1
|
Li H, Seessle J, Staffer S, Tuma-Kellner S, Poschet G, Herrmann T, Chamulitrat W. FATP4 deletion in liver cells induces elevation of extracellular lipids via metabolic channeling towards triglycerides and lipolysis. Biochem Biophys Res Commun 2023; 687:149161. [PMID: 37931418 DOI: 10.1016/j.bbrc.2023.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on β-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in β-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from β-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Ferrasi AC, Lima SVG, Galvani AF, Delafiori J, Dias-Audibert FL, Catharino RR, Silva GF, Praxedes RR, Santos DB, Almeida DTDM, Lima EO. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. World J Hepatol 2023; 15:1237-1249. [DOI: 10.4254/wjh.v15.i11.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Chronic Hepatitis C (CHC) affects 71 million people globally and leads to liver issues such as fibrosis, cirrhosis, cancer, and death. A better understanding and prognosis of liver involvement are vital to reduce morbidity and mortality. The accurate identification of the fibrosis stage is crucial for making treatment decisions and predicting outcomes. Tests used to grade fibrosis include histological analysis and imaging but have limitations. Blood markers such as molecular biomarkers can offer valuable insights into fibrosis.
AIM To identify potential biomarkers that might stratify these lesions and add information about the molecular mechanisms involved in the disease.
METHODS Plasma samples were collected from 46 patients with hepatitis C and classified into fibrosis grades F1 (n = 13), F2 (n = 12), F3 (n = 6), and F4 (n = 15). To ensure that the identified biomarkers were exclusive to liver lesions (CHC fibrosis), healthy volunteer participants (n = 50) were also included. An untargeted metabolomic technique was used to analyze the plasma metabolites using mass spectrometry and database verification. Statistical analyses were performed to identify differential biomarkers among groups.
RESULTS Six differential metabolites were identified in each grade of fibrosis. This six-metabolite profile was able to establish a clustering tendency in patients with the same grade of fibrosis; thus, they showed greater efficiency in discriminating grades.
CONCLUSION This study suggests that some of the observed biomarkers, once validated, have the potential to be applied as prognostic biomarkers. Furthermore, it suggests that liquid biopsy analyses of plasma metabolites are a good source of molecular biomarkers capable of stratifying patients with CHC according to fibrosis grade.
Collapse
Affiliation(s)
| | | | - Aline Faria Galvani
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, University of Campinas, Campinas 13083-877, Brazil
| | | | | | - Giovanni Faria Silva
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | | | | | | | - Estela Oliveira Lima
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| |
Collapse
|
3
|
Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals (Basel) 2020; 10:ani10122282. [PMID: 33287296 PMCID: PMC7761635 DOI: 10.3390/ani10122282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Milk production traits of cows are important economic indicators of the livestock industry. Many dairy farms strive to improve the quality of their milk. Long-chain acyl-CoA synthetase 1 (ACSL1) is a gene related to lipid metabolism. It is widely found in various organisms and can affect fat content and protein content in milk. Single nucleotide polymorphisms (SNP) refers to the polymorphism of DNA sequence caused by a single nucleotide variation at the gene level, which plays a vital function in the genetic study of milk production traits in dairy cows. Our study identified six SNPs of the ACSL1 gene in Chinese Holstein cows, which were related to milk yield, milk fat content, milk protein content and somatic cell score (SCS) to some extent. In summary, the pleiotropic effects of bovine ACSL1 for milk production traits were found in this paper, which will provide a reference for Chinese Holstein cow breeding selection and high economic benefits. Abstract Improving the quality of milk is a challenge for zootechnicians and dairy farms across the globe. Long-chain acyl-CoA synthetase 1 (ACSL1) is a significant member of the long-chain acyl-CoA synthetase gene family. It is widely found in various organisms and influences the lactation performance of cows, including fat percentage, milk protein percentage etc. Our study was aimed to investigate the genetic effects of single nucleotide polymorphisms (SNPs) in ACSL1 on milk production traits. Twenty Chinese Holstein cows were randomly selected to extract DNA from their blood samples for PCR amplification and sequencing to identify SNPs of the bovine ACSL1 gene, and six SNPs (5’UTR-g.20523C>G, g.35446C>T, g.35651G>A, g.35827C>T, g.35941G>A and g.51472C>T) were discovered. Then, Holstein cow genotyping (n = 992) was performed by Sequenom MassARRAY based on former SNP information. Associations between SNPs and milk production traits and somatic cell score (SCS) were analyzed by the least-squares method. The results showed that SNP g.35827C>T was in high linkage disequilibrium with g.35941G>A. Significant associations were found between SNPs and test-day milk yield (TDMY), fat content (FC), protein content (PC) and SCS (p < 0.05). Among these SNPs, SNP 5’UTR-g.20523C>G showed an extremely significant effect on PC and SCS (p < 0.01). The SNP g.35446C>T showed a statistically significant effect on FC, PC, and SCS (p < 0.01), and also TDMY (p < 0.05). The SNP g.35651G>A had a statistically significant effect on PC (p < 0.01). The SNP g.35827C>T showed a highly significant effect on TDMY, FC, and SCS (p < 0.01) and significantly influenced PC (p < 0.05). Lastly, SNP g.51472C>T was significantly associated with TDMY, FC, and SCS (p < 0.05). In summary, the pleiotropic effects of bovine ACSL1 for milk production traits were found in this paper, but further investigation will be required on the intrinsic correlation to provide a theoretical basis for the research on molecular genetics of milk quality traits of Holstein cows.
