1
|
Eini M, Parsi S, Barati M, Bahramali G, Alizadeh Zarei M, Kiani J, Azarnezhad A, Hosseini A. Bioinformatic Investigation of Micro RNA-802 Target Genes, Protein Networks, and Its Potential Prognostic Value in Breast Cancer. Avicenna J Med Biotechnol 2022; 14:154-164. [PMID: 35633990 PMCID: PMC9077654 DOI: 10.18502/ajmb.v14i2.8882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background An increasing number of studies have suggested that unveiling the molecular network of miRNAs may provide novel therapeutic targets or biomarkers. In this study, we investigated the probable molecular functions that are related to microRNA-802 (miR-802) and evaluated its prognostic value in breast cancer utilizing bioinformatics tools. Methods PPI network, pathway enrichment and transcription factor analysis were applied to obtain hub genes among overlapping genes of four miRNA target prediction databases. Prognosis value assessments and expression analysis of hub genes using bioinformatics tools, as well as their literature validation were performed. Results Our results showed a significant correlation of the miR-802 overexpression with poor patient survival rate (BC, p=2.7e-5). We determined 247 target genes significant for GO and KEGG terms. Analysis of TFs by TRUST showed that RUNX3, FOXO3, and E2F1 are possible TFs that regulate the miR-802 expression and target genes network. According to our analysis; 21 genes might have an important function in miR-802 molecular processes and regulatory networks. The result shows that among these 21 genes, 8 genes (CASC3, ITGA4, AGO3, TARDBP, MED13L, SF1, SNRPE and CRNKL1) are positively correlated with patient survival. Therefore these genes could be considered and experimentally evaluated as a prognostic biomarker for breast cancer. Conclusion The comprehensive bioinformatics study on miR-802 target genes provided insight into miR-802 mediated pathways and processes. Furthermore, representing candidate target genes by prognostic values indicates the potential clinical application of miR-802 in breast cancer.
Collapse
Affiliation(s)
- Maryam Eini
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, MA, USA
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Assad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arshad Hosseini
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci (Lond) 2021; 135:2307-2327. [PMID: 34643675 DOI: 10.1042/cs20190070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), the leading cause of maternal and fetal morbidity and mortality, is associated with poor fetal growth, intrauterine growth restriction (IUGR) and low birth weight (LBW). Offspring of women who had PE are at increased risk for cardiovascular (CV) disease later in life. However, the exact etiology of PE is unknown. Moreover, there are no effective interventions to treat PE or alleviate IUGR and the developmental origins of chronic disease in the offspring. The placenta is critical to fetal growth and development. Epigenetic regulatory processes such as histone modifications, microRNAs and DNA methylation play an important role in placental development including contributions to the regulation of trophoblast invasion and remodeling of the spiral arteries. Epigenetic processes that lead to changes in placental gene expression in PE mediate downstream effects that contribute to the development of placenta dysfunction, a critical mediator in the onset of PE, impaired fetal growth and IUGR. Therefore, this review will focus on epigenetic processes that contribute to the pathogenesis of PE and IUGR. Understanding the epigenetic mechanisms that contribute to normal placental development and the initiating events in PE may lead to novel therapeutic targets in PE that improve fetal growth and mitigate increased CV risk in the offspring.
Collapse
|
3
|
miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nat Commun 2021; 12:3339. [PMID: 34099655 PMCID: PMC8184787 DOI: 10.1038/s41467-021-23298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal epithelium is a complex structure that integrates digestive, immunological, neuroendocrine, and regenerative functions. Epithelial homeostasis is maintained by a coordinated cross-talk of different epithelial cell types. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here we show that the intestine-enriched miR-802 is a central regulator of intestinal epithelial cell proliferation, Paneth cell function, and enterocyte differentiation. Genetic ablation of mir-802 in the small intestine of mice leads to decreased glucose uptake, impaired enterocyte differentiation, increased Paneth cell function and intestinal epithelial proliferation. These effects are mediated in part through derepression of the miR-802 target Tmed9, a modulator of Wnt and lysozyme/defensin secretion in Paneth cells, and the downstream Wnt signaling components Fzd5 and Tcf4. Mutant Tmed9 mice harboring mutations in miR-802 binding sites partially recapitulate the augmented Paneth cell function of mice lacking miR-802. Our study demonstrates a broad miR-802 network that is important for the integration of signaling pathways of different cell types controlling epithelial homeostasis in the small intestine.
