1
|
Kaya O, Orhan E, Sapmaz-Metin M, Topçu-Tarladaçalışır Y, Gündüz Ö, Aydın B. The effects of epidermal growth factor on early burn-wound progression in rats. Dermatol Ther 2019; 33:e13196. [PMID: 31849151 DOI: 10.1111/dth.13196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
After burns, protecting tissues by medicines in the zone of stasis reduces the width and depth of injury. This study's goal was to reduce burned tissue damage in the zone of stasis using epidermal growth factor (EGF). Forty-eight Wistar rats were separated into three groups. In all groups, the burn procedure was applied following the comb burn model. In Group 1, no postburn treatment was administered. In Group 2, physiological saline solution (0.3 cc) was injected intradermally and in Group 3, EGF (0.3 cc) was injected intradermally into stasis zone tissues after the burn procedure. Surviving tissue rates were 24.0% in Group 1, 25.3% in Group 2, and 70.2% in Group 3. The average numbers of cells stained with Nrf2, HO-1, and the number of apoptotic cells were 230, 150, and 17.5 in Group 1, 230, 145, and 15.0 in Group 2, and 370, 230, and 0 in Group 3, respectively. Values in Group 3 were found to be statistically significantly different than those of Groups 1 and 2; there was no difference between Groups 1 and 2. This study shows that EGF protects zone of stasis tissue from burn damage.
Collapse
Affiliation(s)
- Oktay Kaya
- Department of Physiology, Trakya University School of Medicine, Edirne, Turkey
| | - Erkan Orhan
- Department of Plastic Surgery, Gaziantep University, School of Medicine, Gaziantep, Turkey
| | - Melike Sapmaz-Metin
- Department of Histology and Embryology, Trakya University, School of Medicine, Edirne, Turkey
| | | | - Özgür Gündüz
- Department of Medical Pharmacology, Trakya University, School of Medicine, Edirne, Turkey
| | - Bilgehan Aydın
- Department of Plastic Surgery, Yeditepe University School of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Merlen G, Raymond VA, Cassim S, Lapierre P, Bilodeau M. Oxaloacetate Protects Rat Liver From Experimental Warm Ischemia/Reperfusion Injury by Improving Cellular Energy Metabolism. Liver Transpl 2019; 25:627-639. [PMID: 30663275 DOI: 10.1002/lt.25415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022]
Abstract
Liver ischemia/reperfusion injury (IRI) is an important cause of liver damage especially early after liver transplantation, following liver resection, and in other clinical situations. Using rat experimental models, we identified oxaloacetate (OAA) as a key metabolite able to protect hepatocytes from hypoxia and IRI. In vitro screening of metabolic intermediates beneficial for hepatocyte survival under hypoxia was performed by measures of cell death and injury. In vivo, the effect of OAA was evaluated using the left portal vein ligation (LPVL) model of liver ischemia and a model of warm IRI. Liver injury was evaluated in vivo by serum transaminase levels, liver histology, and liver weight (edema). Levels and activity of caspase 3 were also measured. In vitro, the addition of OAA to hepatocytes kept in a hypoxic environment significantly improved cell viability (P < 0.01), decreased cell injury (P < 0.01), and improved energy metabolism (P < 0.01). Administration of OAA significantly reduced the extent of liver injury in the LPVL model with lower levels of alanine aminotransferase (ALT; P < 0.01), aspartate aminotransferase (AST; P < 0.01), and reduced liver necrosis (P < 0.05). When tested in a warm IRI model, OAA significantly decreased ALT (P < 0.001) and AST levels (P < 0.001), prevented liver edema (P < 0.001), significantly decreased caspase 3 expression (P < 0.01), as well as histological signs of cellular vesiculation and vacuolation (P < 0.05). This was associated with higher adenosine triphosphate (P < 0.05) and energy charge levels (P < 0.01). In conclusion, OAA can significantly improve survival of ischemic hepatocytes. The hepatoprotective effect of OAA was associated with increased levels of liver bioenergetics both in vitro and in vivo. These results suggest that it is possible to support mitochondrial activity despite the presence of ischemia and that OAA can effectively reduce ischemia-induced injury in the liver.