Collapse
|
4
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
5
|
di Masi A, Leboffe L, Sodo A, Tabacco G, Cesareo R, Sbroscia M, Giovannoni I, Taffon C, Crucitti P, Longo F, Manfrini S, Ricci MA, Ascenzi P, Crescenzi A, Palermo A. Metabolic profile of human parathyroid adenoma. Endocrine 2020; 67:699-707. [PMID: 31786773 DOI: 10.1007/s12020-019-02146-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Recently, it has been demonstrated that Raman spectroscopy is able to differentiate between healthy parathyroid tissues and parathyroid adenoma based on the basis of a specific molecular fingerprint. However, to our knowledge, no previous studies have been performed to evaluate the metabolic profile of parathyroid adenoma. Therefore, we designed a proof of concept study aimed to investigate the glucose/fatty acid metabolisms, in addition to the mitochondrial changes, in solitary parathyroid adenoma and in healthy parathyroid glands. METHODS Nine females with primary hyperparathyroidism due to a solitary parathyroid adenoma and formal surgical indication for parathyroidectomy have been enrolled. At the time of surgery, the removed specimens were immediately submitted unfixed and a tissue slice of about 0.5 cm in diameter was obtained from the nodular lesion. The expression of selected metabolic enzymes and proteins has been evaluated by western blot analysis, using human parathyroid whole tissue lysates as control. RESULTS Data obtained highlighted an increase, compared with the healthy group, of: (i) the glucose uptake by the GLUT-1 receptor and its phosphorylation by hexokinase II (HXKII); (ii) the expression of 3-phosphoglycerate dehydrogenase (3-PGDH) and glucose-6-phosphate dehydrogenase (G6PD); (iii) lipids biosynthesis; and (iv) cytochrome c expression. CONCLUSIONS Our findings highlight for the first time the parathyroid adenoma metabolic hallmarks that could represent potential molecular targets usable for the development of new pharmacological treatments, allowing to reduce surgical parathyroidectomy.
Collapse
Affiliation(s)
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, I-00146, Roma, Italy
| | - Armida Sodo
- Department of Sciences, Roma Tre University, I-00146, Roma, Italy
| | - Gaia Tabacco
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Roma, Italy
| | - Roberto Cesareo
- Unit of Metabolic Diseases, Department of Internal Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Marco Sbroscia
- Department of Sciences, Roma Tre University, I-00146, Roma, Italy
| | | | - Chiara Taffon
- Pathology Unit, Campus Bio-Medico University Hospital, Roma, Italy
| | | | - Filippo Longo
- Unit of Neck and Chest Surgery, Campus Bio-Medico University, Roma, Italy
| | - Silvia Manfrini
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Roma, Italy
| | | | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, I-00146, Roma, Italy
| | - Anna Crescenzi
- Pathology Unit, Campus Bio-Medico University Hospital, Roma, Italy
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Roma, Italy
| |
Collapse
|
6
|
Triacsin C reduces lipid droplet formation and induces mitochondrial biogenesis in primary rat hepatocytes. J Bioenerg Biomembr 2017; 49:399-411. [PMID: 28918598 DOI: 10.1007/s10863-017-9725-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
Intracellular long-chain acyl-CoA synthetases (ACSL) activate fatty acids to produce acyl-CoA, which undergoes β-oxidation and participates in the synthesis of esterified lipids such as triacylglycerol (TAG). Imbalances in these metabolic routes are closely associated with the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Triacsin C is one of the few compounds that inhibit TAG accumulation into lipid droplets (LD) by suppressing ACSL activity. Here we report that treatment of primary rat hepatocytes with triacsin C at concentrations lower than the IC50 (4.1 μM) for LD formation: (i) diminished LD number in a concentration-dependent manner; (ii) increased mitochondrial amount; (iii) markedly improved mitochondrial metabolism by enhancing the β-oxidation efficiency, electron transport chain capacity, and degree of coupling - treatment of isolated rat liver mitochondria with the same triacsin C concentrations did not affect the last two parameters; (iv) decreased the GSH/GSSG ratio and elevated the protein carbonyl level, which suggested an increased reactive oxygen species production, as observed in isolated mitochondria. The hepatocyte mitochondrial improvements were not related to either the transcriptional levels of PGC-1α or the content of mTOR and phosphorylated AMPK. Triacsin C at 10 μM induced hepatocyte death by necrosis and/or apoptosis through mechanisms associated with mitochondrial permeability transition pore opening, as demonstrated by experiments using isolated mitochondria. Therefore, triacsin C at sub-IC50 concentrations modulates the lipid imbalance by shifting hepatocytes to a more oxidative state and enhancing the fatty acid consumption, which can in turn accelerate lipid oxidation and reverse NAFLD in long-term therapies.
Collapse
|
7
|
CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc Natl Acad Sci U S A 2017; 114:E6556-E6565. [PMID: 28739932 DOI: 10.1073/pnas.1703791114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is notoriously aggressive with high metastatic potential, which has recently been linked to high rates of fatty acid oxidation (FAO). Here we report the mechanism of lipid metabolism dysregulation in TNBC through the prometastatic protein, CUB-domain containing protein 1 (CDCP1). We show that a "low-lipid" phenotype is characteristic of breast cancer cells compared with normal breast epithelial cells and negatively correlates with invasiveness in 3D culture. Using coherent anti-Stokes Raman scattering and two-photon excited fluorescence microscopy, we show that CDCP1 depletes lipids from cytoplasmic lipid droplets (LDs) through reduced acyl-CoA production and increased lipid utilization in the mitochondria through FAO, fueling oxidative phosphorylation. These findings are supported by CDCP1's interaction with and inhibition of acyl CoA-synthetase ligase (ACSL) activity. Importantly, CDCP1 knockdown increases LD abundance and reduces TNBC 2D migration in vitro, which can be partially rescued by the ACSL inhibitor, Triacsin C. Furthermore, CDCP1 knockdown reduced 3D invasion, which can be rescued by ACSL3 co-knockdown. In vivo, inhibiting CDCP1 activity with an engineered blocking fragment (extracellular portion of cleaved CDCP1) lead to increased LD abundance in primary tumors, decreased metastasis, and increased ACSL activity in two animal models of TNBC. Finally, TNBC lung metastases have lower LD abundance than their corresponding primary tumors, indicating that LD abundance in primary tumor might serve as a prognostic marker for metastatic potential. Our studies have important implications for the development of TNBC therapeutics to specifically block CDCP1-driven FAO and oxidative phosphorylation, which contribute to TNBC migration and metastasis.
