1
|
Chen W, Zhang Y, Miao G, Ying Y, Ren Z, Sun X, Cai J, Shen H, Lu H. The augment effects of magnesium hydride on the lipid lowering effect of atorvastatin: an in vivo and in vitro investigation. Med Gas Res 2025; 15:148-155. [PMID: 39436189 PMCID: PMC11515074 DOI: 10.4103/mgr.medgasres-d-23-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 10/23/2024] Open
Abstract
There is strong evidence connecting increased serum lipid levels to cardiovascular disorders, including atherosclerosis. Statins is prescribed as the primary medication to decrease lipid levels. Recent research has demonstrated that hydrogen possesses anti-inflammatory and antioxidant properties by modulating the expression of peroxisome proliferator-activated receptor gamma coactivator-1α, ultimately leading to the preservation of lipid homeostasis. Magnesium hydride (MgH2) is a prolonged stable hydrogen storage medium, which can be utilized to investigate its synergistic lipid-lowering effect with statins and its detailed molecular mechanism, both in vivo and in vitro. To ascertain the safety and efficacy of MgH2, we executed a comprehensive research of its influence on both physiological and pathological metrics. We noted a substantial diminution in lipid levels when MgH2 was integrated with atorvastatin, as attested by oil red staining. Furthermore, we scrutinized the regulatory effect of MgH2 on cytochrome P450 3A, which is a metabolic enzyme of statins, and discovered that it could be reduced by the MgH2. Concluding from our results, we propose that MgH2 inhibits the expression of cytochrome P450 3A in the liver and exerts an auxiliary lipid-lowering effect by increasing the blood concentration of statins. By augmenting our comprehension of MgH2's role in ameliorating lipid metabolism, we aspire to develop more promising therapies in the future.
Collapse
Affiliation(s)
- Wanqiu Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinyin Zhang
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Gen Miao
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yajing Ying
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zifu Ren
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xuejun Sun
- Department of Naval Medicine, Naval Medical University, Shanghai, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Cai
- School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Shen
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Zhou Q, Li H, Zhang Y, Zhao Y, Wang C, Liu C. Hydrogen-Rich Water to Enhance Exercise Performance: A Review of Effects and Mechanisms. Metabolites 2024; 14:537. [PMID: 39452918 PMCID: PMC11509640 DOI: 10.3390/metabo14100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Hydrogen-rich water (HRW) has garnered significant interest within the sports and exercise science community due to its selective antioxidant properties. Despite its potential benefits, comprehensive reviews specifically addressing its effects on athletic performance are limited. This review aims to assess the impact of HRW on sports performance and explore the underlying molecular biological mechanisms, with the goal of elucidating how HRW might enhance athletic performance. Methods: This review synthesizes research on HRW by examining articles published between 1980 and April 2024 in databases such as PubMed, the Cochrane Library, Embase, Scopus, and Web of Science. Results: It highlights HRW's effects on various aspects of athletic performance, including endurance, strength, sprint times, lunge movements, countermovement jump height, and time to exhaustion. While the precise mechanisms by which HRW affects athletic performance remain unclear, this review investigates its general molecular biological mechanisms beyond the specific context of sports. This provides a theoretical foundation for future research aimed at understanding how HRW can enhance athletic performance. HRW targets the harmful reactive oxygen and nitrogen species produced during intense exercise, thereby reducing oxidative stress-a critical factor in muscle fatigue, inflammation, and diminished athletic performance. HRW helps to scavenge hydroxyl radicals and peroxynitrite, regulate antioxidant enzymes, mitigate lipid peroxidation, reduce inflammation, protect against mitochondrial dysfunction, and modulate cellular signaling pathways. Conclusions: In summary, while a few studies have indicated that HRW may not produce significant beneficial effects, the majority of research supports the conclusion that HRW may enhance athletic performance across various sports. The potential mechanisms underlying these benefits are thought to involve HRW's role as a selective antioxidant, its impact on oxidative stress, and its regulation of redox homeostasis. However, the specific molecular biological mechanisms through which HRW improves athletic performance remain to be fully elucidated.
