1
|
Sakurai Y, Kubota N, Takamoto I, Wada N, Aihara M, Hayashi T, Kubota T, Hiraike Y, Sasako T, Nakao H, Aiba A, Chikaoka Y, Kawamura T, Kadowaki T, Yamauchi T. Overexpression of UBE2E2 in Mouse Pancreatic β-Cells Leads to Glucose Intolerance via Reduction of β-Cell Mass. Diabetes 2024; 73:474-489. [PMID: 38064504 DOI: 10.2337/db23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/03/2023] [Indexed: 02/22/2024]
Abstract
Genome-wide association studies have identified several gene polymorphisms, including UBE2E2, associated with type 2 diabetes. Although UBE2E2 is one of the ubiquitin-conjugating enzymes involved in the process of ubiquitin modifications, the pathophysiological roles of UBE2E2 in metabolic dysfunction are not yet understood. Here, we showed upregulated UBE2E2 expression in the islets of a mouse model of diet-induced obesity. The diabetes risk allele of UBE2E2 (rs13094957) in noncoding regions was associated with upregulation of UBE2E2 mRNA in the human pancreas. Although glucose-stimulated insulin secretion was intact in the isolated islets, pancreatic β-cell-specific UBE2E2-transgenic (TG) mice exhibited reduced insulin secretion and decreased β-cell mass. In TG mice, suppressed proliferation of β-cells before the weaning period and while receiving a high-fat diet was accompanied by elevated gene expression levels of p21, resulting in decreased postnatal β-cell mass expansion and compensatory β-cell hyperplasia, respectively. In TG islets, proteomic analysis identified enhanced formation of various types of polyubiquitin chains, accompanied by increased expression of Nedd4 E3 ubiquitin protein ligase. Ubiquitination assays showed that UBE2E2 mediated the elongation of ubiquitin chains by Nedd4. The data suggest that UBE2E2-mediated ubiquitin modifications in β-cells play an important role in regulating glucose homeostasis and β-cell mass.
Collapse
Affiliation(s)
- Yoshitaka Sakurai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Iseki Takamoto
- Department of Metabolism and Endocrinology, Ibaraki Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiro Wada
- Department of Anatomy I, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masakazu Aihara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takanori Hayashi
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tetsuya Kubota
- Clinical Nutrition Program, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Diabetes and Metabolism, Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Yuta Hiraike
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Abbasi Y, Pooladi M, Nazmabadi R, Amri J, Abbasi H, Aghabeygi R, Karami H. Enhancement of the Sensitivity of the Acute Lymphoblastic Leukemia Cells to ABT-737 by Formononetin. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:259-271. [PMID: 39493513 PMCID: PMC11530950 DOI: 10.22088/ijmcm.bums.13.3.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 11/05/2024]
Abstract
Overexpression of (myeloid leukemia cell differentiation protein 1) Mcl-1 is associated with the reduction of ABT-737 toxicity and secondary resistance. In this study, the effect of formononetin (biochanin B) on Mcl-1 expression, cell growth, apoptosis, and ABT-737 sensitivity of the acute lymphoblastic leukemia (ALL) cells was investigated. In this experimental study, the cell proliferation and MTT assays were used to investigate the effect of formononetin on cell growth and survival. qRT-PCR was performed for the measurement of gene expression. Hoechst 33342 staining and caspase-3 activity assay were used for the determination of apoptosis. Our data showed that formononetin and ABT-737 both led to a significant reduction in the IC50 value and synergistically reduced the cell growth and survival relative to single treatment. Overexpression of Mcl-1 was found after the treatment with ABT-737. Formononetin decreased the expression of B-cell lymphoma 2 (Bcl-2) and Mcl-1 and increased the Bcl-2-associated protein x (Bax) and P21 expression. Moreover, formononetin enhanced the apoptotic effect of ABT-737 in ALL cells. In summary, formononetin showed anti-carcinogenic activities in human ALL cells via suppression of cell growth and survival. Formononetin enhanced the apoptotic effect of ABT-737, with contribution by inhibition of the Mcl-1 expression.