Collapse
Affiliation(s)
- Grégory Merlen
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie-Ann Raymond
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Shamir Cassim
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - Pascal Lapierre
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Bilodeau
- Laboratoire d'Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Vilas-Boas V, Cooreman A, Gijbels E, Van Campenhout R, Gustafson E, Ballet S, Annaert P, Cogliati B, Vinken M. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 85:1-30. [PMID: 31307583 DOI: 10.1016/bs.apha.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury is a major reason for discontinuation of drug development and withdrawal of drugs from the market. Intensive efforts in the last decades have focused on the establishment and finetuning of liver-based in vitro models for reliable prediction of hepatotoxicity triggered by drug candidates. Of those, primary hepatocytes and their cultures still are considered the gold standard, as they provide an acceptable reflection of the hepatic in vivo situation. Nevertheless, these in vitro systems cope with gradual deterioration of the differentiated morphological and functional phenotype. The present paper gives an overview of traditional and more recently introduced strategies to counteract this dedifferentiation process in an attempt to set up culture models that can be used for long-term testing purposes. The relevance and applicability of such optimized cultures of primary hepatocytes for the testing of drug-induced cholestatic liver injury is demonstrated.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia. PLoS One 2018; 13:e0199177. [PMID: 29902244 PMCID: PMC6002017 DOI: 10.1371/journal.pone.0199177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Abstract
The liver is a highly vascularized organ receiving a dual input of oxygenated blood from the hepatic artery and portal vein. The impact of decreased blood flow on glucose metabolism and how hepatocytes could adapt to this restrictive environment are still unclear. Using the left portal vein ligation (LPVL) rat model, we found that cellular injury was delayed after the onset of liver ischemia. We hypothesized that a metabolic adaptation by hepatocytes to maintain energy homeostasis could account for this lag phase. Liver glucose metabolism was characterized by 13C- and 1H-NMR spectroscopy and analysis of high-energy metabolites. ALT levels and caspase 3 activity in LPVL animals remained normal during the first 12 h following surgery (P<0.05). Ischemia rapidly led to decreased intrahepatic tissue oxygen tension and blood flow (P<0.05) and increased expression of Hypoxia-inducible factor 1-alpha. Intrahepatic glucose uptake, ATP/ADP ratio and energy charge level remained stable for up to 12 h after ligation. Entry of glucose in the Krebs cycle was impaired with lowered incorporation of 13C from [U-13C]glucose into glutamate and succinate from 0.25 to 12 h after LPVL. However, total hepatic succinate and glutamate increased 6 and 12 h after ischemia (P<0.05). Glycolysis was initially reduced (P<0.05) but reached maximum 13C-lactate (P<0.001) and 13C-alanine (P<0.01) enrichments 12 h after LPVL. In conclusion, early liver homeostasis stems from an inherent ability of ischemic hepatocytes to metabolically adapt through increased Krebs cycle and glycolysis activity to preserve bioenergetics and cell viability. This metabolic plasticity of hepatocytes could be harnessed to develop novel metabolic strategies to prevent ischemic liver damage.
Collapse
|
5
|
Mahmoud AA, Hassan EZ, Askar EM. Long-term influence of sialoadenectomy on the liver of male albino rat. Ultrastruct Pathol 2017; 41:265-274. [PMID: 28506098 DOI: 10.1080/01913123.2017.1319886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Epidermal growth factor is an endocrine product of the submandibular gland; the liver is an important target of its action and is affected by sialoadenectomy. Thirty rats were used in this study and divided into group I (sham-operated animals), group II (sialoadenectomy after 4 weeks), and group III (sialoadenectomy after 10 weeks). Liver samples were processed for light and electron microscope examination. Sialoadenectomy induced mild-to-moderate liver damage which persists up to 10 weeks after the operation. This damage is manifested morphologically rather than functionally, affecting the general structure, hepatocytes, hepatic stellate cells, and hepatic sinusoids.
Collapse
Affiliation(s)
- Abeer A Mahmoud
- a Lecturer of Histology and Cell Biology, Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Ebtehal Z Hassan
- a Lecturer of Histology and Cell Biology, Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Eman M Askar
- a Lecturer of Histology and Cell Biology, Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| |
Collapse
|
6
|
Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties. PLoS One 2017; 12:e0171215. [PMID: 28152020 PMCID: PMC5289561 DOI: 10.1371/journal.pone.0171215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo.