Collapse
|
4
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
5
|
Riolo G, Cantara S, Marzocchi C, Ricci C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc 2020; 4:1. [PMID: 33374478 PMCID: PMC7839038 DOI: 10.3390/mps4010001] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in both animals and plants. By pairing to microRNA responsive elements (mREs) on target mRNAs, miRNAs play gene-regulatory roles, producing remarkable changes in several physiological and pathological processes. Thus, the identification of miRNA-mRNA target interactions is fundamental for discovering the regulatory network governed by miRNAs. The best way to achieve this goal is usually by computational prediction followed by experimental validation of these miRNA-mRNA interactions. This review summarizes the key strategies for miRNA target identification. Several tools for computational analysis exist, each with different approaches to predict miRNA targets, and their number is constantly increasing. The major algorithms available for this aim, including Machine Learning methods, are discussed, to provide practical tips for familiarizing with their assumptions and understanding how to interpret the results. Then, all the experimental procedures for verifying the authenticity of the identified miRNA-mRNA target pairs are described, including High-Throughput technologies, in order to find the best approach for miRNA validation. For each strategy, strengths and weaknesses are discussed, to enable users to evaluate and select the right approach for their interests.
Collapse
Affiliation(s)
| | | | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.); (C.M.)
| |
Collapse
|
6
|
Wen Z, Li J, Fu Y, Zheng Y, Ma M, Wang C. Hypertrophic Adipocyte-Derived Exosomal miR-802-5p Contributes to Insulin Resistance in Cardiac Myocytes Through Targeting HSP60. Obesity (Silver Spring) 2020; 28:1932-1940. [PMID: 32844579 DOI: 10.1002/oby.22932] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to elucidate the mechanism by which hypertrophic adipocytes regulate insulin signaling in cardiac myocytes. METHODS Palmitate was used to induce hypertrophic 3T3-L1 adipocytes. Exosomes were purified from normal control or hypertrophic 3T3-L1 adipocyte-associated conditioned medium. Exosome-exposed neonatal rat ventricular myocytes were stimulated with insulin to investigate the effects of exosomes on insulin signaling. Small interfering RNA techniques were used to downregulate protein levels, and their efficiency was evaluated by Western blot. RESULTS Hypertrophic adipocyte-derived exosomes highly expressed miR-802-5p. Insulin sensitivity of neonatal rat ventricular myocytes was negatively regulated by miR-802-5p. TargetScan and luciferase reporter assays revealed that heat shock protein 60 (HSP60) was a direct target of miR-802-5p. HSP60 silencing was found to induce insulin resistance and to mitigate the insulin-sensitizing effects of adiponectin. In addition, HSP60 depletion significantly increased the expression levels of C/EBP-homologous protein and enhanced oxidative stress, accompanied by the increases in the phosphorylation of JNK and IRS-1 Ser307. Moreover, the effects of HSP60 knockdown on C/EBP-homologous protein and oxidative stress were abolished by the inhibition of either miR-802-5p or endocytosis. CONCLUSIONS Hypertrophic adipocyte-derived exosomal miR-802-5p caused cardiac insulin resistance through downregulating HSP60. These findings provide a novel mechanism by which epicardial adipose tissue impairs cardiac function.
