared to placebo (p = 0.096), and C-peptide response was not influenced by exercise. The acute bout of exercise did not significantly improve glucose tolerance the following morning. Diastolic blood pressure during the OGTT was slightly higher after intake of caffeine, independent of whether exercise was performed the evening before or not. Neither caffeine nor exercise the evening before significantly influenced HRV. In conclusion, caffeine reduced glucose tolerance independently of whether endurance exercise was performed the evening before. The low dose of caffeine did not influence heart rate variability but increased diastolic blood pressure slightly.
Collapse
Affiliation(s)
- Karoline T Fenne
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevål Stadion, 0806 Oslo, Norway
| | - Matthieu Clauss
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevål Stadion, 0806 Oslo, Norway
| | | | - Egil I Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevål Stadion, 0806 Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ullevål Stadion, 0806 Oslo, Norway
| |
Collapse
|
2
|
Impact of Glucocorticoid Excess on Glucose Tolerance: Clinical and Preclinical Evidence. Metabolites 2016; 6:metabo6030024. [PMID: 27527232 PMCID: PMC5041123 DOI: 10.3390/metabo6030024] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones that exert important physiological actions on metabolism. Given that GCs also exert potent immunosuppressive and anti-inflammatory actions, synthetic GCs such as prednisolone and dexamethasone were developed for the treatment of autoimmune- and inflammatory-related diseases. The synthetic GCs are undoubtedly efficient in terms of their therapeutic effects, but are accompanied by significant adverse effects on metabolism, specifically glucose metabolism. Glucose intolerance and reductions in insulin sensitivity are among the major concerns related to GC metabolic side effects, which may ultimately progress to type 2 diabetes mellitus. A number of pre-clinical and clinical studies have aimed to understand the repercussions of GCs on glucose metabolism and the possible mechanisms of GC action. This review intends to summarize the main alterations that occur in liver, skeletal muscle, adipose tissue, and pancreatic islets in the context of GC-induced glucose intolerance. For this, both experimental (animals) and clinical studies were selected and, whenever possible, the main cellular mechanisms involved in such GC-side effects were discussed.
Collapse
|
3
|
Chen X, Zhao T, Huang X, Wu L, Wu K, Fan M, Zhu L. Intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats. Cell Stress Chaperones 2016; 21:515-22. [PMID: 26902078 PMCID: PMC4837188 DOI: 10.1007/s12192-016-0679-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88 ± 5.69 mmol/L vs. 14.79 ± 5.84 mmol/L, p < 0.05), while it was not different in diabetic rats after hypoxic treatment (13.14 ± 5.77 mmol/L vs. 14.79 ± 5.84 mmol/L, p > 0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28 ± 0.11 vs. 1.39 ± 0.11, p < 0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48 ± 0.48 vs. 3.86 ± 0.42, p < 0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China
- Department of Ophthalmology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Liying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Kuiwu Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, No.27 Taiping Road, Beijing, 100850, People's Republic of China.
| |
Collapse
|
4
|
Motta K, Barbosa AM, Bobinski F, Boschero AC, Rafacho A. JNK and IKKβ phosphorylation is reduced by glucocorticoids in adipose tissue from insulin-resistant rats. J Steroid Biochem Mol Biol 2015; 145:1-12. [PMID: 25268311 DOI: 10.1016/j.jsbmb.2014.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. MATERIALS/METHODS Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. RESULTS The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). CONCLUSION The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.
Collapse
Affiliation(s)
- Katia Motta
- Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Amanda Marreiro Barbosa
- Graduate Program in Nutrition, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Franciane Bobinski
- Graduate Program in Neurosciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Antonio Carlos Boschero
- Graduate Program in Functional and Molecular Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Alex Rafacho
- Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
5
|
A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle. Biochem J 2012; 447:137-47. [PMID: 22793019 DOI: 10.1042/bj20120772] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.
