1
|
Hasan M, Patel D, Ellis N, Brown SP, Lewandowski JR, Dixon AM. Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol. J Membr Biol 2019; 252:357-369. [DOI: 10.1007/s00232-019-00075-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
2
|
Kida T, Oku H, Horie T, Osuka S, Fukumoto M, Ikeda T. Protein kinase C-mediated insulin receptor phosphorylation in diabetic rat retina. Graefes Arch Clin Exp Ophthalmol 2019; 257:1427-1434. [PMID: 31025213 DOI: 10.1007/s00417-019-04324-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR) involves a proliferation of vascular endothelial cells and loss of pericytes. There is a link among the action of protein kinase C (PKC) and insulin signaling. Thus, we investigated the differences between these cells in insulin receptor (IR) phosphorylation in DR. METHODS Retinas were removed from streptozotocin-induced diabetic or healthy rats, and IR expression levels were compared by immunoblot and immunohistochemistry. In vitro assays also were performed in order to determine the expressions of phosphorylated IR in both cells cultured under 5.5 or 25 mM glucose by immunoblot. Cell viability was determined in both cells cultured under different concentrations of phorbol myristate acetate (PMA), a PKC activator. To determine the involvement of the PI3 kinase pathway of IR, PMA with or without wortmannin-induced changes in Akt was also analyzed. RESULTS Immunoreactivity to the IR was decreased in diabetic retina. High glucose (25 mM) increased phosphorylated IR levels in endothelial cells but not in pericytes. PMA (1 nM or higher) induced death of pericytes, while endothelial cells were increased. PMA increased phosphorylated Akt in endothelial cells and decreased in pericytes. Wortmannin suppressed the PMA-induced phosphorylation of Akt in endothelial cells. CONCLUSIONS The different responses to 25 mM glucose and PMA were observed between retinal endothelial cells and pericytes. Thus, IR phosphorylation is likely important for retinal vascular cells to survive in diabetic retina.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan.
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Sho Osuka
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| |
Collapse
|
3
|
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci U S A 2017; 114:1189-1194. [PMID: 28096339 DOI: 10.1073/pnas.1620506114] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.
Collapse
|
4
|
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J Diabetes Res 2016; 2016:9508541. [PMID: 27123463 PMCID: PMC4830713 DOI: 10.1155/2016/9508541] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- *Cristina Hernández: and
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- *Giovanni Casini:
| |
Collapse
|
5
|
Fukui K, Ferris HA, Kahn CR. Effect of cholesterol reduction on receptor signaling in neurons. J Biol Chem 2015; 290:26383-92. [PMID: 26370080 DOI: 10.1074/jbc.m115.664367] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-β-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20-31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-β-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-β was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease.
Collapse
Affiliation(s)
- Kenji Fukui
- From the Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Heather A Ferris
- From the Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - C Ronald Kahn
- From the Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
6
|
Seigel GM. Review: R28 retinal precursor cells: the first 20 years. Mol Vis 2014; 20:301-6. [PMID: 24644404 PMCID: PMC3955414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/11/2014] [Indexed: 11/04/2022] Open
Abstract
The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes.
Collapse
|
7
|
Jiang Z, Redfern RE, Isler Y, Ross AH, Gericke A. Cholesterol stabilizes fluid phosphoinositide domains. Chem Phys Lipids 2014; 182:52-61. [PMID: 24556334 DOI: 10.1016/j.chemphyslip.2014.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/19/2022]
Abstract
Local accumulation of phosphoinositides (PIPs) is an important factor for a broad range of cellular events including membrane trafficking and cell signaling. The negatively charged phosphoinositide headgroups can interact with cations or cationic proteins and this electrostatic interaction has been identified as the main phosphoinositide clustering mechanism. However, an increasing number of reports show that phosphoinositide-mediated signaling events are at least in some cases cholesterol dependent, suggesting other possible contributors to the segregation of phosphoinositides. Using fluorescence microscopy on giant unilamellar vesicles and monolayers at the air/water interface, we present data showing that cholesterol stabilizes fluid phosphoinositide-enriched phases. The interaction with cholesterol is observed for all investigated phosphoinositides (PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3) as well as phosphatidylinositol. We find that cholesterol is present in the phosphoinositide-enriched phase and that the resulting phase is fluid. Cholesterol derivatives modified at the hydroxyl group (cholestenone, cholesteryl ethyl ether) do not promote formation of phosphoinositide domains, suggesting an instrumental role of the cholesterol hydroxyl group in the observed cholesterol/phosphoinositide interaction. This leads to the hypothesis that cholesterol participates in an intermolecular hydrogen bond network formed among the phosphoinositide lipids. We had previously reported that the intra- and intermolecular hydrogen bond network between the phosphoinositide lipids leads to a reduction of the charge density at the phosphoinositide phosphomonoester groups (Kooijman et al., 2009). We believe that cholesterol acts as a spacer between the phosphoinositide lipids, thereby reducing the electrostatic repulsion, while participating in the hydrogen bond network, leading to its further stabilization. To illustrate the effect of phosphoinositide segregation on protein binding, we show that binding of the tumor suppressor protein PTEN to PI(5)P and PI(4,5)P2 is enhanced in the presence of cholesterol. These results provide new insights into how phosphoinositides mediate important cellular events.
Collapse
Affiliation(s)
- Zhiping Jiang
- Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Roberta E Redfern
- ProMedica Research Department, ProMedica Health System, Toledo, OH 43606, United States
| | - Yasmin Isler
- Academic Health Center BioRepository, ProMedica Health System, Toledo, OH 43606, United States
| | - Alonzo H Ross
- University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, United States.
| |
Collapse
|
8
|
Fort PE, Losiewicz MK, Reiter CEN, Singh RSJ, Nakamura M, Abcouwer SF, Barber AJ, Gardner TW. Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 2011; 6:e26498. [PMID: 22046295 PMCID: PMC3202547 DOI: 10.1371/journal.pone.0026498] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/27/2011] [Indexed: 01/10/2023] Open
Abstract
Diabetes pathology derives from the combination of hyperglycemia and hypoinsulinemia or insulin resistance leading to diabetic complications including diabetic neuropathy, nephropathy and retinopathy. Diabetic retinopathy is characterized by numerous retinal defects affecting the vasculature and the neuro-retina, but the relative contributions of the loss of retinal insulin signaling and hyperglycemia have never been directly compared. In this study we tested the hypothesis that increased retinal insulin signaling and glycemic normalization would exert differential effects on retinal cell survival and retinal physiology during diabetes. We have demonstrated in this study that both subconjunctival insulin administration and systemic glycemic reduction using the sodium-glucose linked transporter inhibitor phloridzin affected the regulation of retinal cell survival in diabetic rats. Both treatments partially restored the retinal insulin signaling without increasing plasma insulin levels. Retinal transcriptomic and histological analysis also clearly demonstrated that local administration of insulin and systemic glycemia normalization use different pathways to counteract the effects of diabetes on the retina. While local insulin primarily affected inflammation-associated pathways, systemic glycemic control affected pathways involved in the regulation of cell signaling and metabolism. These results suggest that hyperglycemia induces resistance to growth factor action in the retina and clearly demonstrate that both restoration of glycemic control and retinal insulin signaling can act through different pathways to both normalize diabetes-induced retinal abnormality and prevent vision loss.
Collapse
Affiliation(s)
- Patrice E Fort
- Kellogg Eye Center, University of Michigan, Ophthalmology and Visual Sciences Department, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|