Collapse
|
8
|
Lagrutta LC, Montero-Villegas S, Layerenza JP, Sisti MS, García de Bravo MM, Ves-Losada A. Reversible Nuclear-Lipid-Droplet Morphology Induced by Oleic Acid: A Link to Cellular-Lipid Metabolism. PLoS One 2017; 12:e0170608. [PMID: 28125673 PMCID: PMC5268491 DOI: 10.1371/journal.pone.0170608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/07/2017] [Indexed: 12/19/2022] Open
Abstract
Neutral lipids—involved in many cellular processes—are stored as lipid droplets (LD), those mainly cytosolic (cLD) along with a small nuclear population (nLD). nLD could be involved in nuclear-lipid homeostasis serving as an endonuclear buffering system that would provide or incorporate lipids and proteins involved in signalling pathways as transcription factors and as enzymes of lipid metabolism and nuclear processes. Our aim was to determine if nLD constituted a dynamic domain. Oleic-acid (OA) added to rat hepatocytes or HepG2 cells in culture produced cellular-phenotypic LD modifications: increases in TAG, CE, C, and PL content and in cLD and nLD numbers and sizes. LD increments were reversed on exclusion of OA and were prevented by inhibition of acyl-CoA synthetase (with Triacsin C) and thus lipid biosynthesis. Under all conditions, nLD corresponded to a small population (2–10%) of total cellular LD. The anabolism triggered by OA, involving morphologic and size changes within the cLD and nLD populations, was reversed by a net balance of catabolism, upon eliminating OA. These catabolic processes included lipolysis and the mobilization of hydrolyzed FA from the LD to cytosolic-oxidation sites. These results would imply that nLD are actively involved in nuclear processes that include lipids. In conclusion, nLD are a dynamic nuclear domain since they are modified by OA through a reversible mechanism in combination with cLD; this process involves acyl-CoA-synthetase activity; ongoing TAG, CE, and PL biosynthesis. Thus, liver nLD and cLD are both dynamic cellular organelles.
Collapse
Affiliation(s)
- Lucía C. Lagrutta
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
| | - Sandra Montero-Villegas
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
| | - Juan P. Layerenza
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
| | - Martín S. Sisti
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
| | - Margarita M. García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
- Cátedra de Biología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata; La Plata, Buenos Aires, Argentina
| | - Ana Ves-Losada
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Seeger DR, Murphy CC, Murphy EJ. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment. Prostaglandins Leukot Essent Fatty Acids 2016; 110:16-26. [PMID: 27255639 DOI: 10.1016/j.plefa.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.
Collapse
Affiliation(s)
- D R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - C C Murphy
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - E J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
10
|
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2015; 785:59-69. [PMID: 26164793 DOI: 10.1016/j.ejphar.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria.
| | - Stefanie Schlager
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
11
|
Bosma M, Dapito DH, Drosatos-Tampakaki Z, Huiping-Son N, Huang LS, Kersten S, Drosatos K, Goldberg IJ. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1648-55. [PMID: 25251292 DOI: 10.1016/j.bbalip.2014.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ; ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.
Collapse
|
12
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
13
|
Ditlecadet D, Driedzic WR. Glycerol-3-phosphatase and not lipid recycling is the primary pathway in the accumulation of high concentrations of glycerol in rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 2012; 304:R304-12. [PMID: 23269480 DOI: 10.1152/ajpregu.00468.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rainbow smelt is a small fish that accumulates glycerol in winter as a cryoprotectant when the animal is in seawater. Glycerol is synthesized in liver from different substrates that all lead to the formation of glycerol-3-phosphate (G3P). This study assesses whether glycerol is produced by a direct dephosphorylation of G3P by a phosphatase (G3Pase) or by a cycling through the glycerolipid pool followed by lipolysis. Foremost, concentrations of on-board glycerolipids and activity of G3Pase and of enzymes involved in lipid metabolism were measured in smelt liver over the glycerol cycle. Concentrations of on-board glycerolipids did not change over the cycle and were too low to significantly contribute directly to glycerol production but activities of enzymes involved in both potential pathways were up-regulated at the onset of glycerol accumulation. A second experiment conducted with isolated hepatic cells producing glycerol showed 1) that on-board glycerolipids were not sufficient to produce the glycerol released even though phospholipids could account for up to 17% of it, 2) that carbon cycling through the glycerolipid pool was not involved as glycerol was produced at similar rates following inhibition of this pathway, and 3) that G3Pase activity measured was sufficient to allow the synthesis of glycerol at the rate observed. These results are the first to clearly support G3Pase as the metabolic step leading to glycerol production in rainbow smelt and the first to provide strong support for a G3Pase in any animal species.
Collapse
Affiliation(s)
- Delphine Ditlecadet
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | |
Collapse
|
14
|
Poppelreuther M, Rudolph B, Du C, Großmann R, Becker M, Thiele C, Ehehalt R, Füllekrug J. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res 2012; 53:888-900. [PMID: 22357706 PMCID: PMC3329388 DOI: 10.1194/jlr.m024562] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.
Collapse
Affiliation(s)
- Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Berenice Rudolph
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Chen Du
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Regina Großmann
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Melanie Becker
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | | | - Robert Ehehalt
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and.
| |
Collapse
|
15
|
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:246-51. [PMID: 19818872 PMCID: PMC2824076 DOI: 10.1016/j.bbalip.2009.09.024] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
Although the underlying causes of insulin resistance have not been completely delineated, in most analyses, a recurring theme is dysfunctional metabolism of fatty acids. Because the conversion of fatty acids to activated acyl-CoAs is the first and essential step in the metabolism of long-chain fatty acid metabolism, interest has grown in the synthesis of acyl-CoAs, their contribution to the formation of signaling molecules like ceramide and diacylglycerol, and their direct effects on cell function. In this review, we cover the evidence for the involvement of acyl-CoAs in what has been termed lipotoxicity, the regulation of the acyl-CoA synthetases, and the emerging functional roles of acyl-CoAs in the major tissues that contribute to insulin resistance and lipotoxicity, adipose, liver, heart and pancreas.