Collapse
|
6
|
Ibrahim MM, Fjære E, Lock EJ, Frøyland L, Jessen N, Lund S, Vidal H, Ruzzin J. Metabolic impacts of high dietary exposure to persistent organic pollutants in mice. Toxicol Lett 2012; 215:8-15. [PMID: 23041606 DOI: 10.1016/j.toxlet.2012.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) have been linked to metabolic diseases. Yet, the effects of high exposure to dietary POPs remain unclear. We therefore investigated whether elevated exposure to POPs provided by whale meat supplementation could contribute to insulin resistance. C57BL/6J mice were fed control (C) or very high-fat diet (VHF) containing low or high levels of POPs (VHF(+POPs)) for eight weeks. To elevate the dietary concentrations of POPs, casein was replaced by whale meat containing high levels of pollutants. Feeding VHF(+POPs) induced high POP accumulation in the adipose tissue of mice. However, compared with VHF-fed mice, animals fed VHF(+POPs) had improved insulin sensitivity and glucose tolerance, and reduced body weight. Levels of ectopic fat in skeletal muscles and liver were reduced in mice fed VHF(+POPs). These mice also gained less adipose tissue and had a tendency to reduced energy intake. In pair-feeding experiments, improved insulin action and reduced body weight gain were still observed in VHF(+POPs) compared to VHF pair-fed mice. We concluded that mice fed VHF contaminated with POPs derived from whale meat remain sensitive to insulin and glucose tolerant despite significant body burden of POPs. This indicates complex interactions between organic pollutants and nutrition in the development of metabolic disorders.
Collapse
|
7
|
Laskewitz AJ, van Dijk TH, Grefhorst A, van Lierop MJ, Schreurs M, Bloks VW, Reijngoud DJ, Dokter WH, Kuipers F, Groen AK. Chronic prednisolone treatment aggravates hyperglycemia in mice fed a high-fat diet but does not worsen dietary fat-induced insulin resistance. Endocrinology 2012; 153:3713-23. [PMID: 22653558 DOI: 10.1210/en.2011-1891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic glucocorticoids such as prednisolone have potent antiinflammatory actions. Unfortunately, these drugs induce severe adverse effects in patients, many of which resemble features of the metabolic syndrome, such as insulin resistance. In this study, we investigated whether adverse effects of prednisolone on glucose homeostasis are aggravated in mice with compromised insulin sensitivity due to a high-fat diet by applying various methods to analyze changes in insulin sensitivity in mice. C57BL/6J mice were fed a high-fat diet for 6 wk and treated with either prednisolone (10 mg/kg · d) or vehicle for the last 7 d. Insulin sensitivity and blood glucose kinetics were analyzed with state-of-the-art stable isotope procedures in different experimental conditions. Prednisolone treatment aggravated fasting hyperglycemia and hyperinsulinemia caused by high-fat feeding, resulting in a higher homeostatic assessment model of insulin resistance. In addition, prednisolone-treated high-fat diet-fed mice appeared less insulin sensitive by detailed analysis of basal glucose kinetics. Remarkably, using hyperinsulinemic-euglycemic or hyperglycemic clamp techniques, neither hepatic nor peripheral insulin resistance was worsened in the group that was treated with prednisolone. Yet analysis of hepatic glucose metabolism revealed that prednisolone did alter glycogen balance by reducing glycogen synthase flux under hyperinsulinemic as well as hyperglycemic conditions. In addition to elevated insulin levels, prednisolone-treated mice showed a major rise in plasma leptin and fibroblast growth factor 21 levels. Our data indicate that prednisolone-induced adverse effects on glucose metabolism in high-fat diet-fed mice do not reflect impaired insulin sensitivity but may be caused by other changes in the hormonal regulatory network controlling glucose metabolism such as fibroblast growth factor 21 and leptin.
Collapse
Affiliation(s)
- Anke J Laskewitz
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jensen J, Tantiwong P, Stuenæs JT, Molina-Carrion M, DeFronzo RA, Sakamoto K, Musi N. Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects. Am J Physiol Endocrinol Metab 2012; 303:E82-9. [PMID: 22510711 PMCID: PMC3404561 DOI: 10.1152/ajpendo.00658.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
Abstract
Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser⁷ phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.
Collapse
Affiliation(s)
- Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
9
|
Lin FC, Bolling A, Stuenæs JT, Cumming KT, Ingvaldsen A, Lai YC, Ivy JL, Jensen J. Effect of insulin and contraction on glycogen synthase phosphorylation and kinetic properties in epitrochlearis muscles from lean and obese Zucker rats. Am J Physiol Cell Physiol 2012; 302:C1539-47. [PMID: 22403789 DOI: 10.1152/ajpcell.00430.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher K(m)) in muscles from obese rats. GS Ser(641) and Ser(645,649,653,657) phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser(641), Ser(641+645), Ser(645,649,653,657), and Ser(7+10) was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ~0.8, ~0.4, and ~0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced K(m)) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ~0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired.