Collapse
Affiliation(s)
- Yusef Abbasi
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Marziyeh Pooladi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Roya Nazmabadi
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Jamal Amri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Helia Abbasi
- Department of Biology, Faculty of Sciences, Payame Noor University, Hamedan Branch, Hamedan, Iran.
| | - Razieh Aghabeygi
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Nazmabadi R, Pooladi M, Amri J, Abbasi Y, Karami H, Darvish M. Dihydroartemisinin Enhances the Therapeutic Efficacy of BH3 Mimetic Inhibitor in Acute Lymphoblastic Leukemia Cells via Inhibition of Mcl-1. Asian Pac J Cancer Prev 2024; 25:325-332. [PMID: 38285800 PMCID: PMC10911722 DOI: 10.31557/apjcp.2024.25.1.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Up-regulation of the anti-apoptotic proteins such as Mcl-1 is associated with the primary and secondary resistance of tumor cells to ABT-737 Bcl-2 inhibitor. The combined treatment of Bcl-2 inhibitors with Mcl-1 inhibitors has been proposed as an attractive therapeutic strategy to overcome this drug resistance. Here, we investigated the effect of dihydroartemisinin on Mcl-1 expression and sensitization of T-ALL cells to ABT-737. METHODS The cell growth and survival were tested by the cell proliferation and MTT assays, respectively. The mRNA levels of Bcl-2, Mcl-1, Bax and P21 were examined by qRT-PCR. Apoptosis were detected by Hoechst 33342 staining and caspase-3 activity assay. RESULTS Our data showed that combination treatment with dihydroartemisinin and ABT-737 caused a significant decrease in the IC50 value and synergistically reduced the cell survival compared with dihydroartemisinin or ABT-737 alone. ABT-737 enhanced the Mcl-1 mRNA expression. Dihydroartemisinin also down-regulated the expression of Bcl-2 and Mcl-1 and enhanced the P21 and Bax expression. Moreover, dihydroartemisinin enhanced the apoptosis induced by ABT-737 in MOLT-4 and MOLT-17 cell lines. CONCLUSION In conclusion, dihydroartemisinin demonstrates anti-tumor activities in human ALL cells via inhibition of cell survival and growth. Dihydroartemisinin augments the apoptotic effect of ABT-737 by inhibiting the expression of Mcl-1.
Collapse
Affiliation(s)
- Roya Nazmabadi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Marziyeh Pooladi
- Department of Anatomy, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yusef Abbasi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Traditional and Complementary Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Maryam Darvish
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
4
|
Tarik M, Ramakrishnan L, Sinha S, Sachdev HPS, Tandon N, Roy A, Bhargava SK. The Relationship of Birth Size and Postnatal Growth with Cellular Senescence in Adults: Data from the New Delhi Birth Cohort. Indian J Pediatr 2023; 90:49-55. [PMID: 35704216 DOI: 10.1007/s12098-022-04174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/25/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To assess the effect of birth size and postnatal body mass index (BMI) gain from birth to adulthood on leucocytes cellular senescence in adult life. METHODS Participants were aged 43.04 (± 0.92) y, and were enrolled from the New Delhi Birth Cohort study, who participated in phase 7 of the study (n = 210). Cellular senescence markers, p16 and p21 gene expression were determined by RT-qPCR in leucocytes and their association with birth size and conditional BMI gain at 2, 11, and 29 y were assessed in univariate and multivariate regression models. RESULTS Birth weight (regression coefficient; B = -0.087, p = 0.011) and birth BMI (unadjusted B = -0.024, p = 0.026; adjusted B = -0.032, p = 0.022) were inversely associated with p21 gene expression in adult life. The p16 gene expression was not associated with any birth parameters. Conditional BMI gain at 2 y, 11 y, and 29 y was not associated with either p16 or p21 gene expression. The p21 gene expression was inversely associated with circulating insulin (B = -0.065, p = 0.026) and C-peptide levels (unadjusted B = -0.097, p = 0.014; adjusted B = -0.133, p = 0.003). CONCLUSION Small size at birth is associated with accelerated cellular senescence in adult life. An altered senescent state is likely to be one of the links between LBW and adult chronic diseases.