Collapse
Affiliation(s)
- Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric L. Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
16
|
Bu SY, Mashek MT, Mashek DG. Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 2009; 284:30474-83. [PMID: 19737935 DOI: 10.1074/jbc.m109.036665] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long chain acyl-CoA synthetases (ACSL) and fatty acid transport proteins (FATP) activate fatty acids to acyl-CoAs in the initial step of fatty acid metabolism. Numerous isoforms of ACSL and FATP exist with different tissue distribution patterns, intracellular locations, and substrate preferences, suggesting that each isoform has distinct functions in channeling fatty acids into different metabolic pathways. Because fatty acids, acyl-CoAs, and downstream lipid metabolites regulate various transcription factors that control hepatic energy metabolism, we hypothesized that ACSL or FATP isoforms differentially regulate hepatic gene expression. Using small interference RNA (siRNA), we knocked down each liver-specific ACSL and FATP isoform in rat primary hepatocyte cultures and subsequently analyzed reporter gene activity of numerous transcription factors and performed quantitative mRNA analysis of their target genes. Compared with control cells, which were transfected with control siRNA, knockdown of acyl-CoA synthetase 3 (ACSL3) significantly decreased reporter gene activity of several lipogenic transcription factors such as peroxisome proliferator activation receptor-gamma, carbohydrate-responsive element-binding protein, sterol regulatory element-binding protein-1c, and liver X receptor-alpha and the expression of their target genes. These findings were further supported by metabolic labeling studies that showed [1-(14)C]acetate incorporation into lipid extracts was decreased in cells treated with ACSL3 siRNAs and that ACSL3 expression is up-regulated in ob/ob mice and mice fed a high sucrose diet. ACSL3 knockdown decreased total acyl-CoA synthetase activity without substantially altering the expression of other ACSL isoforms. In summary, these results identify a novel role for ACSL3 in mediating transcriptional control of hepatic lipogenesis.
Collapse
Affiliation(s)
- So Young Bu
- Department of Food Sciences and Nutrition, University of Minnesota, St Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
17
|
Golovko MY, Barceló-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 2008; 326:55-66. [DOI: 10.1007/s11010-008-0008-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
|
18
|
Mashek DG, Li LO, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. FUTURE LIPIDOLOGY 2007; 2:465-476. [PMID: 20354580 PMCID: PMC2846691 DOI: 10.2217/17460875.2.4.465] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thirteen homologous proteins comprise the long-chain acyl-CoA synthetase (ACSL), fatty acid transport protein (FATP), and bubblegum (ACSBG) subfamilies that activate long-chain and very-long-chain fatty acids to form acyl-CoAs. Gain- and loss-of-function studies show marked differences in the ability of these enzymes to channel fatty acids into different pathways of complex lipid synthesis. Further, the ability of the ACSLs and FATPs to enhance cellular FA uptake does not always require these proteins to be present on the plasma membrane; instead, FA uptake can be increased by enhancing its conversion to acyl-CoA and its metabolism in downstream pathways. Since altered fatty acid metabolism is a hallmark of numerous metabolic diseases and pathological conditions, the ACSL, FATP and ACSBG isoforms are likely to play important roles in disease etiology.
Collapse
Affiliation(s)
- Douglas G. Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, 55108
| | - Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
19
|
Barceló-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem 2007; 101:132-41. [PMID: 17250686 DOI: 10.1111/j.1471-4159.2006.04348.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that Snca deletion had on whole brain lipid composition. We analysed masses of individual phospholipid (PL) classes and neutral lipid mass as well as PL acyl chain composition in brains from wild-type and Snca-/- mice. Although total brain PL mass was not altered, cardiolipin and phosphatidylglycerol mass decreased 16% and 27%, respectively, in Snca-/- mice. In addition, no changes were observed in plasmalogen or polyphosphoinositide mass. In ethanolamine glycerophospholipids and phosphatidylserine, docosahexaenoic acid (22 : 6n-3) was decreased 7%, while 16 : 0 was increased 1.1-fold and 1.4-fold, respectively. Surprisingly, brain cholesterol, cholesteryl ester, and triacylglycerol mass were increased 1.1-fold, 1.6-fold, and 1.4-fold, respectively in Snca-/- mice. In isolated myelin, cholesterol mass was also increased 1.3-fold, but because there was also a net increase in myelin PL mass, the cholesterol to PL ratio was unaltered. No changes in the expression of cholesterogenic enzymes were observed, suggesting these did not account for the observed changes in cholesterol. These data extend our previous results in astrocytes and kinetic studies in vivo demonstrating a role for Snca in brain lipid metabolism and demonstrate a clear impact on brain neutral lipid metabolism.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | |
Collapse
|
20
|
de Jong H, Neal AC, Coleman RA, Lewin TM. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:75-82. [PMID: 17197235 PMCID: PMC1797059 DOI: 10.1016/j.bbalip.2006.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/01/2006] [Accepted: 11/24/2006] [Indexed: 02/02/2023]
Abstract
Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3-6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates.
Collapse
Affiliation(s)
- Hendrik de Jong
- Department of Nutrition, University of North Carolina at Chapel Hill, CB# 7461, NC 27599, USA
| | | | | | | |
Collapse
|
21
|
Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem 2006; 281:37246-55. [PMID: 17028193 DOI: 10.1074/jbc.m604427200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.