Collapse
Affiliation(s)
- Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yalin Fu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mingke Ma
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
7
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. miR-802 participates in the inflammatory process of inflammatory bowel disease by suppressing SOCS5. Biosci Rep 2020; 40:BSR20192257. [PMID: 32211804 PMCID: PMC7138906 DOI: 10.1042/bsr20192257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/01/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aims to reveal the detailed molecular mechanism of microRNA (miR)-802 in the progression of inflammatory bowel disease (IBD). IBD tissues were obtained from IBD patients, followed by CD4+ cells isolation. Then, qRT-PCR and ELISA were used to detect the expression of miR-802, suppressor of cytokine signaling 5 (SOCS5), interleukin (IL)-17A and tumor necrosis factor (TNF)-α. Transfection of miR-802 mimics and miR-802 inhibitor in CD4+ cells was detected by Western blot. TargetScan and luciferase reporter assay were used to detect the relationship between SOCS5 and miR-802. Finally, colitis mice model was established to verify whether miR-802 inhibitor was involved in the protective effect of colonic mucosa. The miR-802 was highly expressed in inflamed mucosa and PBMC cells of IBD. The highest expression of miR-802 was observed in CD4+ T cells based on different immune cell subsets analysis. SOCS5 was the target gene of miR-802. The mice model experiments showed that blockade of miR-802 could alleviate mice colitis. Our study suggests that up-regulation of miR-802 plays an important role in inflammatory process of IBD via targeting SOCS5. Moreover, the differentiation of Th17 and secretion of TNF-α in IBD could be stimulated by miR-802.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Ruoyu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Minghan Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Defeng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zichao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Benhua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zhenglei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Dingguo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, No. 7019, Yitian Road Road, Shenzhen City, Guangdong Province 518026, China
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| |
Collapse
|
8
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, Shkolnikov N, Ozer HG, Yilmaz AS, Yalowich JC, Elton TS. hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II α in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Mol Pharmacol 2020; 97:159-170. [PMID: 31836624 PMCID: PMC6978698 DOI: 10.1124/mol.119.118315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
DNA topoisomerase IIα protein (TOP2α) 170 kDa (TOP2α/170) is an important target for anticancer agents whose efficacy is often attenuated by chemoresistance. Our laboratory has characterized acquired resistance to etoposide in human leukemia K562 cells. The clonal resistant subline K/VP.5 contains reduced TOP2α/170 mRNA and protein levels compared with parental K562 cells. The aim of this study was to determine whether microRNA (miRNA)-mediated mechanisms play a role in drug resistance via decreased expression of TOP2α/170. miRNA-sequencing revealed that human miR-9-3p and miR-9-5p were among the top six of those overexpressed in K/VP.5 compared with K562 cells; validation by quantitative polymerase chain reaction demonstrated overexpression of both miRNAs. miRNA recognition elements (MREs) for both miRNAs are present in the 3'-untranslated region (UTR) of TOP2α/170. Transfecting K562 cells with a reporter plasmid harboring the TOP2α/170 3'-UTR together with either miR-9-3p or miR-9-5p mimics resulted in a statistically significant decrease in luciferase expression. Mutating the miR-9-3p or miR-9-5p MREs prevented this decrease, demonstrating direct interaction between these miRNAs and TOP2α/170 mRNA. Transfection of K562 cells with miR-9-3p or miR-9-5p mimics led to decreased TOP2α/170 protein levels without a change in TOP2α/170 mRNA and resulted in attenuated etoposide-induced DNA damage (gain-of-miRNA-inhibitory function). Conversely, transfection of miR-9-3p or miR-9-5p inhibitors in K/VP.5 cells (overexpressed miR-9 and low TOP2α/170) led to increased TOP2α/170 protein expression without a change in TOP2α/170 mRNA levels and resulted in enhancement of etoposide-induced DNA damage (loss-of-miRNA-inhibitory function). Taken together, these results strongly suggest that these miRNAs play a role in and are potential targets for circumvention of acquired resistance to etoposide. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p decrease DNA topoisomerase IIα protein 170 kDa expression levels in acquired resistance to etoposide. These findings contribute new information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. Furthermore, increased expression of miR-9-3p and miR-9-5p in chemoresistant cancer cells may support their validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Evan E Kania
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Ayse Selen Yilmaz