Collapse
|
7
|
Lacoste B, Raymond VA, Lapierre P, Bilodeau M. Protection against Acute Hepatocellular Injury Afforded by Liver Fibrosis Is Independent of T Lymphocytes. PLoS One 2016; 11:e0165360. [PMID: 27792745 PMCID: PMC5085019 DOI: 10.1371/journal.pone.0165360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022] Open
Abstract
Collagen produced during the process of liver fibrosis can induce a hepatocellular protective response through ERK1 signalling. However, the influence of T cells and associated cytokine production on this protection is unknown. In addition, athymic mice are frequently used in hepatocellular carcinoma xenograft experiments but current methods limit our ability to study the impact of liver fibrosis in this setting due to high mortality. Therefore, a mouse model of liver fibrosis lacking T cells was developed using Foxn1 nu/nu mice and progressive oral administration of thioacetamide (TAA) [0.01–0.02%] in drinking water. Fibrosis developed over a period of 16 weeks (alpha-SMA positive area: 20.0 ± 2.2%, preCol1a1 mRNA expression: 11.7 ± 4.1 fold changes, hydroxyproline content: 1041.2 ± 77μg/g of liver) at levels comparable to that of BALB/c mice that received intraperitoneal TAA injections [200 μg/g of body weight (bw)] (alpha-SMA positive area: 20.9 ± 2.9%, preCol1a1 mRNA expression: 13.1 ± 2.3 fold changes, hydroxyproline content: 931.6 ± 14.8μg/g of liver). No mortality was observed. Athymic mice showed phosphorylation of ERK1/2 during fibrogenesis (control 0.03 ± 0.01 vs 16 weeks 0.22 ± 0.06AU; P<0.05). The fibrosis-induced hepatoprotection against cytotoxic agents, as assessed histologically and by serum AST levels, was not affected by the absence of circulating T cells (anti-Fas JO2 [0.5μg/g bw] for 6h (fibrotic 4665 ± 2596 vs non-fibrotic 13953 ± 2260 U/L; P<0.05), APAP [750 mg/kg bw] for 6 hours (fibrotic 292 ± 66 U/L vs non-fibrotic 4086 ± 2205; P<0.01) and CCl4 [0.5mL/Kg bw] for 24h (fibrotic 888 ± 268 vs non-fibrotic 15673 ± 2782 U/L; P<0.001)). In conclusion, liver fibrosis can be induced in athymic Foxn1 nu/nu mice without early mortality. Liver fibrosis leads to ERK1/2 phosphorylation. Finally, circulating T lymphocytes and associated cytokines are not involved in the hepatocellular protection afforded by liver fibrosis.
Collapse
Affiliation(s)
- Benoit Lacoste
- Laboratoire d’hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pascal Lapierre
- Laboratoire d’hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Marc Bilodeau
- Laboratoire d’hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
8
|
Krenn MA, Schürz M, Teufl B, Uchida K, Eckl PM, Bresgen N. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal "metastability" in primary hepatocytes determining in vitro cell survival. Free Radic Biol Med 2015; 80:48-58. [PMID: 25532933 DOI: 10.1016/j.freeradbiomed.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Several pathologies are associated with elevated levels of serum ferritin, for which growth inhibitory properties have been reported; however, the underlying mechanisms are still poorly defined. Previously we have described cytotoxic properties of isoferritins released from primary hepatocytes in vitro, which induce apoptosis in an iron and oxidative stress-dependent mode. Here we show that this ferritin species stimulates endosome clustering and giant endosome formation in primary hepatocytes accompanied by enhanced lysosomal membrane permeability (LMP). In parallel, protein modification by lipid peroxidation-derived 4-hydroxynonenal (HNE) is strongly promoted by ferritin, the HNE-modified proteins (HNE-P) showing remarkable aggregation. Emphasizing the prooxidant context, GSH is rapidly depleted and the GSH/GSSG ratio is substantially declining in ferritin-treated cells. Furthermore, ferritin triggers a transient upregulation of macroautophagy which is abolished by iron chelation and apparently supports HNE-P clearance. Macroautophagy inhibition by 3-methyladenine strongly amplifies ferritin cytotoxicity in a time- and concentration-dependent mode, suggesting an important role of macroautophagy on cellular responses to ferritin endocytosis. Moreover, pointing at an involvement of lysosomal proteolysis, ferritin cytotoxicity and lysosome fragility are aggravated by the protease inhibitor leupeptin. In contrast, EGF which suppresses ferritin-induced cell death attenuates ferritin-mediated LMP. In conclusion, we propose that HNE-P accumulation, lysosome dysfunction, and macroautophagy stimulated by ferritin endocytosis provoke lysosomal "metastability" in primary hepatocytes which permits cell survival as long as in- and extrinsic determinants (e.g., antioxidant availability, damage repair, EGF signaling) keep the degree of lysosomal destabilization below cell death-inducing thresholds.