Collapse
Affiliation(s)
- Fang Chin Lin
- Department of Physical Performance, Norwegian School of Sport Sciences, P. O. Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Williams DB, Wan Z, Frier BC, Bell RC, Field CJ, Wright DC. Dietary supplementation with vitamin E and C attenuates dexamethasone-induced glucose intolerance in rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R49-58. [PMID: 22031784 DOI: 10.1152/ajpregu.00304.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucocorticoid excess induces marked insulin resistance and glucose intolerance. A recent study has shown that antioxidants prevent dexamethasone (DEX)-induced insulin resistance in cultured adipocytes. The purpose of this investigation was to examine the effects of dietary vitamin E and C (Vit E/C) supplementation on DEX-induced glucose intolerance in rats. We hypothesized that feeding rats a diet supplemented with Vit E/C would improve glucose tolerance and restore insulin signaling in skeletal muscle, adipose, and liver and prevent alterations in AMPK signaling in these tissues. Male Wistar rats received either a control or Vit E/C-supplemented diet (0.5 g/kg diet each of L-ascorbate and DL-all rac-alpha-tocopherol) for 9 days prior to, and during, 5 days of daily DEX treatment (subcutaneous injections 0.8 mg/g body wt). DEX treatment resulted in increases in the glucose and insulin area under the curve (AUC) during an intraperitoneal glucose tolerance test. The glucose, but not insulin, AUC was lowered with Vit E/C supplementation. Improvements in glucose tolerance occurred independent of a restoration of PKB phosphorylation in tissues of rats stimulated with an intraperitoneal injection of insulin but were associated with increases in AMPK signaling in muscle and reductions in AMPK signaling and the expression of fatty acid oxidation enzymes in liver. There were no differences in mitochondrial enzymes in triceps muscles between groups. This study is the first to report that dietary Vit E/C supplementation can partially prevent DEX-induced glucose intolerance in rats.
Collapse
Affiliation(s)
- Deon B Williams
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Systemic administration of glucocorticoids (GCs) is banned by the World Anti-Doping Agency (WADA) during competition. Few studies have examined the effects of GCs on exercise performance, but increasing evidence has shown that short-term GC intake enhances performance in animals and humans. However, there are many health risks associated with GC use. Based on the available evidence, as presented in this article, I conclude that GCs are doping agents and should remain on the WADA's list of banned products. Because of the complexity of GCs, however, determining the boundaries between their medical use and abuse (eg, in sports) is a constant challenge for the WADA.
Collapse
Affiliation(s)
- Martine Duclos
- Department of Sport Medicine and Functional Explorations, University-Hospital (CHU), Hôpital G. Montpied, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Lai YC, Stuenaes JT, Kuo CH, Jensen J. Insulin-stimulated glycogen synthesis and glycogen synthase activation after electrical stimulation of epitrochlearis muscles with different initial glycogen contents. Arch Physiol Biochem 2010; 116:116-27. [PMID: 20597590 DOI: 10.3109/13813455.2010.494670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glycogen synthesis increases after muscle contraction and during insulin stimulation, and insulin-stimulated glycogen synthesis is enhanced after contraction. We hypothesized that the initial glycogen content influences the magnitude of additive effect of contraction on insulin-stimulated glycogen synthesis. Contraction and insulin had full additive effect on rate of glycogen synthesis measured after contraction in muscles with normal and high glycogen content. In muscles with low glycogen, contraction increased insulin-stimulated glycogen synthesis nearly as much as in muscles with normal glycogen, but not to the sum of the two stimuli studied separately; still glycogen synthesis was generally highest in muscles with low glycogen. Glycogen synthase fractional activity inversely correlated with glycogen content and contraction increased glycogen synthase fractional activity. Contraction and insulin additively increased glycogen synthase fractional activity at all glycogen contents. In conclusion, after contraction insulin-stimulated glycogen synthesis was increased by rather similar magnitude at all glycogen contents in concert with increased glycogen synthase activation.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- Department of Physical Performance, Norwegian School of Sport Sciences, PO Box 4014 Ullevål Stadion, N-0806 Oslo, Norway
| | | | | | | |
Collapse
|
13
|
Abstract
Certain international sports federations are requesting that glucocorticoids (GCs) be removed from the World Antidoping Agency's list of banned products. Their arguments are based on the fact that GCs are in widespread use in sports medicine and have no demonstrated ergogenic activity. This article shows that there is scientific evidence that GCs mediate ergogenic effects in animals and humans. Moreover, the health risks of using GCs are well characterized. GCs are doping agents and should remain on the World Antidoping Agency's list of banned products.