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Yang B, Sun L, Liang L. MiRNA-802 suppresses proliferation and migration of epithelial ovarian cancer cells by targeting YWHAZ. J Ovarian Res 2019; 12:100. [PMID: 31640760 PMCID: PMC6806521 DOI: 10.1186/s13048-019-0576-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background The imbalance of expression of microRNA-802 may have a significant place in tumor progression. However, the bio-function of epithelial ovarian cancer cells remains unclear. Therefore, we setup this study to explore the pathogenesis of epithelial ovarian cancer based on microRNA-802. Methods RT-qPCR analysis was used to measure the expression level of microRNA802 and YWHAZ in epithelial ovarian cancer. CCK-8, colony formation, flow cytometry and transwell assay were used to detect the effects of microRNA-802 on cell proliferation, apoptosis, invasion and migration. Target gene prediction and screening, luciferase reporting experiments were applied to validate the downstream target genes of microRNA-802. The effects of microRNA-802 on the expression of YWHAZ and its biological effects were measured by Western blotting and RT-qPCR. Results Compared with normal cell lines and tissues, the expression level of microRNA-802 was obviously down-regulated in cancer related cell lines and tissues. Overexpression of microRNA-802 could obviously inhibit the invasion and proliferation and induce apoptosis. In addition, YWHAZ was the binding target protein of miR-802 for epithelial ovarian cancer cells. YWHAZ was obviously up-regulated in human epithelial ovarian cancer cells, and YWHAZ was negatively correlated with the expression of miR-802. YWHAZ can partly eliminate the inhibitory effect caused by overexpression of miR-802 on growth and metastasis of epithelial ovarian cancer cells. Conclusion miR-802 can regulate the occurrence and development of epithelial ovarian cancer by targeting YWHAZ.
Collapse
Affiliation(s)
- Bo Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, 398 Zhongshan West Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Li Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, 398 Zhongshan West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Lei Liang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, 398 Zhongshan West Road, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|
11
|
Sun D, Chen J, Wu W, Tang J, Luo L, Zhang K, Jin L, Lin S, Gao Y, Yan X, Zhang C. MiR-802 causes nephropathy by suppressing NF-κB-repressing factor in obese mice and human. J Cell Mol Med 2019; 23:2863-2871. [PMID: 30729676 PMCID: PMC6433720 DOI: 10.1111/jcmm.14193] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with significant microvascular complications including renal injuries and may induce end-stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR-802 in obesity-related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR-802 in protecting against nephropathy. Renal miR-802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR-802 improved high fat diet (HFD)-induced renal dysfunction, structural disorders and fibrosis. The up-regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR-802 inhibitor-treated obese mice. Mechanistically, miR-802 directly bond to 3'-UTR of NF-κB-repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR-802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR-802/NRF signalling was an important pathway in mediating obesity-related nephropathy. It is a possible useful clinical approach of treating miR-802 inhibitor to combat nephropathy.
Collapse
Affiliation(s)
- Da Sun
- Institute of Life Sciences, Wenzhou UniversityWenzhouChina
- Zhejiang Province Engineering Laboratory for Pharmaceutical development of Growth Factors, Wenzhou Biomedical Collaborative Innovation CenterWenzhouChina
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduChina
| | - Wei Wu
- Institute of Life Sciences, Wenzhou UniversityWenzhouChina
- Bioengineering College, Chongqing UniversityChongqingChina
| | - Ju Tang
- Medical Research Center, Southwest Hospital Third Military Medical UniversityChongqingChina
| | - Li Luo
- Bioengineering College, Chongqing UniversityChongqingChina
| | - Kun Zhang
- Bioengineering College, Chongqing UniversityChongqingChina
| | - Libo Jin
- Institute of Life Sciences, Wenzhou UniversityWenzhouChina
| | - Sue Lin
- Institute of Life Sciences, Wenzhou UniversityWenzhouChina
| | - Yitian Gao
- Institute of Life Sciences, Wenzhou UniversityWenzhouChina
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences at the Wenzhou Medical UniversityWenzhouChina
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical UniversityRuianWenzhouChina
| |
Collapse
|
12
|