Collapse
Affiliation(s)
- Mohamad Tarik
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sikha Sinha
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - H P S Sachdev
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
5
|
Yuniartha R, Arfian N, Setyaningsih WAW, Kencana SMS, Sari DCR, Sari DCR. Accelerated Senescence and Apoptosis in the Rat Liver during the Progression of Diabetic Complications. Malays J Med Sci 2022; 29:46-59. [PMID: 36818894 PMCID: PMC9910368 DOI: 10.21315/mjms2022.29.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Chronic hyperglycaemia of diabetes causes long-term damage and impaired function of multiple organs. However, the pathological changes in the liver following long-term diabetes remain unclear. This study aimed to determine the pathological complications of long-term diabetes in the rat liver. Methods Intraperitoneal injection of streptozotocin (STZ) was used to induce diabetes in rats at a single dose (60 mg/kg body weight [BW]). Rats were euthanised at 1 month (DM1 group), 2 months (DM2 group) and 4 months (DM4 group) following diabetes induction with six rats in each group. Immunohistochemistry was performed against SOD1, CD68, p53 and p16 antibodies. Messenger RNA (mRNA) expressions of SOD1, SOD2, GPx, CD68, p53, p21 and caspase-3 genes were measured by reverse transcription-polymerase chain reaction. Results Hepatic p53 mRNA expression was significantly higher in DM1, DM2 and DM4 groups compared to the control group. The p21 and caspase-3 mRNA expressions were significantly upregulated in the DM2 and DM4 groups. The p16-positive cells were obviously increased, particularly in the DM4 group. Bivariate correlation analysis showed mRNA expressions of p21 and caspase-3 genes were positively correlated with the p53 gene. Conclusion Diabetic rats exhibited increased apoptosis and senescence in the liver following a longer period of hyperglycaemia.
Collapse
|
6
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
7
|
Xu J, Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front Mol Biosci 2021; 8:745035. [PMID: 34796200 PMCID: PMC8592901 DOI: 10.3389/fmolb.2021.745035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is becoming a growing risk factor for public health worldwide. It is a very common disease and is widely known for its susceptibility to multiple complications which do great harm to the life and health of patients, some even lead to death. To date, there are many mechanisms for the complications of diabetes, including the generation of reactive oxygen species (ROS) and the abnormal changes of gas transmitters, which ultimately lead to injuries of cells, tissues and organs. Normally, even if injured, the body can quickly repair and maintain its homeostasis. This is closely associated with the repair and regeneration ability of stem cells. However, many studies have demonstrated that stem cells happen to be damaged under DM, which may be a nonnegligible factor in the occurrence and progression of diabetic complications. Therefore, this review summarizes how diabetes causes the corresponding complications by affecting stem cells from two aspects: stem cells dysfunctions and stem cells quantity alteration. In addition, since mesenchymal stem cells (MSCs), especially bone marrow mesenchymal stem cells (BMMSCs), have the advantages of strong differentiation ability, large quantity and wide application, we mainly focus on the impact of diabetes on them. The review also puts forward the basis of using exogenous stem cells to treat diabetic complications. It is hoped that through this review, researchers can have a clearer understanding of the roles of stem cells in diabetic complications, thus promoting the process of using stem cells to treat diabetic complications.
Collapse
Affiliation(s)
- Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Yi J, Pak JH, Chung JW. Zinc is an essential element for the maintenance of redox homeostasis and cell cycle in murine auditory hair cells. J Nutr Biochem 2021; 100:108901. [PMID: 34748925 DOI: 10.1016/j.jnutbio.2021.108901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
A nutrition deficiency is one of the various causes of hearing loss. Zinc is an essential element for cell proliferation, antioxidant reactions, and the maintenance of hearing ability. Our previous studies have reported that the auditory brainstem response (ABR) threshold is increased in mice fed with zinc-deficient diets. However, the molecular mechanism of zinc involved in auditory system remains to be elucidated. In the present study, we examined the detrimental effects of zinc deficiency on cell cycle progression in murine auditory cells (HEI-OC1). The treatment of HEI-OC1 cells with 0.5 μM TPEN (N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine) for 24 h inhibited cell proliferation, accumulation of reactive oxygen species (ROS), and induction of apoptosis. The cell proliferation block was caused by a G1/S phase arrest. Supplementation of the cell growth medium with 5 μM ZnCl2 after exposure to TPEN attenuated ROS accumulation and the arrest caused by the zinc deficiency. The ABR threshold was elevated in mice fed with a zinc-deficient diet. Additionally, we observed an increased expression of p21 and decreased expression of cyclin E and pRb in the spiral ganglion (SG), the organ of Corti (OC), Limbus (L), and stria vascularis (SV) in the zinc-deficient mouse cochlea. These results indicated that zinc is an essential nutrient for proliferation via the cell cycle and that a dysregulation of the cell cycle may cause hearing loss.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea.