Collapse
Affiliation(s)
- Martine Duclos
- Department of Sport Medicine and Functional Explorations, University-Hospital (CHU), Hôpital G. Montpied, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Lai YC, Zarrinpashneh E, Jensen J. Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents. J Appl Physiol (1985) 2010; 108:1106-15. [PMID: 20185632 DOI: 10.1152/japplphysiol.00401.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with normal (NG) and high (HG) glycogen contents, but the additive effect was only partial. In muscles with low glycogen (LG) content no additive effect was seen, but glucose uptake was higher in LG than in NG and HG during contraction, insulin stimulation, and when the two stimuli were combined. In LG, contraction-stimulated AMP-activated protein kinase (AMPK) activity and insulin-stimulated PKB phosphorylation were higher than in NG and HG, but phosphorylation of Akt substrate of 160 kDa was not elevated correspondingly. GLUT4 content was 50% increased in LG (rats fasted 24 h), which may explain the increased glucose uptake. Contraction and insulin also additively increased GS fractional activity in NG and HG but not in LG. GS fractional activity correlated most strongly with GS Ser641 phosphorylation (R -0.94, P<0.001). GS fractional activity also correlated with GS Ser7,10 phosphorylation, but insulin did not reduce GS Ser7,10 phosphorylation. In conclusion, an additive effect of contraction and insulin on glucose uptake and GS activity occurs in muscles with normal and high glycogen content but not in muscles with low glycogen content. Furthermore, contraction, insulin, and glycogen content all regulate GS Ser641 phosphorylation and GS fractional activity in concert.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
15
|
Nakken GN, Jacobs DL, Thomson DM, Fillmore N, Winder WW. Effects of excess corticosterone on LKB1 and AMPK signaling in rat skeletal muscle. J Appl Physiol (1985) 2009; 108:298-305. [PMID: 19959768 DOI: 10.1152/japplphysiol.00906.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cushing's syndrome is characterized by marked central obesity and insulin insensitivity, effects opposite those seen with chronic AMP-activated protein kinase (AMPK) activation. This study was designed to determine whether chronic exposure to excess glucocorticoids influences LKB1/AMPK signaling in skeletal muscle. Corticosterone pellets were implanted subcutaneously in rats (hypercorticosteronemia, Hypercort) for 2 wk. Controls were sham operated and fed ad libitum or were sham operated and food restricted (pair-weighted group, Pair) to produce body weights similar to Hypercort rats. At the end of the 2-wk treatment period, rats were anesthetized, and the right gastrocnemius-plantaris (gastroc) and soleus muscles were removed. Left muscles were removed after electrical stimulation for 5 min. No significant differences were noted between treatment groups in ATP, creatine phosphate, or LKB1 activity. The alpha- and beta-subunit isoforms were not significantly influenced in gastroc by corticosterone treatment. Expression of the gamma3-subunit decreased, and gamma1- and gamma2-subunit expression increased. Both alpha2-AMPK and alpha1-AMPK activities were increased in the gastroc in response to electrical stimulation, but the magnitude of the increase was less for alpha2 in the Hypercort rats. Despite elevated plasma insulin and elevated plasma leptin in the Hypercort rats, phosphorylation of TBC1D1 was lower in both resting and stimulated muscle compared with controls. Malonyl-CoA content was elevated in gastroc muscles of resting Hypercort rats. These changes in response to excess glucocorticoids could be responsible, in part, for the decrease in insulin sensitivity and adiposity seen in Cushing's syndrome.