Collapse
Affiliation(s)
- Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
22
|
Parkes HA, Preston E, Wilks D, Ballesteros M, Carpenter L, Wood L, Kraegen EW, Furler SM, Cooney GJ. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am J Physiol Endocrinol Metab 2006; 291:E737-44. [PMID: 16705061 DOI: 10.1152/ajpendo.00112.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of intracellular lipid in obesity is associated with metabolic disease in many tissues including liver. Storage of fatty acid as triglyceride (TG) requires the activation of fatty acids to long-chain acyl-CoAs (LC-CoA) by the enzyme acyl-CoA synthetase (ACSL). There are five known isoforms of ACSL (ACSL1, -3, -4, -5, -6), which vary in their tissue specificity and affinity for fatty acid substrates. To investigate the role of ACSL1 in the regulation of lipid metabolism, we used adenoviral-mediated gene transfer to overexpress ACSL1 in the human hepatoma cell-line HepG2 and in liver of rodents. Infection of HepG2 cells with the adenoviral construct AdACSL1 increased ACSL activity >10-fold compared with controls after 24 h. HepG2 cells overexpressing ACSL1 had a 40% higher triglyceride (TG) content (93 +/- 3 vs. 67 +/- 2 nmol/mg protein in controls, P < 0.05) after 24-h exposure to 1 mM oleate. Furthermore, ACSL1 overexpression produced a 60% increase in cellular LCA-CoA content (160 +/- 6 vs. 100 +/- 6 nmol/g protein in controls, P < 0.05) and increased [(14)C]oleate incorporation into TG without significantly altering fatty acid oxidation. In mice, AdACSL1 administration increased ACSL1 mRNA and protein more than fivefold over controls at 4 days postinfection. ACSL1 overexpression caused a twofold increase in TG content in mouse liver (39 +/- 4 vs. 20 +/- 2 mumol/g wet wt in controls, P < 0.05), and overexpression in rat liver increased [1-(14)C]palmitate clearance into liver TG. These in vitro and in vivo results suggest a pivotal role for ACSL1 in regulating TG synthesis in liver.
Collapse
Affiliation(s)
- Heidi A Parkes
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria St. Darlinghurst, New South Wales, 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 2006; 45:6956-66. [PMID: 16734431 PMCID: PMC2532510 DOI: 10.1021/bi0600289] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored after the addition of exogenous wild-type mouse or human alpha-synuclein, but not by A30P, E46K, and A53T forms of alpha-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools were markedly reduced. The dilution coefficient lambda, which indicates 20:4n-6 recycling between the acyl-CoA pool and brain phospholipids, was increased 3.3-fold, indicating more 20:4n-6 was entering the 20:4n-6-CoA pool from the plasma relative to that being recycled from the phospholipids. This is consistent with the reduction in Acsl activity observed in the Snca-/- mice. Using titration microcalorimetry, we determined that alpha-synuclein bound free 20:4n-6 (Kd = 3.7 microM) but did not bind 20:4n-6-CoA. These data suggest alpha-synuclein is involved in substrate presentation to Acsl rather than product removal. In summary, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mashek DG, Li LO, Coleman RA. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 2006; 47:2004-10. [PMID: 16772660 DOI: 10.1194/jlr.m600150-jlr200] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the importance of fatty acid metabolism as a major determinant in fatty acid uptake. In particular, we emphasize how the activation, intracellular transport and downstream metabolism of fatty acids influence their uptake into cells. RECENT FINDINGS Studies examining fatty acid entry into cells have focused primarily on the roles of plasma membrane proteins or the question of passive diffusion. Recent studies, however, strongly suggest that a driving force governing fatty acid uptake is the metabolic demand for fatty acids. Both gain and loss-of-function experiments indicate that fatty acid uptake can be modulated by activation at both the plasma membrane and internal sites, by intracellular fatty acid binding proteins, and by enzymes in synthetic or degradative metabolic pathways. Although the mechanism is not known, it appears that converting fatty acids to acyl-CoAs and downstream metabolic intermediates increases cellular fatty acid uptake, probably by limiting efflux. SUMMARY Altered fatty acid metabolism and the accumulation of triacylglycerol and lipid metabolites has been strongly associated with insulin resistance and diabetes, but we do not fully understand how the entry of fatty acids into cells is regulated. Future studies of cellular fatty acid uptake should consider the influence of fatty acid metabolism and the possible interactions between fatty acid metabolism or metabolites and fatty acid transport proteins.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
26
|
Lindner I, Rubin D, Helwig U, Nitz I, Hampe J, Schreiber S, Schrezenmeir J, Döring F. The L513S polymorphism in medium-chain acyl-CoA synthetase 2 (MACS2) is associated with risk factors of the metabolic syndrome in a Caucasian study population. Mol Nutr Food Res 2006; 50:270-4. [PMID: 16521160 DOI: 10.1002/mnfr.200500241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Enzymes of the medium-chain acyl-CoA synthetase (MACS) family catalyze the ligation of medium chain fatty acids with CoA to produce medium-chain-acyl-CoA. At least four members of the MACS gene family are clustered on human chromosome 16p12. Association studies in the Japanese Suita cohort of MACS polymorphisms and various phenotypes revealed the contribution of the Leu513Ser polymorphism in MACS2 to multiple risk factors of the metabolic syndrome. Here, we investigated the association between this polymorphism and different risk factors in the Caucasian Metabolic Intervention Cohort Kiel. Seven hundred and sixteen male subjects aged 45-65 years were recruited for a standard oral glucose tolerance test and the postprandial assessment of metabolic parameters after an oral metabolic tolerance test (oMTT; 1017 kcal, 51.6% fat, 29.6% carbohydrates, 11.9% protein). The MACS2 Leu513Ser polymorphism was determined by TaqMan-Assay in 705 subjects. Postprandial triglyceride levels following oMTT [area under the curve (AUC)] were significantly higher in subjects carrying the Ser allele compared to subjects homozygous for the Leu allele (1690 +/- 100 mg x h/dL versus 1514 +/- 39 mg x h/dL, p = 0.04). Significant differences between genotype groups were also found for fasting (108 +/- 1.9 mg/dL versus 104 +/- 0.66 mg/dL, p = 0.04) and postprandial (AUC 535 +/- 11 versus 512 +/- 4.0, p = 0.02) glucose levels as well as for high-density-lipoprotein, body mass index, waist circumference, systolic and diastolic blood pressure. Carriers of the Ser allele also show an increased risk of impaired glucose metabolism (OR: 1.48, 95% confidence interval: 0.98-2.27, p = 0.07), adiposity (1.8, 1.16-2.81, p = 0.01) and hypertension (1.5, 0.99-2.17, p = 0.06). In conclusion, our results suggest an involvement of the MACS2 Leu513Ser polymorphism in the development of the metabolic syndrome in Caucasian population. Additionally, the higher triglyceride and glucose levels after an oMTT support a possible functional impact of the polymorphism in vivo.