| |
Collapse
|
9
|
Chantkran W, Hsieh YC, Zheleva D, Frame S, Wheadon H, Copland M. Interrogation of novel CDK2/9 inhibitor fadraciclib (CYC065) as a potential therapeutic approach for AML. Cell Death Dis 2021; 7:137. [PMID: 34112754 PMCID: PMC8192769 DOI: 10.1038/s41420-021-00496-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Over the last 50 years, there has been a steady improvement in the treatment outcome of acute myeloid leukemia (AML). However, median survival in the elderly is still poor due to intolerance to intensive chemotherapy and higher numbers of patients with adverse cytogenetics. Fadraciclib (CYC065), a novel cyclin-dependent kinase (CDK) 2/9 inhibitor, has preclinical efficacy in AML. In AML cell lines, myeloid cell leukemia 1 (MCL-1) was downregulated following treatment with fadraciclib, resulting in a rapid induction of apoptosis. In addition, RNA polymerase II (RNAPII)-driven transcription was suppressed, rendering a global gene suppression. Rapid induction of apoptosis was observed in primary AML cells after treatment with fadraciclib for 6-8 h. Twenty-four hours continuous treatment further increased efficacy of fadraciclib. Although preliminary results showed that AML cell lines harboring KMT2A rearrangement (KMT2A-r) are more sensitive to fadraciclib, we found that the drug can induce apoptosis and decrease MCL-1 expression in primary AML cells, regardless of KMT2A status. Importantly, the diversity of genetic mutations observed in primary AML patient samples was associated with variable response to fadraciclib, confirming the need for patient stratification to enable a more effective and personalized treatment approach. Synergistic activity was demonstrated when fadraciclib was combined with the BCL-2 inhibitor venetoclax, or the conventional chemotherapy agents, cytarabine, or azacitidine, with the combination of fadraciclib and azacitidine having the most favorable therapeutic window. In summary, these results highlight the potential of fadraciclib as a novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Wittawat Chantkran
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK ,grid.10223.320000 0004 1937 0490Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Ya-Ching Hsieh
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sheelagh Frame
- grid.481607.c0000 0004 0397 2104Cyclacel Limited, Dundee, UK
| | - Helen Wheadon
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
11
|
Tay VSY, Devaraj S, Koh T, Ke G, Crasta KC, Ali Y. Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis. Sci Rep 2019; 9:19341. [PMID: 31852915 PMCID: PMC6920453 DOI: 10.1038/s41598-019-54554-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
DNA damage and DNA damage response (DDR) pathways in β-cells have received little attention especially in the context of type-2 diabetes. We postulate that p21 plays a key role in DDR by preventing apoptosis, associated through its overexpression triggered by DNA stand breaks (DSBs). Our results show that β-cells from chronic diabetic mice had a greater extent of DSBs as compared to their non-diabetic counterparts. Comet assays and nuclear presence of γH2AX and 53bp1 revealed increased DNA DSBs in 16 weeks old (wo) db/db β-cells as compared to age matched non-diabetic β-cells. Our study of gene expression changes in MIN6 cell line with doxorubicin (Dox) induced DNA damage, showed that the DDR was similar to primary β-cells from diabetic mice. There was significant overexpression of DDR genes, gadd45a and p21 after a 24-hr treatment. Western blot analysis revealed increased cleaved caspase3 over time, suggesting higher frequency of apoptosis due to Dox-induced DNA strand breaks. Inhibition of p21 by pharmacological inhibitor UC2288 under DNA damage conditions (both in Dox-induced MIN6 cells and older db/db islets) significantly increased the incidence of β-cell apoptosis. Our studies confirmed that while DNA damage, specifically DSBs, induced p21 overexpression in β-cells and triggered the p53/p21 cellular response, p21 inhibition exacerbated the frequency of apoptosis.