Collapse
Affiliation(s)
- G Nathan Nakken
- Dept. of Physiology and Developmental Biology, Brigham Young Univ., Provo, Utah 84602, USA
| | | | | | | | | |
Collapse
|
16
|
Lai YC, Lin FC, Jensen J. Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles. Acta Physiol (Oxf) 2009; 197:139-50. [PMID: 19432592 DOI: 10.1111/j.1748-1716.2009.01998.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to investigate the effect of glycogen content on glycogen synthase (GS) activation and phosphorylation in the slow-twitch soleus muscles after contraction, during insulin stimulation and when these two stimuli were combined. METHODS Glycogen content was manipulated in vivo with 24 h fasting and fasting followed by 24 h refeeding. Soleus strips were electrically stimulated for 30 min in vitro, and GS activation and phosphorylation were investigated after an additional 30 min incubation with or without insulin. RESULTS Fasting reduced glycogen content in soleus muscle by 40% and refeeding enhanced by 40%, compared to rats with free access to chow. Insulin-stimulated GS fractional activity was inversely correlated with glycogen content (R = -0.95, P < 0.001, n = 24) and rate of glycogen synthesis was also inversely correlated with glycogen content (R = -0.70, P < 0.001, n = 36). After contraction, GS fractional activity was increased to similar levels in muscles with low, normal and high glycogen content; rate of glycogen synthesis after contraction was also similar. After contraction, insulin additively increased GS activation at all glycogen contents. Group means of GS fractional activity was inversely correlated with GS Ser(641) (R = -0.93, P < 0.001) and Ser(645,649,653,657) (R = -0.85, P < 0.001) phosphorylation, but not with Ser(7) phosphorylation. CONCLUSION Glycogen content regulates insulin- but not contraction-stimulated GS activation and glycogen synthesis in soleus muscles. Furthermore, phosphorylation of GS Ser(641) and Ser(645,649,653,657) seems to regulate GS activity in soleus.
Collapse
Affiliation(s)
- Y-C Lai
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
17
|
Burén J, Lai YC, Lundgren M, Eriksson JW, Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys 2008; 474:91-101. [PMID: 18328801 DOI: 10.1016/j.abb.2008.02.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/18/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Glucocorticoids initiate whole body insulin resistance and the aim of the present study was to investigate effects of dexamethasone on protein expression and insulin signalling in muscle and fat tissue. Rats were injected with dexamethasone (1mg/kg/day, i.p.) or placebo for 11 days before insulin sensitivity was evaluated in vitro in soleus and epitrochlearis muscles and in isolated epididymal adipocytes. Dexamethasone treatment reduced insulin-stimulated glucose uptake and glycogen synthesis by 30-70% in epitrochlearis and soleus, and insulin-stimulated glucose uptake by approximately 40% in adipocytes. 8-bromo-cAMP-stimulated lipolysis was approximately 2-fold higher in adipocytes from dexamethasone-treated rats and insulin was less effective to inhibit cAMP-stimulated lipolysis. A main finding was that dexamethasone decreased expression of PKB and insulin-stimulated Ser(473) and Thr(308) phosphorylation in both muscles and adipocytes. Expression of GSK-3 was not influenced by dexamethasone treatment in muscles or adipocytes and insulin-stimulated GSK-3beta Ser(9) phosphorylation was reduced in muscles only. A novel finding was that glycogen synthase (GS) Ser(7) phosphorylation was higher in both muscles from dexamethasone-treated rats. GS expression decreased (by 50%) in adipocytes only. Basal and insulin-stimulated GS Ser(641) and GS Ser(645,649,653,657) phosphorylation was elevated in epitrochlearis and soleus muscles and GS fractional activity was reduced correspondingly. In conclusion, dexamethasone treatment (1) decreases PKB expression and insulin-stimulated phosphorylation in both muscles and adipocytes, and (2) increases GS phosphorylation (reduces GS fractional activity) in muscles and decreases GS expression in adipocytes. We suggest PKB and GS as major targets for dexamethasone-induced insulin resistance.