Banerjee A, Chabria Y, Kanna N. R. R, Gopi J, Rowlo P, Sun XF, Pathak S. Role of Tumor Specific niche in Colon Cancer Progression and Emerging Therapies by Targeting Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1341:177-192. [DOI: 10.1007/5584_2019_355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Wang J, Duan L, Gao Y, Zhou S, Liu Y, Wei S, An S, Liu J, Tian L, Wang S. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice. Mol Cell Endocrinol 2018; 472:149-158. [PMID: 29233785 DOI: 10.1016/j.mce.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis with diabetic nephropathy (DN) is one of major diabetic complications. miR-21 and MMP-9 were closely associated with fibrosis diseases. Angiotensin II receptor blockers (ARB) have cardioprotective effects. However, it remains unclear whether miR-21 was involved in the mechanism of cardiac fibrosis with DN by target MMP-9 and ARB ameliorates cardiac fibrosis partly by inhibiting miR-21 expression. In this study, In Situ Hybridization(ISH), RT-PCR, cell transfection, western blotting and laser confocal telescope were used, respectively. ISH showed that miR-21, concentrated in cytoplasmic foci in the proximity of the nucleus, was mainly localized in cardiac fibroblasts and at relatively low levels in cardiomyocytes within cardiac tissue with DN. RT-PCR showed that miR-21 expression was significantly enhanced in cardiac tissue with DN, accompanied by the increase of col-IV, FN, CVF, PVCA, LVMI, HWI and NT-pro-BNP (p < 0.05). Bioinformatics analysis and Luciferase reporter gene assays showed that MMP-9 was a validated target of miR-21. Furthermore, cell transfection experiments showed that miR-21 overexpression directly decreased MMP-9 expression. Interestingly, miR-21 levels in cardiac tissue was positively correlated with ACR (r = -0.870, P = 0.003), whereas, uncorrelated with SBP, HbA1C and T-Cho (p > 0.05). More importantly, ARB can significantly decrease miR-21 expression in cardiac tissue, cardiac fibroblasts and serum. Overall, our results suggested that miR-21 may contribute to the pathogenesis of cardiac fibrosis with DN by target MMP-9, and that miR-21 may be a new possible therapeutic target for ARB in cardiac fibrosis with DN.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China.
| | - Lijun Duan
- Department of Gynecology and Obstetrics, Gansu Provincial People's Hospital, 204 Donggang West Road, Lanzhou 730000, PR China.
| | - Yanbin Gao
- Metabolic Disease Center, School of Traditional Chinese Medical, Capital Medical University, Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, PR China
| | - Shuhong Zhou
- Department of Rheumatology and Immunology, Gansu Provincial People's Hospital, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Yongming Liu
- Department of Geriatric Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, PR China
| | - Suhong Wei
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Siqin An
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Liming Tian
- Department of Endocrinology, Gansu Provincial People's Hospital, Gansu Key Laboratory of Endocrine and Metabolism, 204 Donggang West Road, Lanzhou, 730000, PR China
| | - Shaocheng Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin, 300070, PR China
| |
Collapse
|
14
|
Decoding resistant hypertension signalling pathways. Clin Sci (Lond) 2017; 131:2813-2834. [PMID: 29184046 DOI: 10.1042/cs20171398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches.
Collapse
|
15
|
Law IKM, Padua DM, Iliopoulos D, Pothoulakis C. Role of G protein-coupled receptors-microRNA interactions in gastrointestinal pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 313:G361-G372. [PMID: 28774868 PMCID: PMC5792214 DOI: 10.1152/ajpgi.00144.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - David Miguel Padua
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and ,2Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| |
Collapse
|
16
|
Harapan H, Yeni CM. The role of microRNAs on angiogenesis and vascular pressure in preeclampsia: The evidence from systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Elton TS, Yalowich JC. Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI JOURNAL 2015; 14:758-90. [PMID: 27047316 PMCID: PMC4817421 DOI: 10.17179/excli2015-319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022]
Abstract
Functionally matured microRNAs (miRNAs) are small single-stranded non-coding RNA molecules which are emerging as important post-transcriptional regulators of gene expression and consequently are central players in many physiological and pathological processes. Since the biological roles of individual miRNAs will be dictated by the mRNAs that they regulate, the identification and validation of miRNA/mRNA target interactions is critical for our understanding of the regulatory networks governing biological processes. We promulgate the combined use of prediction algorithms, the examination of curated databases of experimentally supported miRNA/mRNA interactions, manual sequence inspection of cataloged miRNA binding sites in specific target mRNAs, and review of the published literature as a reliable practice for identifying and prioritizing biologically important miRNA/mRNA target pairs. Once a preferred miRNA/mRNA target pair has been selected, we propose that the authenticity of a functional miRNA/mRNA target pair be validated by fulfilling four well-defined experimental criteria. This review summarizes our current knowledge of miRNA biology, miRNA/mRNA target prediction algorithms, validated miRNA/mRNA target data bases, and outlines several experimental methods by which miRNA/mRNA targets can be authenticated. In addition, a case study of human endoglin is presented as an example of the utilization of these methodologies.