Collapse
Affiliation(s)
- Vanessa S Y Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Surabhi Devaraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tracy Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Guo Ke
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Karen C Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Xiang M, Chen Z, He L, Xiong G, Lu J. Transcription profiling of artemisinin-treated diabetic nephropathy rats using high-throughput sequencing. Life Sci 2019; 219:353-363. [PMID: 30684545 DOI: 10.1016/j.lfs.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
Artemisinin (Art) plays a renoprotective role in diabetic nephropathy (DN) rats. However, the differential gene expression profile and underlying molecular mechanism of Art treatment in DN is not well understood. We constructed an animal model of DN by injection of streptozotocin (STZ) in rats. We then examined the profile of differentially expressed genes following administration of Art using RNA-sequencing (KANGCH&EN, Shanghai, China). Five genes identified by RNA-sequencing were randomly selected and validated by qRT-PCR. Bioinformatic analyses were performed to study these differentially expressed genes. We identified a total of 31 genes that were significantly up-regulated in DN samples compared to both normal and Art treatment samples, and 38 genes that were significantly down-regulated in DN samples compared to both normal and Art treatment samples. The identified genes were associated with a list of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and may be involved in the mechanism underlying Art treatment of DN. Thus, the results from the current study demonstrate that genes are aberrantly expressed after Art treatment and identify promising targets in the treatment of DN with artemisinin.
Collapse
Affiliation(s)
- Min Xiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Zhihong Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Liangping He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China.
| |
Collapse
|
13
|
STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget 2017; 8:78556-78572. [PMID: 29108249 PMCID: PMC5667982 DOI: 10.18632/oncotarget.20833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are highly aggressive malignancies, associated with poor clinical prognosis and limited therapeutic options. Oncogenic KRAS mutations are found in over 90% of PDACs, playing a central role in tumor progression. Global gene expression profiling of PDAC reveals 3-4 major molecular subtypes with distinct phenotypic traits and pharmacological vulnerabilities, including variations in oncogenic KRAS pathway dependencies. PDAC cell lines of the aberrantly differentiated endocrine exocrine (ADEX) subtype are robustly KRAS-dependent for survival. The KRAS gene is located on chromosome 12p11-12p12, a region amplified in 5-10% of primary PDACs. Within this amplicon, we identified co-amplification of KRAS with the STK38L gene in a subset of primary human PDACs and PDAC cell lines. Therefore, we determined whether PDAC cell lines are dependent on STK38L expression for proliferation and viability. STK38L encodes a serine/threonine kinase, which shares homology with Hippo pathway kinases LATS1/2. We show that STK38L expression is elevated in a subset of primary PDACs and PDAC cell lines displaying ADEX subtype characteristics, including overexpression of mutant KRAS. RNAi-mediated depletion of STK38L in a subset of ADEX subtype cell lines inhibits cellular proliferation and induces apoptosis. Concomitant with these effects, STK38L depletion causes increased expression of the LATS2 kinase and the cell cycle regulator p21. LATS2 depletion partially rescues the cytostatic and cytotoxic effects of STK38L depletion. Lastly, high STK38L mRNA expression is associated with decreased overall patient survival in PDACs. Collectively, our findings implicate STK38L as a candidate targetable vulnerability in a subset of molecularly-defined PDACs.
Collapse
|
14
|
Yadav N, Kumar P, Chhikara A, Chopra M. Development of 1,3,4-oxadiazole thione based novel anticancer agents: Design, synthesis and in-vitro studies. Biomed Pharmacother 2017; 95:721-730. [PMID: 28888209 DOI: 10.1016/j.biopha.2017.08.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
A series of new 1,3,4-oxadiazole-2(3H)-thione analogues (3a to 3o) have been designed, synthesized and evaluated for their anticancer activity. Four different cancerous cell lines viz. HeLa (cervical), U-87 (glioblastoma), Panc (pancreatic) and MCF-7 (breast) were used to assess the potency of the synthesized compounds as anticancer agents. Among them 3i and 3j showed promising cytotoxicity against HeLa cell line. Further, 3i and 3j successfully inhibited cell cycle progression and displayed cell death in HeLa cells via apoptosis as visualized by Annexin V APC and DNA fragmentation assay. 3i and 3j induced caspase-3 activation, PARP cleavage, increase in expression of proapoptotic protein Bax and decrease in the expression of antiapoptotic protein Bcl-2. Also, 3i and 3j induced overexpression of p21 and decreased expression of cyclin B1 indicating the arrest of cells in G2-M phase of the cell cycle. Therefore, new lead compounds are being suggested having anticancer activity through cell cycle inhibition and apoptosis.
