1
|
Kara I, Poggi M, Bonardo B, Govers R, Landrier JF, Tian S, Leibiger I, Day R, Creemers JWM, Peiretti F. The paired basic amino acid-cleaving enzyme 4 (PACE4) is involved in the maturation of insulin receptor isoform B: an opportunity to reduce the specific insulin receptor-dependent effects of insulin-like growth factor 2 (IGF2). J Biol Chem 2014; 290:2812-21. [PMID: 25527501 DOI: 10.1074/jbc.m114.592543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gaining the full activity of the insulin receptor (IR) requires the proteolytic cleavage of its proform by intra-Golgi furin-like activity. In mammalian cells, IR is expressed as two isoforms (IRB and IRA) that are responsible for insulin action. However, only IRA transmits the growth-promoting and mitogenic effects of insulin-like growth factor 2. Here we demonstrate that the two IR isoforms are similarly cleaved by furin, but when this furin-dependent maturation is inefficient, IR proforms move to the cell surface where the proprotein convertase PACE4 selectively supports IRB maturation. Therefore, in situations of impaired furin activity, the proteolytic maturation of IRB is greater than that of IRA, and accordingly, the amount of phosphorylated IRB is also greater than that of IRA. We highlight the ability of a particular proprotein convertase inhibitor to effectively reduce the maturation of IRA and its associated mitogenic signaling without altering the signals emanating from IRB. In conclusion, the selective PACE4-dependent maturation of IRB occurs when furin activity is reduced; accordingly, the pharmacological inhibition of furin reduces IRA maturation and its mitogenic potential without altering the insulin effects.
Collapse
Affiliation(s)
- Imène Kara
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Marjorie Poggi
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Bernadette Bonardo
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Roland Govers
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Jean-François Landrier
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Sun Tian
- Nuolan Net, 1098 Amsterdam, The Netherlands
| | - Ingo Leibiger
- the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Robert Day
- the Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada, and
| | - John W M Creemers
- the Laboratory of Biochemical Neuroendocrinology Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Peiretti
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France,
| |
Collapse
|
2
|
Takenoshita M, Yamaji R, Inui H, Miyatake K, Nakano Y. Suppressive effect of insulin on the synthesis of sucrase-isomaltase complex in small intestinal epithelial cells, and abnormal increase in the complex under diabetic conditions. Biochem J 1998; 329 ( Pt 3):597-600. [PMID: 9445387 PMCID: PMC1219081 DOI: 10.1042/bj3290597] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An abnormally high level of the sucrase-isomaltase (SI) complex in the small intestine of rats with streptozotocin-induced insulin-dependent diabetes mellitus (IDDM) was normalized in 11 h by the administration of insulin, in addition to normalization of the blood glucose level. Phlorizin, an inhibitor of renal glucose reabsorption, also caused normalization of the blood glucose level in the IDDM rats; however, the level of the SI complex was barely changed. When mucosa explants were cultured in a medium, the SI complex synthesized during the cultivation was accumulated as its precursor protein without maturation, owing to the absence of pancreatic proteases, and the amount of the precursor protein that accumulated in the explants was decreased by the addition of insulin into the medium. Further, the mRNA level of the SI complex in the explants incubated with insulin was obviously lower than that in the absence of insulin. These results indicate that insulin has a suppressive effect on the synthesis of the SI complex, presumably by decreasing the transcriptional level of the gene encoding the complex, in small-intestinal epithelial cells. Thus the synthesis of the SI complex might exceed normal levels in the epithelial cells as a direct result of the depletion of insulin under IDDM conditions.
Collapse
Affiliation(s)
- M Takenoshita
- Department of Applied Biological Chemistry, Osaka Prefecture University, Japan
| | | | | | | | | |
Collapse
|
3
|
Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J. Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 1995; 96:2113-9. [PMID: 7593595 PMCID: PMC185859 DOI: 10.1172/jci118264] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We studied glucocorticoid-induced muscle wasting and subsequent recovery in adult (7-mo-old) and old (22-mo-old) rats, since the increased incidence of various disease states may result in glucocorticoids hypersecretion in aging. Adult and old rats received dexamethasone in their drinking water and were then allowed to recover. Muscle wasting occurred more rapidly in old rats and the recovery of muscle mass was impaired, suggesting that glucocorticoids may be involved in the emergence of muscle atrophy with advancing age. According to measurements in incubated epitrochlearis muscles, dexamethasone-induced muscle wasting mainly resulted from increased protein breakdown in the adult, but from depressed protein synthesis in the aged animal. Increased expression of cathepsin D, m-calpain, and ubiquitin was observed in the muscles from both dexamethasone-treated adult and old rats. By contrast, the disappearance of the stimulatory effect of glucocorticoids on protein break-down in aging occurred along with a loss of ability of steroids to enhance the expression of the 14-kD ubiquitin carrier protein E2, which is involved in protein substrates ubiquitinylation, and of subunits of the 20 S proteasome (the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates). Thus, if glucocorticoids play any role in the progressive muscle atrophy seen in aging, this is unlikely to result from an activation of the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- D Dardevet
- Centre de Recherche en Nutrition Humaine et INRA, Unité d'Etude du Métabolisme Azoté, Ceyrat, France
| | | | | | | | | | | |
Collapse
|