Collapse
Affiliation(s)
- Terry S Elton
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jack C Yalowich
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Yuan F, Wang W. MicroRNA-802 suppresses breast cancer proliferation through downregulation of FoxM1. Mol Med Rep 2015; 12:4647-4651. [PMID: 26080894 DOI: 10.3892/mmr.2015.3921] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/19/2014] [Indexed: 11/05/2022] Open
Abstract
An increasing number of studies have shown that microRNAs (miRNAs) are critical in tumor cell proliferation, as they modulate key gene transcripts. In the present study, the expression and roles of miRNA (miR)‑802 were analyzed by quantitative polymerase chain reaction in breast cancer cells. The results showed that expression levels of miR‑802 were significantly reduced in breast cancer tissues and cells compared with those of normal tissue and normal breast epithelial cells. In vitro and in vivo experiments demonstrated that miR‑802 overexpression inhibited cell proliferation in MCF‑7 breast cancer cells and tumor growth in nude mice, respectively. Furthermore, mechanistic investigation with western blotting and luciferase reporter assays revealed that miR‑802 overexpression downregulated protein expression levels of Forkhead box protein M1 (FoxM1). Therefore, the results of the present study provided evidence for a previously undetermined miR‑802/FoxM1 molecular network, which was involved in the regulation of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Wei Wang
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
19
|
Haque R, Hur EH, Farrell AN, Iuvone PM, Howell JC. MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells. Mol Vis 2015; 21:224-35. [PMID: 25802486 PMCID: PMC4358229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/05/2015] [Indexed: 11/01/2022] Open
Abstract
PURPOSE The (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), plays an important role in the physiologic and pathophysiological regulation of blood pressure and fluid/electrolyte homeostasis. The RAS including the PRR has been identified in retinal endothelial cells and other ocular tissues. In this study, the potential involvement of miRNAs in the posttranscriptional regulation of PRR was investigated in human retinal endothelial cells (hRECs) under high glucose (HG) conditions. METHODS miRNA-152 (miR-152) was identified in silico as a potential regulator of PRR, and this was confirmed by quantitative real-time PCR (qRT-PCR) and PRR 3'-untranslated region (UTR) reporter assays. Using RNA interference, both AT1R and PRR were implicated in the HG-mediated induction of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR-2), and transforming growth factor β1 (TGFβ1). RESULTS The downregulation of miR-152 was observed in hRECs and rat retinal tissues under HG conditions. In parallel, PRR (target of miR-152), VEGF, VEGFR-2, and TGFβ1 at mRNA levels were elevated. However, the transfection of hRECs with miR-152 mimics in HG conditions resulted in the suppression of the PRR expression, as well as reduced VEGF, VEGFR-2, and TGFβ1 production. This was reversed by transfecting cells with the antisense (antagomir) of miR-152, suggesting the glucose-induced upregulation of VEGF, VEGFR-2, and TGFβ1 is mediated through PRR, and this regulation is likely achieved through the HG-mediated modulation of miRNAs. CONCLUSIONS We have demonstrated that miR-152 interacting with PRR regulates downstream VEGF, VRGFR-2, and TGFβ1 expressions in hRECs in HG conditions. These studies suggest miR-152 and PRR may play a role in the pathogenesis of diabetic retinopathy (DR).