Collapse
Affiliation(s)
- Nalini Yadav
- Laboratory of Anti-cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Parveen Kumar
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Madhu Chopra
- Laboratory of Anti-cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
15
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Ciclopirox enhances pancreatic islet health by modulating the unfolded protein response in diabetes. Pflugers Arch 2016; 468:1957-1968. [PMID: 27757583 DOI: 10.1007/s00424-016-1887-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Pancreatic dysfunction during diabetes is linked to the induction of endoplasmic reticulum (ER) stress on pancreatic beta (β) cells. Our laboratory recently discovered that p21 protects from diabetes by modifying the outcome of ER stress response. In the present study, we explored the antidiabetic activity of ciclopirox (CPX), an iron chelator and recently described activator of p21 expression. The effects of CPX in beta cell survival and function were assessed in cultured islets in vitro as well as in diabetic mice in vivo. The consequences of CPX in high glucose-induced insulin release and reactive oxygen species (ROS) production were also evaluated. Islet survival assays confirmed the significance of p21 in the regulation of glucotoxicity and suggested that CPX counteracts glucotoxicity in a manner that depends on p21. In vivo, administration of CPX in wild-type (WT) diabetic mice restored glucose homeostasis. In WT-cultured islets, CPX suppressed the expression of ER stress markers BiP, GRP94, and CHOP and reduced the levels of ROS during culture at high glucose. This reduction of ER stress may be associated with the ability of CPX to inhibit insulin release. Iron citrate stimulated insulin release, which was inhibited by CPX that functions as an iron chelator. It is conceivable that inhibition of insulin production constrains ER stress in islets promoting their survival and thus protecting from diabetes in vivo. This unfolded protein response (UPR)-antagonizing activity of CPX suggests application for the management not only of diabetes but also of other conditions related to ER stress.
Collapse
|
17
|
Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Mol Cell Biochem 2016; 418:91-102. [PMID: 27344165 DOI: 10.1007/s11010-016-2736-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 01/21/2023]
Abstract
To examine and compare the mitochondria-related cellular mechanisms by which tacrolimus (TAC) or sirolimus (SIR) immunosuppressive drugs alter the pancreatic exocrine and endocrine β-cell fate. Human exocrine PANC-1 and rat endocrine insulin-secreting RIN-m5F cells and isolated rat islets were submitted to 1-100 nM TAC or SIR. In cultures, insulin secretion was measured as endocrine cell function marker. Apoptosis was quantified by annexin 5 and propidium iodide staining. Cleaved caspase-3, Bax apoptosis indicators, and p53, p21 cell cycle regulators were detected by Western blot. Cell cycle and mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry and SA-beta-galactosidase (SA-β-gal) activity by fluorescence microscopy. Only TAC reduced insulin secretion by RIN-m5F after 24 h. TAC and SIR promoted moderate apoptosis in both PANC-1 and RIN-m5F after 24 h. Apoptosis was associated with up-regulated Bax (threefold) and cleaved caspase-3 (fivefold) but only in PANC-1, while p53 and p21 were up-regulated (twofold) in both cell lines. ΔΨm was impaired only in PANC-1 by TAC and SIR. Only SIR prompted cell cycle arrest in both cell lines. The induction of a premature senescence-like phenotype was confirmed in isolated islets by SA-β-gal activity. TAC and SIR are early inducers of pancreatic cell dysfunction and apoptosis but differentially alter endocrine and exocrine cells via mitochondrial-driven pathways. In rat islets, TAC and SIR prompt a senescence-like phenotype.