Collapse
Affiliation(s)
- Inka Lindner
- Institute for Physiology and Biochemistry of Nutrition, Federal Research Centre for Nutrition and Food, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fraisl P, Tanaka H, Forss-Petter S, Lassmann H, Nishimune Y, Berger J. A novel mammalian bubblegum-related acyl-CoA synthetase restricted to testes and possibly involved in spermatogenesis. Arch Biochem Biophys 2006; 451:23-33. [PMID: 16762313 DOI: 10.1016/j.abb.2006.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/28/2022]
Abstract
We have characterized a new, membrane-associated acyl-CoA synthetase (ACS), termed bubblegum-related protein (BGR), which upon functional analysis demonstrated ACS activity capable of activating long- and very long-chain fatty acids. By multiple tissue RNA array and Northern blot analyses, human BGR mRNA was exclusively detected in testes. Murine Bgr mRNA was specifically expressed in pubertal and adult testes and was further demonstrated to be enriched in germ cells and Sertoli cells while present at a lower level in Leydig cells both by in situ hybridization and cell type fractionation. The complex 5'-end of the BGR mRNA appears to underlie translational control leading to differential utilization of alternative translation start sites. Thus, the BGR gene expands the bubblegum ACS family with a testes-specific, developmentally regulated member that may play a role in spermatogenesis.
Collapse
Affiliation(s)
- Peter Fraisl
- Center for Brain Research, Division of Neuroimmunology, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Tong F, Black PN, Coleman RA, DiRusso CC. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases. Arch Biochem Biophys 2006; 447:46-52. [PMID: 16466685 DOI: 10.1016/j.abb.2006.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.
Collapse
Affiliation(s)
- Fumin Tong
- Center for Metabolic Disease, Ordway Research Institute and Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208-3425, USA
| | | | | | | |
Collapse
|
29
|
Achouri Y, Hegarty BD, Allanic D, Bécard D, Hainault I, Ferré P, Foufelle F. Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding protein-1c. Biochimie 2005; 87:1149-55. [PMID: 16198472 DOI: 10.1016/j.biochi.2005.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 04/20/2005] [Indexed: 11/22/2022]
Abstract
In a screen for sterol regulatory element-binding protein (SREBP)-1c target genes in the liver, we identified long chain fatty acyl-CoA synthetase 5 (ACS-5). Hepatic ACS-5 mRNA is poorly expressed during fasting and diabetes and strongly induced by carbohydrate refeeding and insulin treatment. In cultured hepatocytes, insulin and a high glucose concentration induce ACS-5 mRNA. Adenoviral overexpression of a nuclear form of SREBP-1c in liver of diabetic mice or in cultured hepatocytes mimics the effect of insulin to induce ACS-5. By contrast, a dominant negative form of SREBP-1c abolishes the effect of insulin on ACS-5 expression. The dietary and SREBP-1c-mediated insulin regulation of ACS-5 expression indicate that ACS-5 is involved in the anabolic fate of fatty acids.
Collapse
Affiliation(s)
- Y Achouri
- Inserm Unit 671, Université Paris 6, Centre de Recherches Biomédicales des Cordeliers, 15, rue de l'Ecole de Médecine, 75270 Paris cedex 6, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA. Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 2005; 44:1635-42. [PMID: 15683247 DOI: 10.1021/bi047721l] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The metabolism of long-chain fatty acids in brain and their incorporation into signaling molecules such as diacylglycerol and LPA and into structural components of membranes, including myelin, requires activation by long-chain acyl-CoA synthetase (ACSL). Because ACSL3 and ACSL6 are the predominant ACSL isoforms in brain, we cloned and characterized these isoforms from rat brain and identified a novel ACSL6 clone (ACSL6_v2). ACSL6_v2 and the previously reported ACSL6_v1 represent splice variants that include exon 13 or 14, respectively. Homologue sequences of both of these variants are present in the human and mouse databases. ACSL3, ACSL6_v1, and ACSL6_v2 with Flag-epitopes at the C-termini were expressed in Escherichia coli and purified on Flag-affinity columns. The three recombinant proteins were characterized. Compared to ACSL4, another brain isoform, ACSL3, ACSL6_v1, and ACSL6_v2 showed similarities in kinetic values for CoA, palmitate, and arachidonate, but their apparent Km values for oleate were 4- to 6-fold lower than for ACSL4. In a direct competition assay with palmitate, all the polyunsaturated fatty acids tested were strong competitors only for ACSL4 with IC50 values of 0.5 to 5 microM. DHA was also strongly preferred by ACSL6_v2. The apparent Km value for ATP of ACSL6_v1 was 8-fold higher than that of ACSL6_v2. ACSL3 and the two variants of ACSL6 were more resistant than ACSL4 to heat inactivation. Despite the high amino acid identity between ACSL3 and ACSL4, rosiglitazone inhibited only ACSL4. Triacsin C, an inhibitor of ACSL1 and ACSL4, also inhibited ACSL3, but did not inhibit the ACSL6 variants. These data further document important differences in the closely related ACSL isoforms and show that amino acid changes near the consensus nucleotide binding site alter function in the two splice variants of ACSL6.