Collapse
|
20
|
Cao ZQ, Shen Z, Huang WY. MicroRNA-802 promotes osteosarcoma cell proliferation by targeting p27. Asian Pac J Cancer Prev 2015; 14:7081-4. [PMID: 24460254 DOI: 10.7314/apjcp.2013.14.12.7081] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have been demonstrated to regulate proliferation and apoptosis in many types of cancers, but biological functions in osteosarcomas remain relatively unknown. Here, we found expression of miR-802 to be up-regulated in osteosarcoma tissues in comparison with adjacent normal tissues. Enforced expression of miR-802 was able to promote cell proliferation in U2OS and MG63 cells, while miR-802 antisense oligonucleotides (antisense miR-802) inhibited cell proliferation. At the molecular level, our results further revealed that expression of p27, a negative cell-cycle regulator, was negatively regulated by miR-802. Therefore, the data reported here indicate that miR-802 is an important regulator in osteosarcoma, our findings contributing to a better understanding of important mis-regulated miRNAs in this tumour type.
Collapse
Affiliation(s)
- Zhong-Qing Cao
- Department of Orthopedics, St. Luke's Hospital, Shanghai, China E-mail :
| | | | | |
Collapse
|
21
|
Wang LQ, Chen G, Liu XY, Liu FY, Jiang SY, Wang Z. microRNA‑802 promotes lung carcinoma proliferation by targeting the tumor suppressor menin. Mol Med Rep 2014; 10:1537-42. [PMID: 24994111 DOI: 10.3892/mmr.2014.2361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/06/2014] [Indexed: 11/05/2022] Open
Abstract
microRNAs play important roles in numerous biological processes, including tumorigenesis, by modulating critical gene transcripts. In the present study, the role of microRNA‑802 (miR‑802) in lung cancer was investigated. The results of the quantitative polymerase chain reaction revealed that expression levels of miR‑802 were significantly upregulated in lung cancer tissues. In vitro experiments demonstrated that miR‑802 promoted cell proliferation in A549, NCI‑H358 and NCI‑H1299 cells. Furthermore, it was indicated that miR‑802 promoted the proliferation of lung carcinoma by targeting the tumor suppressor menin. Therefore, these results suggest a previously unknown miR‑802/menin molecular network controlling lung carcinoma development.
Collapse
Affiliation(s)
- Lun-Qing Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gang Chen
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiang-Yan Liu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fan-Ying Liu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shao-Yan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Medical College, Qingdao University, Jinan, Shandong 266071, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
22
|
Inflammation-induced miR-802 promotes cell proliferation in cholesteatoma. Biotechnol Lett 2014; 36:1753-9. [DOI: 10.1007/s10529-014-1545-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
|
23
|
MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 2014; 29:565-74. [PMID: 23996519 PMCID: PMC3944105 DOI: 10.1007/s00467-013-2599-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of childhood chronic kidney disease (CKD). While mutations in several renal development genes have been identified as causes for CAKUT, most cases have not yet been linked to known mutations. Furthermore, the genotype-phenotype correlation is variable, suggesting that there might be additional factors that have an impact on the severity of CAKUT. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level, and are involved in many developmental processes. Although little is known about the function of specific miRNAs in kidney development, several have recently been shown to regulate the expression of, and/or are regulated by, crucial renal development genes present in other organ systems. In this review, we discuss how miRNA regulation of common developmental signaling pathways may be applicable to renal development. We focus on genes that are known to contribute to CAKUT in humans, for which miRNA interactions in other contexts have been identified, with miRNAs that are present in the kidney. We hypothesize that miRNA-mediated processes might play a role in kidney development through similar mechanisms, and speculate that genotypic variations in these small RNAs or their targets could be associated with CAKUT.