Collapse
|
18
|
Lin Z, Zhao Y, Song L, Mu K, Zhang M, Liu H, Li X, Zhao J, Wang C, Jia W. Deletion of β-Arrestin2 in Mice Limited Pancreatic β-Cell Expansion under Metabolic Stress through Activation of the JNK Pathway. Mol Med 2016; 22:74-84. [PMID: 26954469 DOI: 10.2119/molmed.2015.00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
Abstract
β-Arrestin2 (βarr2) is an adaptor protein that interacts with numerous signaling molecules and regulates insulin sensitivity. We reported previously that βarr2 was abundantly expressed in mouse pancreatic β-cells, and loss of βarr2 leads to impairment of acute- and late-phase insulin secretion. In the present study, we examined the dynamic changes of β-cell mass in βarr2-deficient (βarr2-/-) mice in vivo and explored the underlying mechanisms involved. βarr2-/- mice with exclusively luciferase overexpression in β-cells were generated and fed a high-fat diet (HFD). β-Cell mass was determined by in vivo noninvasive bioluminescence imaging from 4 to 20 wks of age. Proliferation was measured by 5-bromo-2-deoxyuridine (BrdU) incorporation and fluorescence-activated cell sorter analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting were conducted for gene and protein expression. We found that β-cell mass was reduced dramatically in βarr2-/- mice at 12 wks old compared with that of their respective HFD-fed controls. The percentage of BrdU- and Ki67-positive cells reduced in islets from βarr2-/- mice. Exposure of βarr2-/- islets to high levels of glucose and free fatty acids (FFAs) exacerbated cell death, which was associated with upregulation of the JNK pathway in these islets. Conversely, overexpression of βarr2 amplified β-cell proliferation with a concomitant increase in cyclinD2 expression and a decrease in p21 expression and protected β-cells from glucose- and FFA-induced cell death through JNK-activation inhibition. In conclusion, βarr2 plays roles in regulation of pancreatic β-cell mass through the modulation of cell cycle regulatory genes and the inhibition of JNK activation induced by glucolipotoxity, which implicates a role for βarr2 in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lin
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yu Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Lige Song
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kaida Mu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hongxia Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xiaowen Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jian Zhao
- Institute of Biochemistry and Cell Biology, Laboratory of Molecular Cell Biology, Chinese Academy of Sciences, Institutes for Biological Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Banerjee S, Lu J, Cai Q, Sun Z, Jha HC, Robertson ES. EBNA3C augments Pim-1 mediated phosphorylation and degradation of p21 to promote B-cell proliferation. PLoS Pathog 2014; 10:e1004304. [PMID: 25121590 PMCID: PMC4133388 DOI: 10.1371/journal.ppat.1004304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. The oncogenic serine/threonine kinase Pim-1 is upregulated in a number of human cancers including lymphomas, gastric, colorectal and prostate carcinomas. EBV nuclear antigen 3C (EBNA3C) is essential for EBV-induced transformation of human primary B-lymphocytes. Our current study revealed that EBNA3C significantly enhances Pim-1 kinase expression at both the transcript and protein levels. EBNA3C also interacts with Pim-1 and can form a complex in EBV-transformed cells. Moreover, EBNA3C increases nuclear localization of Pim-1 and stabilizes Pim-1 protein levels by inhibiting its poly-ubiquitination. Additionally, EBNA3C augments Pim-1 mediated phosphorylation of p21 and its proteosomal degradation. Stable knockdown of Pim-1 using si-RNA showed a significant decrease in proliferation of EBV transformed lymphoblastoid cell lines and subsequent induction of apoptosis by triggering the intrinsic apoptotic pathway. Therefore, our study demonstrated a new mechanism by which the oncogenic Pim-1 kinase targeted by EBV latent antigen 3C can inhibit p21 function, and is therefore a potential therapeutic target for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Key Laboratory of Molecular Medical Virology (Ministries of Education and Health), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death Dis 2013; 4:e907. [PMID: 24201806 PMCID: PMC3847308 DOI: 10.1038/cddis.2013.420] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/26/2022]
Abstract
The androgen receptor (AR) has a critical role in promoting androgen-dependent and -independent apoptosis in testicular cells. However, the molecular mechanisms that underlie the ligand-independent apoptosis, including the activity of AR in testicular stem cells, are not completely understood. In the present study, we generated induced pluripotent stem cells (iPSCs) from bovine testicular cells by electroporation of octamer-binding transcription factor 4 (OCT4). The cells were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4, which maintained and stabilized the expression of stemness genes and pluripotency. The iPSCs were used to assess the apoptosis activity following exposure to phthalate esters, including di (2-ethyhexyl) phthalates, di (n-butyl) phthalate, and butyl benzyl phthalate. Phthalate esters significantly reduced the expression of AR in iPSCs and induced a higher ratio of BAX/BCL-2, thereby favoring apoptosis. Phthalate esters also increased the expression of cyclin-dependent kinase inhibitor 1 (p21Cip1) in a p53-dependent manner and enhanced the transcriptional activity of p53. The forced expression of AR and knockdown of p21Cip1 led to the rescue of the phthalate-mediated apoptosis. Overall, this study suggests that testicular iPSCs are a useful system for screening the toxicity of environmental disruptors and examining their effect on the maintenance of stemness and pluripotency, as well as for identifying the iPSC signaling pathway(s) that are deregulated by these chemicals.
Collapse
|