Collapse
Affiliation(s)
- Cynthia G Van Horn
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
31
|
Magnes C, Sinner FM, Regittnig W, Pieber TR. LC/MS/MS Method for Quantitative Determination of Long-Chain Fatty Acyl-CoAs. Anal Chem 2005; 77:2889-94. [PMID: 15859607 DOI: 10.1021/ac048314i] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-chain acyl-CoA esters (LCACoAs) are activated lipid species that represent key substrates in lipid metabolism. The relationship between lipid metabolism disorders and type 2 diabetes has attracted much attention to this class of metabolites. This paper presents a highly sensitive and robust on-line LC/MS(2) procedure for quantitative determination of LCACoAs from rat liver. A fast SPE method has been developed without the need for time-consuming evaporation steps for sample preparation. LCACoAs were separated with high resolution using a C18 reversed-phase column at high pH (10.5) with an ammonium hydroxide and acetonitrile gradient. Five LCACoAs (C16:0, C16:1, C18:0 C18:1, C18:2) were quantified by selective multireaction monitoring using a triple quadrupole mass spectrometer in positive electrospray ionization mode. It is possible to perform a neutral loss scan of 507 for lipid profiling of complex LCACoA mixtures in tissue extracts. The method presented was validated according to ICH guidelines for quantitative determination of five LCACoAs for physiological concentrations in 100-200 mg of tissue with accuracies ranging from 94.8 to 110.8%, interrun precisions between 2.6 and 12.2%, and intrarun precisions between 1.2 and 4.4%. Due to the high sensitivity of the developed method, the amount of tissue biopsied for reliable quantification can be reduced. This may be advantageous in the quantification of LCACoAs in humans.
Collapse
Affiliation(s)
- Christoph Magnes
- Institute of Medical Technologies and Health Management, Joanneum Research, Auenbruggerplatz 20, 8036 Graz, Austria
| | | | | | | |
Collapse
|
32
|
Lewin TM, Wang S, Nagle CA, Van Horn CG, Coleman RA. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am J Physiol Endocrinol Metab 2005; 288:E835-44. [PMID: 15598672 DOI: 10.1152/ajpendo.00300.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Because excess triacylglycerol (TAG) in nonadipose tissues is closely associated with the development of insulin resistance, interest has increased in the metabolism of long-chain acyl-CoAs toward beta-oxidation or the synthesis and storage of TAG. To learn whether a mitochondrial isoform of glycerol-3-phosphate acyltransferase (mtGPAT1) competes with carnitine palmitoyltransferase I (CPT I) for acyl-CoAs and whether it contributes to the formation of TAG, we overexpressed rat mtGPAT1 13-fold in primary hepatocytes obtained from fasted rats. When 100, 250, or 750 microM oleate was present, both TAG mass and the incorporation of [14C]oleate into TAG increased more than twofold in hepatocytes overexpressing mtGPAT1 compared with vector controls. Although the incorporation of [14C]oleate into CO2 and acid-soluble metabolites increased with increasing amounts of oleate in the media, these metabolites were approximately 40% lower in the Ad-mtGPAT1 infected cells, consistent with competition for acyl-CoAs between CPT I and mtGPAT1. A 50-60% decrease was also observed in [14C]oleate incorporation into cholesteryl ester. With increasing amounts of exogenous oleate, [14C]TAG secretion increased appropriately in vector control-infected hepatocytes, suggesting that the machinery for VLDL-TAG biogenesis and secretion was unaffected. Despite the marked increases in TAG synthesis and storage in the Ad-mtGPAT1 cells, however, the Ad-mtGPAT1 cells secreted the same amount of [14C]TAG as the vector control cells. Thus, in isolated hepatocytes, mtGPAT1 may synthesize a cytosolic pool of TAG that cannot be secreted.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
33
|
Wang YL, Guo W, Zang Y, Yaney GC, Vallega G, Getty-Kaushik L, Pilch P, Kandror K, Corkey BE. Acyl coenzyme a synthetase regulation: putative role in long-chain acyl coenzyme a partitioning. ACTA ACUST UNITED AC 2005; 12:1781-8. [PMID: 15601973 DOI: 10.1038/oby.2004.221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Long-chain acyl coenzyme A synthetase (ACSL) converts free fatty acids (FFAs) into their metabolizable long-chain acyl coenzyme A (LC-CoA) derivatives that are essential for FFA conversion to CO(2), triglycerides, or complex lipids. ACSL-1 is highly expressed in adipose tissue with broad substrate specificity. We tested the hypothesis that ACSL localization, and resulting local generation of LC-CoA, regulates FFA partitioning. RESEARCH METHODS AND PROCEDURES These studies used cell fractionation of rat adipocytes to measure ACSL activity and mass and compared cells from young, mature, fed, fasted, and diabetic rats. Functional studies included measurement of FFA oxidation, complex lipid synthesis, and LC-CoA levels. RESULTS High ACSL specific activity was expressed in the mitochondria/nuclei (M/N), high-density microsomes (HDM), low-density microsomes (LDM), and plasma membrane (PM) fractions. We show here that, during fasting, total FFA oxidation increased, and, although total ACSL activity decreased, a greater percentage of activity (43 +/- 1.5%) was associated with the M/N fraction than in the fed state (23 +/- 0.3%). In the fed state, more ACSL activity (34 +/- 0.5%) was associated with the HDM than in the fasted state (25 +/- 0.9%), concurrent with increased triglyceride formation from FFA. Insulin increased LC-CoA and ACSL activity associated with the PM. The changes in ACSL activity in response to insulin were associated with only minor changes in mass as determined by Western blotting. DISCUSSION It is hypothesized that ACSL plays an important role in targeting FFA to specific metabolic pathways or acylation sites in the cell, thus acting as an important control mechanism in fuel partitioning. Localization of ACSL at the PM may serve to decrease FFA efflux and trap FFA within the cell as LC-CoA.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and CIHR Group on the Molecualr and Cell Biology of Lipids, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
35
|
Takagi M, Yamakawa H, Watanabe T, Suga T, Junji Y. Inducible expression of long-chain acyl-CoA hydrolase gene in cell cultures. Mol Cell Biochem 2004; 252:379-85. [PMID: 14577613 DOI: 10.1023/a:1025510401226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A long-chain acyl-CoA hydrolase, BACH, is markedly distributed in the brain and localized in neurons. However, the physiological significance of BACH is unclear. To study the gene function, we expressed the mouse BACH gene in C3H 10T1/2 fibroblastic cells using a mifepristone (RU486)-inducible gene expression system. A cell clone, 10T-S6/44, was generated by stable transfection of two plasmids encoding a mifepristone-dependent transactivator and an inducible transgene product, BACH with a C-terminal MYC-tag (BACH-MYC). The transgene expression in the 10T-S6/44 cells was tightly regulated by mifepristone. Induction of BACH-MYC and an increase in palmitoyl-CoA hydrolase activity were observed in the cells treated with 3 x 10(-11) M mifepristone and reached maximal levels at a concentration of 1 x 10(-9) M for 48 h. The growth rate of cells showing the maximal induction of BACH-MYC was reduced, whereas phospholipid synthesis was unchanged. These results suggested that BACH affects specific cellular systems and functions, but not all acyl-CoA-utilizing processes.
