1
|
Paredes-Villa AA, Aguilar-Arce IE, Meneses-Morales I, Cervantes-Roldán R, Valadéz-Graham V, León-Del-Río A. NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer. Arch Med Res 2025; 56:103179. [PMID: 39813852 DOI: 10.1016/j.arcmed.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα). ERα is a ligand-dependent transcription factor that controls mammary gland growth and differentiation during puberty and pregnancy and plays a major role in the development and progression of breast cancer tumors. Altogether, the regulatory functions of NHERF2 on ion channels, GPCRs, and nuclear transcription factors have a modulatory effect on signal transduction pathways, metabolic homeostasis, cell proliferation and differentiation, neurotransmission, muscle contraction, and renal electrolyte balance. This work highlights NHERF2 functions in the cytoplasm and nucleus and underscores the nuclear mechanisms through which NHERF2 participates in the regulation of gene expression and tumor growth and progression in breast cancer.
Collapse
Affiliation(s)
- Adrián-Alejandro Paredes-Villa
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Esaú Aguilar-Arce
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iván Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Viviana Valadéz-Graham
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Kalashyan M, Raghunathan K, Oller H, Bayer MT, Jimenez L, Roland JT, Kolobova E, Hagen SJ, Goldsmith JD, Shub MD, Goldenring JR, Kaji I, Thiagarajah JR. Patient-derived enteroids provide a platform for the development of therapeutic approaches in microvillus inclusion disease. J Clin Invest 2023; 133:e169234. [PMID: 37643022 PMCID: PMC10575727 DOI: 10.1172/jci169234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.
Collapse
Affiliation(s)
- Meri Kalashyan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Krishnan Raghunathan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Haley Oller
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie-Theres Bayer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- PediCODE Consortium, as detailed in Supplemental Acknowledgments
| | - Joseph T. Roland
- Section of Surgical Sciences and
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elena Kolobova
- Section of Surgical Sciences and
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Susan J. Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey D. Goldsmith
- PediCODE Consortium, as detailed in Supplemental Acknowledgments
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mitchell D. Shub
- Department of Child Health, University of Arizona College of Medicine–Phoenix, and Division of Gastroenterology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - James R. Goldenring
- PediCODE Consortium, as detailed in Supplemental Acknowledgments
- Section of Surgical Sciences and
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Nashville VA Medical Center, Nashville, Tennessee, USA
| | - Izumi Kaji
- PediCODE Consortium, as detailed in Supplemental Acknowledgments
- Section of Surgical Sciences and
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- PediCODE Consortium, as detailed in Supplemental Acknowledgments
- Harvard Digestive Disease Center, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kalashyan M, Raghunathan K, Oller H, Theres MB, Jimenez L, Roland JT, Kolobova E, Hagen SJ, Goldsmith JD, Shub MD, Goldenring JR, Kaji I, Thiagarajah JR. Therapy Development for Microvillus Inclusion Disease using Patient-derived Enteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526036. [PMID: 36747680 PMCID: PMC9900906 DOI: 10.1101/2023.01.28.526036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na + /H + exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Inhibition of Notch signaling with the γ-secretase inhibitor, DAPT, recovered apical brush border structure and functional Na + /H + exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID. Conflict-of-interest statement The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Meri Kalashyan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| | - Krishnan Raghunathan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| | - Haley Oller
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| | - Marie-Bayer Theres
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
- PediCoDE Consortium
| | - Joseph T. Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elena Kolobova
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey D. Goldsmith
- Department of Pathology, Boston Children’s Hospital; Harvard Medical School, Boston, MA
- PediCoDE Consortium
| | - Mitchell D. Shub
- Department of Child Health University of Arizona College of Medicine-Phoenix and Division of Gastroenterology, Phoenix Children’s
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, TN
- PediCoDE Consortium
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- PediCoDE Consortium
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital; Harvard Medical School, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
- Harvard Digestive Disease Center, Boston MA
- PediCoDE Consortium
| |
Collapse
|
4
|
Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, Jose PA, Duan S, Xu FJ, Yang Z. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na +/H + Exchanger 3 Activity Through a PKC (Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway. Hypertension 2022; 79:1668-1679. [PMID: 35674015 PMCID: PMC9278716 DOI: 10.1161/hypertensionaha.121.18791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension. Methods: Adult intestine-specific Cckbr-knockout mice (Cckbrfl/flvillin-Cre) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6–7 weeks) on intestinal Na+/H+ exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in Cckbrfl/flvillin-Cre mice and Dahl salt-sensitive rats than their respective controls, Cckbrfl/flvillin mice and SS13BN rats. We constructed gastrin-SiO2 microspheres to enable gastrin to stimulate specifically and selectively intestinal CCKBR without its absorption into the circulation. Results: Gastrin-SiO2 microspheres treatment prevented the high salt-induced hypertension and increase in urine Na concentration by inhibiting intestinal Na+/H+ exchanger 3 trafficking and activity, increasing stool sodium without inducing diarrhea. Gastrin-mediated inhibition of intestinal Na+/H+ exchanger 3 activity, related to a PKC (protein kinase C)-mediated activation of NHERF1 and NHERF2. Conclusions: These results support a crucial role of intestinal gastrin/CCKBR in decreasing intestinal sodium absorption and keeping the blood pressure in the normal range. The gastrointestinal administration of gastrin-SiO2 microspheres is a promising and safe strategy to treat salt-sensitive hypertension without side effects.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xin-Yang Zhang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xianxian Wu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Pedro A Jose
- Department of Pharmacology and Physiology (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC.,Division of Kidney Diseases and Hypertension, Department of Medicine (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| |