Collapse
|
24
|
Pacurari M, Addison JB, Bondalapati N, Wan YW, Luo D, Qian Y, Castranova V, Ivanov AV, Guo NL. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells. Int J Oncol 2013; 43:548-60. [PMID: 23708087 PMCID: PMC3775564 DOI: 10.3892/ijo.2013.1963] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Maricica Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
INTRODUCTION Angiogenesis, for its fundamental role in cancer growth and metastasis, has become an appealing target in cancer therapy. A number of angiogenesis-related microRNAs (miRNAs) are under investigation and they can affect the cancerous phenotype of malignant cells. AREAS COVERED The authors review the recent advances in angiogenesis-related miRNAs in human colon cancer. They also envisage future developments toward potential miRNA-based applications to cancer treatment. EXPERT OPINION Angiogenesis-related miRNAs may reasonably be considered as a valuable cancer therapeutic tool. More investigations should be performed to promote therapeutic-clinical research of miRNAs in patients with colon cancer.
Collapse
Affiliation(s)
- Liu Hong
- Fourth Military Medical University, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology, Shaanxi Province, China.
| | | | | | | |
Collapse
|
26
|
Masotti A. Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol 2012; 2:137. [PMID: 23130352 PMCID: PMC3487149 DOI: 10.3389/fcimb.2012.00137] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/18/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
27
|
Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 2011; 8:171-86. [PMID: 22211115 PMCID: PMC3248702 DOI: 10.7150/ijbs.8.171] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022] Open
Abstract
The intestinal messenger RNA expression signature is affected by the presence and composition of the endogenous microbiota, with effects on host physiology. The intestine is also characterized by a distinctive micronome. However, it is not known if microbes also impact intestinal gene expression epigenetically. We investigated if the murine caecal microRNA expression signature depends on the presence of the microbiota, and the potential implications of this interaction on intestinal barrier function. Three hundred and thirty four microRNAs were detectable in the caecum of germ-free and conventional male mice and 16 were differentially expressed, with samples from the two groups clustering separately based on their expression patterns. Through a combination of computational and gene expression analyses, including the use of our curated list of 527 genes involved in intestinal barrier regulation, 2,755 putative targets of modulated microRNAs were identified, including 34 intestinal barrier-related genes encoding for junctional and mucus layer proteins and involved in immune regulation. This study shows that the endogenous microbiota influences the caecal microRNA expression signature, suggesting that microRNA modulation is another mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis. Through microRNAs, the gut microbiota may impinge a much larger number of genes than expected, particularly in diseases where its composition is altered. In this perspective, abnormally expressed microRNAs could be considered as novel therapeutic targets.
Collapse
Affiliation(s)
- Natasha Singh
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Elize A. Shirdel
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Levi Waldron
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Regan-Heng Zhang
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Igor Jurisica
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
- 4. Department of Computer Science, University of Toronto, Ontario, Canada
| | - Elena M. Comelli
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Elton TS, Sansom SE, Martin MM. Cardiovascular Disease, Single Nucleotide Polymorphisms; and the Renin Angiotensin System: Is There a MicroRNA Connection? Int J Hypertens 2010; 2010. [PMID: 20948563 PMCID: PMC2949081 DOI: 10.4061/2010/281692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/25/2010] [Indexed: 12/12/2022] Open
Abstract
Essential hypertension is a complex disorder, caused by the interplay between many genetic variants, gene-gene interactions, and environmental factors. Given that the renin-angiotensin system (RAS) plays an important role in blood pressure (BP) control, cardiovascular regulation, and cardiovascular remodeling, special attention has been devoted to the investigation of single-nucleotide polymorphisms (SNP) harbored in RAS genes that may be associated with hypertension and cardiovascular disease. MicroRNAs (miRNAs) are a family of small, ∼21-nucleotide long, and nonprotein-coding RNAs that recognize target mRNAs through partial complementary elements in the 3′-untranslated region (3′-UTR) of mRNAs and inhibit gene expression by targeting mRNAs for translational repression or destabilization. Since miRNA SNPs (miRSNPs) can create, destroy, or modify miRNA binding sites, this review focuses on the hypothesis that transcribed target SNPs harbored in RAS mRNAs, that alter miRNA gene regulation and consequently protein expression, may contribute to cardiovascular disease susceptibility.
Collapse
Affiliation(s)
- Terry S Elton
- Davis Heart and Lung Research Institute, The Ohio State University, DHLRI 515, Columbus, OH 43210, USA
| | | | | |
Collapse
|