Collapse
Affiliation(s)
- J Burén
- Department of Public Health and Clinical Medicine, Umeå University Hospital, Umeå, Sweden
| | | | | | | | | |
Collapse
|
18
|
Tiley HA, Geor RJ, McCutcheon LJ. Effects of dexamethasone administration on insulin resistance and components of insulin signaling and glucose metabolism in equine skeletal muscle. Am J Vet Res 2008; 69:51-8. [DOI: 10.2460/ajvr.69.1.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Lai YC, Stuenaes JT, Kuo CH, Jensen J. Glycogen content and contraction regulate glycogen synthase phosphorylation and affinity for UDP-glucose in rat skeletal muscles. Am J Physiol Endocrinol Metab 2007; 293:E1622-9. [PMID: 17878227 DOI: 10.1152/ajpendo.00113.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycogen content and contraction strongly regulate glycogen synthase (GS) activity, and the aim of the present study was to explore their effects and interaction on GS phosphorylation and kinetic properties. Glycogen content in rat epitrochlearis muscles was manipulated in vivo. After manipulation, incubated muscles with normal glycogen [NG; 210.9 +/- 7.1 mmol/kg dry weight (dw)], low glycogen (LG; 108.1 +/- 4.5 mmol/ kg dw), and high glycogen (HG; 482.7 +/- 42.1 mmol/kg dw) were contracted or rested before the studies of GS kinetic properties and GS phosphorylation (using phospho-specific antibodies). LG decreased and HG increased GS K(m) for UDP-glucose (LG: 0.27 +/- 0.02 < NG: 0.71 +/- 0.06 < HG: 1.11 +/- 0.12 mM; P < 0.001). In addition, GS fractional activity inversely correlated with glycogen content (R = -0.70; P < 0.001; n = 44). Contraction decreased K(m) for UDP-glucose (LG: 0.14 +/- 0.01 = NG: 0.16 +/- 0.01 < HG: 0.33 +/- 0.03 mM; P < 0.001) and increased GS fractional activity, and these effects were observed independently of glycogen content. In rested muscles, GS Ser(641) and Ser(7) phosphorylation was decreased in LG and increased in HG compared with NG. GSK-3beta Ser(9) and AMPKalpha Thr(172) phosphorylation was not modulated by glycogen content in rested muscles. Contraction decreased phosphorylation of GS Ser(641) at all glycogen contents. However, contraction increased GS Ser(7) phosphorylation even though GS was strongly activated. In conclusion, glycogen content regulates GS affinity for UDP-glucose and low affinity for UDP-glucose in muscles with high glycogen content may reduce glycogen accumulation. Contraction increases GS affinity for UDP-glucose independently of glycogen content and creates a unique phosphorylation pattern.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- Dept. of Physiology, National Institute of Occupational Health, P. O. Box 8149, Dep. N-0033, Oslo, Norway
| | | | | | | |
Collapse
|
20
|
Duclos M. Usage et abus de stéroïdes anabolisants et de glucocorticoïdes dans le sport. ANNALES D'ENDOCRINOLOGIE 2007; 68:308-14. [PMID: 17689473 DOI: 10.1016/j.ando.2007.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M Duclos
- Service de médecine du sport et des explorations fonctionnelles, CHU de Gabriel-Montpied, 58, rue Montalembert, 63003 Clermont-Ferrand cedex 01, France.
| |
Collapse
|
21
|
Coderre L, Vallega GA, Pilch PF, Chipkin SR. Regulation of glycogen concentration and glycogen synthase activity in skeletal muscle of insulin-resistant rats. Arch Biochem Biophys 2007; 464:144-50. [PMID: 17509520 DOI: 10.1016/j.abb.2007.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/13/2007] [Accepted: 04/14/2007] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the effect of insulin resistance on glycogen concentration and glycogen synthase activity in the red and white gastrocnemius muscles and to determine whether the inverse relationship existing between glycogen concentration and enzyme activity is maintained in insulin resistant state. These questions were addressed using 3 models that induce various degrees of insulin resistance: sucrose feeding, dexamethasone administration, and a combination of both treatments (dex+sucrose). Sucrose feeding raised triglyceride levels without affecting plasma glucose or insulin concentrations whereas dexamethasone and dex+sucrose provoked severe hyperinsulinemia, hyperglycemia and hypertriglyceridemia. Sucrose feeding did not alter muscle glycogen concentration but provoked a small reduction in the glycogen synthase activity ratio (-/+ glucose-6-phosphate) in red but not in white gastrocnemius. Dexamethasone administration augmented glycogen concentration and reduced glycogen synthase activity ratio in both muscle fiber types. In contrast, dex+sucrose animals showed decreased muscle glycogen concentration compared to dexamethasone group, leading to levels similar to those of control animals. This was associated with lower glycogen synthase activity compared to control animals leading to levels comparable to those of dexamethasone-treated animals. Thus, in dex+sucrose animals, the inverse relationship observed between glycogen levels and glycogen synthase activity was not maintained, suggesting that factors other than the glycogen concentration modulate the enzyme's activity. In conclusion, while insulin resistance was associated with a reduced glycogen synthase activity ratio, we found no correlation between muscle glycogen concentration and insulin resistance. Furthermore, our results suggest that sucrose treatment may modulate dexamethasone action in skeletal muscle.
Collapse
Affiliation(s)
- Lise Coderre
- The Montreal Diabetes Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu and Department of Medicine, Université de Montréal, 3850 St. Urbain, Montréal, Que., Canada H2W 1T8.
| | | | | | | |
Collapse
|