Collapse
Affiliation(s)
- Margit A Krenn
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Melanie Schürz
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Bernhard Teufl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Peter M Eckl
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Nikolaus Bresgen
- University of Salzburg, Department of Cell Biology, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
| |
Collapse
|
9
|
Vinken M, Maes M, Crespo Yanguas S, Willebrords J, Vanhaecke T, Rogiers V. Establishment and Characterization of an In Vitro Model of Fas-Mediated Hepatocyte Cell Death. Methods Mol Biol 2015; 1250:95-103. [PMID: 26272136 DOI: 10.1007/978-1-4939-2074-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fas-mediated apoptosis underlies a plethora of liver pathologies and toxicities. As a consequence, this process is a major research topic in the field of experimental and clinical hepatology. The present chapter describes the setup of an in vitro model of hepatocellular apoptotic cell death. In essence, this system consists of freshly isolated hepatocytes cultured in a monolayer configuration, which are exposed to a combination of Fas ligand and cycloheximide. This in vitro model has been characterized by using a set of well-acknowledged cell death markers. This experimental system allows the study of the entire course of Fas-mediated hepatocellular cell death, going from early apoptosis to secondary necrosis, and hence can serve a broad range of in vitro pharmaco-toxicological purposes.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | |
Collapse
|
10
|
Scheving LA, Zhang X, Garcia OA, Wang RF, Stevenson MC, Threadgill DW, Russell WE. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G370-81. [PMID: 24407590 PMCID: PMC3949019 DOI: 10.1152/ajpgi.00116.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Threadgill
- 6Department of Genetics, North Carolina State University, Raleigh, North Carolina
| | - William E. Russell
- 1Departments of Pediatrics, ,2Cell and Developmental Biology, ,3Digestive Disease Research Center, ,4Vanderbilt Diabetes Center, ,5Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
11
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
12
|
Wang X, Zheng F, Liu O, Zheng S, Liu Y, Wang Y, Tang Z, Zhong L. Epidermal growth factor can optimize a serum-free culture system for bone marrow stem cell proliferation in a miniature pig model. In Vitro Cell Dev Biol Anim 2013; 49:815-25. [PMID: 24002665 DOI: 10.1007/s11626-013-9665-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/08/2013] [Indexed: 01/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells have become an attractive cell source for periodontal ligament regeneration treatment because of their potential to engraft to several tissue types after injury. Most researchers have focused on the transplantation process, but few have paid attention to cell safety concerns and rapid proliferation before transplantation. Using serum-free medium to culture stem cells may be an effective method to avoid problems associated with exogenous serum and the addition of growth factors to promote cell proliferation. Here, we randomly divided our serum-free cultures and treated them with different levels of epidermal growth factor (EGF). We then evaluated changes in rates of cell adhesion, proliferation, apoptosis, and cell cycle ratio as well as their differentiation potential. The data showed that all of these parameters were significantly different when comparing serum-free cultures with and without 10 nM/L EGF (p < 0.05/0.01); however, cells with 10 nM/L EGF did not respond differently than cells grown in standard serum-containing media without EGF (p > 0.05). In summary, our results demonstrate that 10 nM/L EGF was the optimal dose for serum-free culture, which can replace traditional standard serum medium for in vitro expansion of miniature pig bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 110 Xiangya Road, Changsha, Hunan, 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bourbonnais E, Raymond VA, Ethier C, Nguyen BN, El-Leil MS, Meloche S, Bilodeau M. Liver fibrosis protects mice from acute hepatocellular injury. Gastroenterology 2012; 142:130-139.e4. [PMID: 21945831 DOI: 10.1053/j.gastro.2011.09.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Development of fibrosis is part of the pathophysiologic process of chronic liver disease. Although it is considered deleterious, it also represents a form of tissue repair. Deposition of extracellular matrix changes the cellular environment of the liver; we investigated whether it increases resistance to noxious stimuli and the role of changes in intracellular signaling to hepatocytes in mediating this effect. METHODS Primary cultures of mouse hepatocytes were exposed to type I collagen (COL1); cell injury was assessed by morphologic and biochemical criteria. The expression of Bcl-2 family members was evaluated by immunoblot analyses. Activation of extracellular signal-regulated kinase (ERK) was assessed using phospho-specific antibodies. Liver fibrosis was induced by repeated administration of thioacetamide or carbon tetrachloride to mice; mice were then exposed to Fas antibodies. RESULTS Hepatocytes exposed to COL1 were more resistant to a variety of hepatotoxins, in a dose-dependent manner, and had lower levels of Bad, Bid, and Bax proapoptotic proteins compared with control hepatocytes. Activation of ERK1/2 was stronger and quicker in hepatocytes exposed to COL1. The MEK1/2 inhibitors U0126 and PD98059 reversed the protective effects of COL1 and the decrease in proapoptotic proteins. Hepatocytes isolated from ERK1(-/-) mice were insensitive to the protective effect of COL1. Fibrotic livers from wild-type mice had high levels of phospho-ERK1 and were resistant to Fas-induced cell death. ERK1(-/-) mice lost this effect. CONCLUSIONS Production of COL1 during liver fibrosis induces a hepatoprotective response that is mediated by activation of ERK1 signaling.