Collapse
|
5
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
6
|
Sun X, Wang Y, Jiang T, Yuan X, Ren Z, Tuffour A, Liu H, Zhou Y, Gu J, Shi H. Nephrotoxicity Profile of Cadmium Revealed by Proteomics in Mouse Kidney. Biol Trace Elem Res 2021; 199:1929-1940. [PMID: 32803525 DOI: 10.1007/s12011-020-02312-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a highly toxic metal and kidney is its main target. However, the molecular effects and associated potential impacts of Cd-accumulated kidney have not been well investigated. In this study, mouse was used as a model to investigate the Cd-induced proteomic profile change in kidney, and a total of 34 differentially expressed proteins were detected by two-dimensional gel electrophoresis (2-DE) and further identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Through Gene Ontology analysis and KEGG pathway annotation, it showed that Cd-regulated kidney metabolism and promoted renal damage and cell migration. By validation of Western blotting and RT-qPCR, metastasis-related proteins LIM and SH3 domain protein 1 (LASP1) and phosphoenolpyruvate carboxykinase/cytosolic [GTP] (PEPCK1) were confirmed to be upregulated; Acyl-CoA synthetase medium-chain family member 3 (ACSM3) was downregulated. Furthermore, carcinoma development-related proteins initiation factor 4A (eIF4A) and pyridoxine-5'-phosphate oxidase (PNPO) were upregulated, and pyridoxal kinase (PK) was downregulated. The downregulation of Na(+)/H(+) exchange regulatory cofactor (NHERF3) might promote renal damage which associated with decrease of transferrin (TRF) in kidney. Taken together, our results revealed proteomic profile of Cd-induced nephrotoxicity and provided data for further insights into the mechanisms of Cd toxicity.
Collapse
Affiliation(s)
- Xi Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tingya Jiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiao Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Alex Tuffour
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haitao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
7
|
Yin J, Sunuwar L, Kasendra M, Yu H, Tse CM, Talbot CC, Boronina T, Cole R, Karalis K, Donowitz M. Fluid shear stress enhances differentiation of jejunal human enteroids in Intestine-Chip. Am J Physiol Gastrointest Liver Physiol 2021; 320:G258-G271. [PMID: 33074011 PMCID: PMC8202237 DOI: 10.1152/ajpgi.00282.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that the study of normal human enteroids duplicates many known aspects of human intestinal physiology. However, this epithelial cell-only model lacks the many nonepithelial intestinal cells present in the gastrointestinal tract and exposure to the mechanical forces to which the intestine is exposed. We tested the hypothesis that physical shear forces produced by luminal and blood flow would provide an intestinal model more closely resembling normal human jejunum. Jejunal enteroid monolayers were studied in the Emulate, Inc. Intestine-Chip under conditions of constant luminal and basolateral flow that was designed to mimic normal intestinal fluid flow, with human umbilical vein endothelial cells (HUVECs) on the basolateral surface and with Wnt3A, R-spondin, and Noggin only on the luminal surface. The jejunal enteroids formed monolayers that remained confluent for 6-8 days, began differentiating at least as early as day 2 post plating, and demonstrated continuing differentiation over the entire time of the study, as shown by quantitative real-time polymerase chain reaction and Western blot analysis. Differentiation impacted villus genes and proteins differently with early expression of regenerating family member 1α (REG1A), early reduction to a low but constant level of expression of Na+-K+-2Cl- cotransporter 1 (NKCC1), and increasing expression of sucrase-isomaltase (SI) and downregulated in adenoma (DRA). These results were consistent with continual differentiation, as was shown to occur in mouse villus enterocytes. Compared with differentiated enteroid monolayers grown on Transwell inserts, enteroids exposed to flow were more differentiated but exhibited increased apoptosis and reduced carbohydrate metabolism, as shown by proteomic analysis. This study of human jejunal enteroids-on-chip suggests that luminal and basolateral flow produce a model of continual differentiation over time and NaCl absorption that mimics normal intestine and should provide new insights in intestinal physiology.NEW & NOTEWORTHY This study showed that polarized enteroid models in which there is no basolateral Wnt3a, are differentiated, regardless of the Wnt3a status of the apical media. The study supports the concept that in the human intestine villus differentiation is not an all or none phenomenon, demonstrating that at different days after lack of basolateral Wnt exposure, clusters of genes and proteins exist geographically along the villus with different domains having different functions.
Collapse
Affiliation(s)
- Jianyi Yin
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laxmi Sunuwar
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Huimin Yu
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C. Conover Talbot
- 3Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tatiana Boronina
- 4Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Cole
- 4Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katia Karalis
- 2Emulate, Inc., Boston, Massachusetts,5Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece,7Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland,7Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Deciphering ion transporters, kinases and PDZ-adaptor molecules that mediate guanylate cyclase C agonist-dependent intestinal fluid loss in vivo. Biochem Pharmacol 2020; 178:114040. [DOI: 10.1016/j.bcp.2020.114040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023]
|
9
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
10
|
Chen T, Lin R, Avula L, Sarker R, Yang J, Cha B, Tse CM, McNamara G, Seidler U, Waldman S, Snook A, Bijvelds MJC, de Jonge HR, Li X, Donowitz M. NHERF3 is necessary for Escherichia coli heat-stable enterotoxin-induced inhibition of NHE3: differences in signaling in mouse small intestine and Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C737-C748. [PMID: 31365292 DOI: 10.1152/ajpcell.00351.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.
Collapse
Affiliation(s)
- Tiane Chen
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Avula
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiquel Sarker
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianbo Yang
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung Ming Tse
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George McNamara
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Scott Waldman
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Snook
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Xuhang Li
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|