Collapse
Affiliation(s)
- Mitsuhiro Takagi
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Forward genetics is an unbiased methodology to discover new genes or functions of genes. At the present, the zebrafish is one of the few vertebrate systems where large-scale forward genetic studies are practical. Fluorescent lipid labeling of zebrafish larvae derived from families created from ENU-mutagenized fish enabled us to perform a large scale in vivo screen to identify mutants with perturbed lipid processing. With the aid of the zebrafish genome project, positional cloning of mutated genes with abnormal lipid metabolism can be accelerated. MO- and gripNA-based transient gene silencing is feasible in zebrafish embryos and provides a reverse genetic screening strategy to search for important lipid regulators. The advantages of using zebrafish as a vertebrate model to study lipid metabolism include its rapid external development and its optical clarity that enables the monitoring of biological processes. Large scale, high-throughput drug screening in vivo, especially for drugs that inhibit lipid absorption, can be easily achieved in this model. These zebrafish-based assays are important tools to understand aspects of lipid biology with significant clinical implications.
Collapse
Affiliation(s)
- Shiu-Ying Ho
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
37
|
Liu G, Chen J, Che P, Ma Y. Separation and quantitation of short-chain coenzyme A's in biological samples by capillary electrophoresis. Anal Chem 2003; 75:78-82. [PMID: 12530821 DOI: 10.1021/ac0261505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the importance of coenzyme A's (CoA's or CoASH) in many metabolic processes and the biosynthesis of some carbohydrates and lipids, many methods have been developed to separate and determine their levels in various tissues for metabolism studies, including enzymatic assays, paper chromatography, and high-performance liquid chromatography (HPLC). However, inadequate separation of coexisting CoA's in biological samples was often encountered due to the similarity of their structures. In this paper, we demonstrated for the first time the separation and quantitation of 12 different CoA's by using capillary electrophoresis with UV detection at 254 nm. All 12 CoA's (CoASH, HMG CoA, methylmalonyl CoA, succinyl CoA, methylcrotonyl CoA, isobutyryl CoA, oxidized CoA, acetyl CoA, crotonoyl CoA, n-propzoyl CoA, acetoacetyl CoA, malonyl CoA) were completely separated at -30 kV in a 100 mM NaH2PO4 running buffer containing 0.1% beta-cyclodextrin at pH 6.0. The total separation time was less than 30 min. The signal response was linear over 2 orders of magnitudes (from 1 to 100 nmol), and the detection limits were in the picomole range. The effects of pH, buffer concentration, additives, and operation voltages on sensitivity and resolution were also discussed. This technique, described here, is much more sensitive, faster, and simpler than the published HPLC methods and can potentially be used for mechanistic study in biological systems involving CoA metabolism.
Collapse
Affiliation(s)
- Guanshu Liu
- Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409, USA
| | | | | | | |
Collapse
|
38
|
Abstract
In order to enable detailed studies of free fatty acid (FFA) metabolism, we recently introduced a method for the evaluation of tissue-specific FFA metabolism in vivo. The method is based on the simultaneous use of 14C-palmitate (14C-P) and the non-beta-oxidizable FFA analogue, [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP). Indices of total FFA utilization and incorporation into storage products are obtained from tissue concentrations of 3H and 14C, respectively, following intravenous administration of 3H-R-BrP and 14C-P and their disappearance from plasma into tissues. This review covers the basis for, and developments in, the methodology, as well as some of the applications to date. In the rat, the method has been used to characterize tissue-specific alterations in FFA metabolism in various situations, including skeletal muscle contraction, fasting, hyperinsulinemia, and various pharmacological manipulations. The results of all these studies clearly demonstrate tissue-level control of FFA utilization and metabolic fate, refuting the traditional view that FFA utilization is simply supply-driven. Recent developments enable the simultaneous evaluation of both tissue-specific FFA and glucose metabolism by integrating the use of 2-deoxyglucose and stable isotope-labeled glucose tracers. In conclusion, the 3H-R-BrP methodology, especially in combination with other tracers, represents a powerful tool for elucidation of tissue-specific fatty acid metabolism in vivo.
Collapse
|
39
|
Igal RA, Wang S, Gonzalez-Baró M, Coleman RA. Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J Biol Chem 2001; 276:42205-12. [PMID: 11546763 DOI: 10.1074/jbc.m103386200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [(14)C]oleate ( approximately 3 microm), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [(14)C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 microm oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.
Collapse
Affiliation(s)
- R A Igal
- Instituto de Investigaciones Bioquimicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CC 455, calles 60 y 120, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|