Collapse
Affiliation(s)
- Eric Bourbonnais
- Laboratoire d'Hépatologie Cellulaire du Centre de Recherche du CHUM-Hôpital Saint-Luc, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Cytosolic phospholipase A(2)α protects against Fas- but not LPS-induced liver injury. J Hepatol 2011; 55:1281-90. [PMID: 21703211 PMCID: PMC3221788 DOI: 10.1016/j.jhep.2011.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cytosolic phospholipase A(2)α (cPLA(2)α) is a rate-limiting key enzyme controlling the release of arachidonic acid (AA) substrate for the synthesis of prostaglandins and leukotrienes. This study was designed to explore the role of hepatocyte cPLA(2)α in Fas-mediated liver injury, in vivo. METHODS Transgenic mice with targeted expression of cPLA(2)α under control of the albumin-promoter enhancer and wild-type mice were injected intraperitoneally with anti-Fas antibody Jo2 or lipopolysaccharide plus d-galactosamine and monitored for liver injury and survival at various time points. RESULTS The cPLA(2)α Tg mice resist Fas-induced liver failure, as reflected by the lower serum transaminase levels, fewer apoptotic hepatocytes, reduced caspase activation, and reduced PARP cleavage when compared to the matched wild type mice. Inhibition of cPLA(2)α by its pharmacological inhibitor, pyrrolidine, enhanced Jo2-induced liver injury in both cPLA(2)α Tg and wild type mice. Hepatic overexpression of cPLA(2)α increases the expression of EGFR in the liver and the EGFR inhibitor, AG1478, exacerbated Jo2-mediated liver injury. The cPLA(2)α transgenic mice develop more prominent liver tissue damage than wild-type mice after LPS/d-galactosamine injection. CONCLUSIONS Hepatocyte cPLA(2)α protects against Fas-induced liver injury and this effect is mediated at least in part through the upregulation of EGFR.
Collapse
|
15
|
Ramírez I, Soley M. Submandibular salivary glands: influence on growth rate and life span in mice. J Physiol Biochem 2010; 67:225-33. [PMID: 21191684 DOI: 10.1007/s13105-010-0067-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/10/2010] [Indexed: 12/11/2022]
Abstract
Submandibular glands accumulate a variety of growth factors, especially in male mice. Surgical excision of these glands (sialoadenectomy) results in alterations in several organs and systems including the liver, skin and reproductive system. We studied the life-long consequences of sialoadenectomy in male mice. Animals were operated at the age of 10 weeks. Thereafter, body weight and food and water intake were controlled until death. Few weeks after surgery, body weight was lower in sialoadenectomized than in control mice. The difference remained stable until the age of 80 weeks. In spite of the lower body weight, food intake was higher in sialoadenectomized mice than in controls. The first death of sialoadenectomized mice occurred 10 weeks earlier than that of the first control, and the initial death rate in sialoadenectomized mice was almost twice the rate in controls. After 100 weeks of life, the death rate increased in control mice, but suddenly decreased in sialoadenectomized mice. The consequence was that the mean life span of the last 25% surviving animals was 10 weeks longer in sialoadenectomized than in control mice. Autopsy examination suggests that the effect of sialoadenectomy on death rate may be the consequence of a contrasting effect on tumour growth. Our results indicate that submandibular glands, or rather the factors derived from these glands, have contrasting roles in tumour growth. At early ages they may be survival factors and protect tissues, whereas at later ages they may stimulate the growth of transformed cells.
Collapse
Affiliation(s)
- Ignasi Ramírez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
16
|
Azakir BA, Desrochers G, Angers A. The ubiquitin ligase Itch mediates the antiapoptotic activity of epidermal growth factor by promoting the ubiquitylation and degradation of the truncated C-terminal portion of Bid. FEBS J 2010; 277:1319-30. [DOI: 10.1111/j.1742-4658.2010.07562.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Bresgen N, Ohlenschläger I, Wacht N, Afazel S, Ladurner G, Eckl PM. Ferritin and FasL (CD95L) mediate density dependent apoptosis in primary rat hepatocytes. J Cell Physiol 2008; 217:800-8. [PMID: 18726999 DOI: 10.1002/jcp.21555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on a recent description of an apoptosis stimulating property for hepatocyte derived isoferritins, this investigation demonstrates that ferritin, released in vitro from hepatocytes substantially contributes to density dependent apoptosis in primary hepatocytes and is significantly (P < or = 0.05) inhibited by anti-H-ferritin antibody rH02. Furthermore, total protein release and albumin secretion rapidly decline in a time and density dependent mode under serum-free conditions, whereas ferritin secretion, which is upregulated at initial stages of primary culture is not affected by cell density. Supplementation with dexamethasone (DEX) or proliferative stimulation by epidermal growth factor (EGF) and insulin strongly suppresses density dependent apoptosis. Both regimens have previously been shown to inhibit isoferritin mediated apoptosis in hepatocytes, most likely by interrupting proapotitc mitochondrial signalling. Finally, FasL/Fas also participates in density dependent apoptosis, since apoptosis is significantly (P < or = 0.005) reduced in high density cultures supplemented with an anti-FasL antibody. This antibody has also been shown to neutralise ferritin mediated apoptosis in primary hepatocytes, suggesting a linkage of ferritin and Fas in density dependent apoptosis. In conclusion, ferritin contributes to apoptosis in primary hepatocytes in an autocrine, density dependent mode, involving Fas stimulation and proapoptotic mitochondrial signalling. With respect to liver physiology, these findings may indicate that ferritin plays a yet unrecognised role as an acute phase signalling molecule in early stages of tissue repair and liver regeneration, and may also be responsible for the limited ability to propagate human hepatocytes in culture and the limited expansion of donor cells in the recipient liver upon cell transplantation.
Collapse
Affiliation(s)
- N Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
18
|
Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis. Shock 2008; 30:36-42. [PMID: 18004230 DOI: 10.1097/shk.0b013e31815d0820] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF after the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2 x 23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive injection of either 150 microg kg(-1) d(-1) (i.p.) EGF or 0.9% saline (i.p.). Circulating EGF levels were decreased after CLP compared with sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased after CLP and were further augmented by exogenous EGF treatment. Intestinal EGF receptor was increased after CLP, whether assayed by immunohistochemistry, real-time polymerase chain reaction, or Western blot, and exogenous EGF treatment decreased intestinal EGF receptor. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the proapoptotic proteins Bid and Fas-associated death domain, as well as the cyclin-dependent kinase inhibitor p21 cip1/waf Epidermal growth factor treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, Fas-associated death domain, and p21 cip1/waf . To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed 7 days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (P < 0.05). Thus, EGF may be a potential therapeutic agent for the treatment of sepsis in part due to its ability to protect intestinal integrity.
Collapse
|
19
|
Sánchez O, Almagro A, Viladrich M, Ramírez I, Soley M. Sialoadenectomy enhances hepatic injury induced by lipopolysaccharide/galactosamine in mice. Liver Int 2008; 28:878-88. [PMID: 18346130 DOI: 10.1111/j.1478-3231.2008.01713.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Submandibular salivary glands (SMGs) synthesize, accumulate and secrete a large amount of epidermal growth factor (EGF) in mice. It is known that surgical removal of SMG (sialoadenectomy) alters cell turnover in the liver and exacerbates liver injury induced by lipopolysaccharide/galactosamine (LPS/GalN). RESULTS Here we show that such increased hepatotoxicity is not the consequence of the lack of EGF production from SMG. On the contrary, it appears to be the consequence of an inadequate cytokine production by the liver of sialoadenectomized mice. Thus, we found that the increase of plasma tumour necrosis factor-alpha and interleukin-6 was slower in sialoadenectomized than in sham-operated mice. This is because of a decreased rate of production of both cytokines by the liver. We found that the increase of plasma corticosterone (CS) concentration is lower in sialoadenectomized than that in sham-operated mice. Adrenalectomy exacerbated liver injury induced by LPS/GalN. In these animals, sialoadenectomy did not further increase the effect of LPS/GalN. CONCLUSIONS Our results suggest that the effect of sialoadenectomy on LPS/GalN-induced liver toxicity may be the consequence of an altered cytokine production by the liver and a reduced CS release from adrenal glands.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Sánchez O, Viladrich M, Ramírez I, Soley M. Liver injury after an aggressive encounter in male mice. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1908-16. [PMID: 17761516 DOI: 10.1152/ajpregu.00113.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute and intense psychological stressors induce cell damage in several organs, including the heart and the liver. Much less is known about social stress. In male mice, aggressive behavior is the most common social stressor. It is remarkable that upon fighting, submandibular salivary glands release a number of peptides into the bloodstream including epidermal growth factor (EGF). We showed previously that released EGF protects the heart from cell damage in this particular stressful situation. Here, we studied the effect of an aggressive encounter on the liver and whether EGF has a similar effect on this organ. An aggressive encounter in male mice caused inflammatory response and a transient increase in plasma alanine and aspartate transaminase activities. At 3 h, focal infiltration of neutrophils was observed in liver parenchyma. These cells accumulate on eosinophilic hepatocytes, which may correspond to dying cells. A few hours later, evidence of necrotic lesion was observed. Surgical excision of submandibular glands, sialoadenectomy, did not prevent the rise in plasma EGF concentration and did not affect the increase in plasma transaminase activities. Neither did the administration of tyrphostin AG-1478 (inhibitor of EGF receptor kinase) alter the increase in plasma alanine transaminase activity. However, it did enhance the rise in both aspartate transaminase and creatine kinase activity, suggesting heart damage. We conclude that an aggressive encounter causes mild liver damage and that released EGF does not protect this organ, in contrast to its effect on the heart.
Collapse
Affiliation(s)
- Olga Sánchez
- Dept. de Bioquímica i Biologia Molecular, Facultat de Barcelona, Universitat de Barcelona, Avda. Diagonal 645, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Bresgen N, Ohlenschläger I, Fiedler B, Wacht N, Zach S, Dunkelmann B, Arosio P, Kuffner E, Lottspeich F, Eckl PM. Ferritin-a mediator of apoptosis? J Cell Physiol 2007; 212:157-64. [PMID: 17348034 DOI: 10.1002/jcp.21009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously we have demonstrated an apoptosis inducing activity for a rat hepatocyte conditioned medium (CM) presumably mediated by acidic isoferritins. Here, we present support for this assumption since isoferritins purified from different rat hepatocyte CM significantly enhanced the frequency of apoptotic cells in primary rat hepatocytes, an effect completely inhibited by a neutralizing anti-H-ferritin antibody. The apoptosis induction appears to be related to a 43 kDa ferritin subunit contained in the isoferritins released from primary hepatocytes, presumably representing a ferritin heavy/light chain heterodimer. In addition, these isoferritins immunologically crossreact with antibodies raised against placental isoferritin p43-PLF (which also contains a 43 kDa ferritin subunit) and melanoma-derived H-chain ferritin, representing ferritin isoforms which reveal immunomodulatory properties. Furthermore, p53 and FasL are upregulated upon isoferritin treatment in a time dependent mode, and apoptosis induction can be suppressed by neutralizing anti-FasL antibodies. Proapoptotic Bid is upregulated too and translocated into mitochondria in primary hepatocytes exposed to the isoferritins purified from the CM. Finally, epidermal growth factor (EGF) and dexamethasone (DEX), which counteract proapoptotic mitochondrial signalling, almost completely abolished the proapoptotic effect of the hepatocyte derived isoferritins. In conclusion, our findings demonstrate that acidic isoferritins with homology to immunomodulatory ferritin isoforms (p43-PLF, melanoma-derived-H-chain ferritin) are released from hepatocytes in vitro, and are able to stimulate upregulation of p53 and mediate apoptosis involving Fas (CD95) signalling as well as addressing the intrinsic mitochondrial proapoptotic pathway.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McCullough CT, Tura BJ, Harrison DJ. Growth factor attenuation of IFNgamma-mediated hepatocyte apoptosis requires p21waf-1. Int J Exp Pathol 2006; 87:275-81. [PMID: 16875492 PMCID: PMC2517370 DOI: 10.1111/j.1365-2613.2006.00481.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon gamma (IFNgamma) is an important mediator of inflammatory liver damage as part of a complex cytokine network. In vitro, IFNgamma induces hepatocyte apoptosis. We hypothesized that the hepatocyte response to IFN signalling is context-dependent, and that specific growth factors, via phosphatidylinositol 3 kinase (PI(3)K) and protein kinase B/Akt signalling pathways, confer a cytoprotective effect. We established an in vitro model of IFNgamma-mediated primary hepatocyte injury. We show that epidermal growth factor (EGF) and hepatocyte growth factor (HGF) attenuate the IFNgamma-induced hepatocyte apoptosis. IRF-1, but not p53, is required for IFNgamma-mediated apoptosis. The loss of p21(waf-1) not only sensitizes the hepatocyte to IFNgamma-mediated injury but is required for survival factor mediated cytoprotection. We show that the PI(3)K inhibitor, LY294002, partially inhibits the apoptotic response of the hepatocyte to IFNgamma. In summary, we present evidence that a component of pro-apoptotic IFNgamma signalling in the primary hepatocyte occurs via the PI(3)K pathway. We show that the hepatocyte response to IFNgamma is modulated by external survival factors and that this survival signalling requires p21(waf-1).
Collapse
Affiliation(s)
- Christian T McCullough
- Injury and Apoptosis Group (Pathology), Edinburgh MRC Centre for Inflammation Research, College of Medicine and Veterinary Medicine, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | |
Collapse
|
23
|
Hartman SE, Bertone P, Nath AK, Royce TE, Gerstein M, Weissman S, Snyder M. Global changes in STAT target selection and transcription regulation upon interferon treatments. Genes Dev 2005; 19:2953-68. [PMID: 16319195 PMCID: PMC1315400 DOI: 10.1101/gad.1371305] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The STAT (signal transducer and activator of transcription) proteins play a crucial role in the regulation of gene expression, but their targets and the manner in which they select them remain largely unknown. Using chromatin immunoprecipitation and DNA microarray analysis (ChIP-chip), we have identified the regions of human chromosome 22 bound by STAT1 and STAT2 in interferon-treated cells. Analysis of the genomic loci proximal to these binding sites introduced new candidate STAT1 and STAT2 target genes, several of which are affiliated with proliferation and apoptosis. The genes on chromosome 22 that exhibited interferon-induced up- or down-regulated expression were determined and correlated with the STAT-binding site information, revealing the potential regulatory effects of STAT1 and STAT2 on their target genes. Importantly, the comparison of STAT1-binding sites upon interferon (IFN)-gamma and IFN-alpha treatments revealed dramatic changes in binding locations between the two treatments. The IFN-alpha induction revealed nonconserved STAT1 occupancy at IFN-gamma-induced sites, as well as novel sites of STAT1 binding not evident in IFN-gamma-treated cells. Many of these correlated with binding by STAT2, but others were STAT2 independent, suggesting that multiple mechanisms direct STAT1 binding to its targets under different activation conditions. Overall, our results reveal a wealth of new information regarding IFN/STAT-binding targets and also fundamental insights into mechanisms of regulation of gene expression in different cell states.
Collapse
Affiliation(s)
- Stephen E Hartman
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
March S, Garcia-Pagán JC, Massaguer A, Pizcueta P, Panés J, Engel P, Bosch J. P-selectin mediates leukocyte rolling in concanavalin-A-induced hepatitis. Liver Int 2005; 25:1053-60. [PMID: 16162166 DOI: 10.1111/j.1478-3231.2005.01137.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
UNLABELLED Concanavalin-A (Con-A)-induced hepatitis is an experimental model of human autoimmune hepatitis characterized by leukocyte activation and infiltration of the liver. The aim of the present study was to evaluate the role of P-selectin on leukocyte-endothelial interactions within the hepatic microvasculature in response to Con-A. METHODS The study was performed in P-selectin-deficient mice and wild-type mice pretreated with anti-P-selectin blocking monoclonal antibody (mAb) or vehicle. After 2 h of Con-A (20 mg/kg i.v.) or PBS administration, leukocyte rolling and adhesion and the index of sinusoidal perfusion were evaluated using the intravital microscopy technique in the liver. Apoptosis was determined by flow cytometry analysis of caspase-3 activity assayed on freshly isolated hepatocytes. RESULTS Con-A induced a significant increase in leukocyte rolling, mainly located at the central venule (2.1+/-0.4 vs 0.6+/-0.2 cells/min in wild-type mice treated with vehicle) and less marked, but still significant, in portal venules. This was associated with a significant increase in leukocyte adhesion. In P-selectin-deficient mice treated with Con-A, leukocyte rolling in portal and central venules was markedly reduced. However, leukocyte adhesion was only partially attenuated. A few sinusoids were perfused in wild-type mice treated with Con-A (26%). The percentage of perfused sinusoids was significantly higher in P-selectin-deficient mice (45%; P<0.05 vs wild-type). Similar effects were noted after the simultaneous injection of Con-A and anti-P-selecting mAb in wild-type mice. After Con-A treatment, apoptosis was markedly reduced in isolated hepatocytes of P-selectin-deficent mice (37+/-7% vs 75+/-5% in wild type). CONCLUSION The results of this intravital microscopy study clearly demonstrate that P-selectin is involved in the initial leukocyte rolling that leads to the development of Con-A-induced liver injury.
Collapse
Affiliation(s)
- Sandra March
- Immunology Unit, Department of Cellular Biology and Pathology, Medical School, University of Barcelona, Villaroel 170, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|