Collapse
Affiliation(s)
- Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| | - Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China;
| | - Yirui Zhao
- China Ice and Snow Sports College, Beijing Sport University, Beijing 100084, China;
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
3
|
Koga M, Sato M, Nakagawa R, Tokuno S, Asai F, Maezawa Y, Nagamine M, Yoshino A, Toda H. Molecular hydrogen supplementation in mice ameliorates lipopolysaccharide-induced loss of interest. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70000. [PMID: 39171191 PMCID: PMC11337204 DOI: 10.1002/pcn5.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Aim The objective of this study was to evaluate the potential of hydrogen in preventing and treating psychiatric symptoms, particularly depressed mood and loss of interest, and to explore its underlying mechanisms. A mouse model exhibiting inflammation-derived depressive symptoms was used for the investigation. Methods Institute of Cancer Research mice were subjected to a 7-day intervention of either 30% hydrogen or 40 g per day of air via jelly intake. On the final day, lipopolysaccharide (LPS) was intraperitoneally administered at 5 mg/kg to induce inflammation-related depressive symptoms. Behavioral and biochemical assessments were conducted 24 h post-LPS administration. Results Following LPS administration, a decrease in spontaneous behavior was observed; however, this effect was mitigated in the group treated with hydrogen. The social interaction test revealed a significant reduction in interactions with unfamiliar mice in the LPS-treated group, whereas the hydrogen-treated group exhibited no such decrease. No significant changes were noted in the forced-swim test for either group. Additionally, the administration of LPS in the hydrogen group did not result in a decrease in zonula occludens-1, a biochemical marker associated with barrier function at the cerebrovascular barrier and expressed in tight junctions. Conclusion Hydrogen administration demonstrated a preventive effect against the LPS-induced loss of interest, suggesting a potential role in symptom prevention. However, it did not exhibit a suppressive effect on depressive symptoms in this particular model. These findings highlight the nuanced impact of hydrogen in the context of inflammation-induced psychiatric symptoms, indicating potential avenues for further exploration and research.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Mayumi Sato
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Ryuichi Nakagawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Shinichi Tokuno
- Graduate School of Health InnovationKanagawa University of Human ServicesKanagawaJapan
- Department of BioengineeringGraduate School of EngineeringTokyoJapan
| | - Fumiho Asai
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Yuri Maezawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Masanori Nagamine
- Division of Behavioral SciencesNational Defense Medical College Research InstituteSaitamaJapan
| | - Aihide Yoshino
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Hiroyuki Toda
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
4
|
Tsou SH, Lin SC, Chen WJ, Hung HC, Liao CC, Kornelius E, Huang CN, Lin CL, Yang YS. Hydrogen-Rich Water (HRW) Reduces Fatty Acid-Induced Lipid Accumulation and Oxidative Stress Damage through Activating AMP-Activated Protein Kinase in HepG2 Cells. Biomedicines 2024; 12:1444. [PMID: 39062020 PMCID: PMC11274623 DOI: 10.3390/biomedicines12071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive fat accumulation in the liver. Intracellular oxidative stress induced by lipid accumulation leads to various hepatocellular injuries including fibrosis. However, no effective method for mitigating MASLD without substantial side effects currently exists. Molecular hydrogen (H2) has garnered attention due to its efficiency in neutralizing harmful reactive oxygen species (ROS) and its ability to penetrate cell membranes. Some clinical evidence suggests that H2 may alleviate fatty liver disease, but the precise molecular mechanisms, particularly the regulation of lipid droplet (LD) metabolism, remain unclear. This study utilized an in vitro model of hepatocyte lipid accumulation induced by free fatty acids (FFAs) to replicate MASLD in HepG2 cells. The results demonstrated a significant increase in LD accumulation due to elevated FFA levels. However, the addition of hydrogen-rich water (HRW) effectively reduced LD accumulation. HRW decreased the diameter of LDs and reduced lipid peroxidation and FFA-induced oxidative stress by activating the AMPK/Nrf2/HO-1 pathway. Overall, our findings suggest that HRW has potential as an adjunctive supplement in managing fatty liver disease by reducing LD accumulation and enhancing antioxidant pathways, presenting a novel strategy for impeding MASLD progression.
Collapse
Affiliation(s)
- Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Sheng-Chieh Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Orthopaedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Jen Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chun-Cheng Liao
- Department of Family Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan;
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Chien-Ning Huang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Li Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (S.-C.L.); (E.K.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| |
Collapse
|
5
|
Mizzoni D, Logozzi M, Di Raimo R, Spada M, Fais S. Hydrogen-Rich Alkaline Water Supplementation Restores a Healthy State and Redox Balance in H 2O 2-Treated Mice. Int J Mol Sci 2024; 25:6736. [PMID: 38928440 PMCID: PMC11203767 DOI: 10.3390/ijms25126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.
Collapse
Affiliation(s)
- Davide Mizzoni
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Rossella Di Raimo
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Massimo Spada
- Department of Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
6
|
Chen KD, Wang KL, Chen C, Zhu YJ, Tang WW, Wang YJ, Chen ZP, He LH, Chen YG, Zhang W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J Gastroenterol 2024; 30:2709-2725. [PMID: 38855154 PMCID: PMC11154682 DOI: 10.3748/wjg.v30.i20.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, β-leucine (β-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
Collapse
Affiliation(s)
- Kai-Di Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Kui-Ling Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi-Jia Zhu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Wen Tang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Ji Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Ze-Peng Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Lin-Hai He
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
7
|
Kuru M, Makav M, Boğa Kuru B, Bektaşoğlu F, Demir MC, Bulut M, Alwazeer D. Hydrogen-rich water supplementation improves metabolic profile during peripartum period in Gurcu goats and enhances the health and survival of kids. Res Vet Sci 2024; 171:105208. [PMID: 38458045 DOI: 10.1016/j.rvsc.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
In this study, the effect of intaking hydrogen-rich water (HRW) on the metabolic profile of Gurcu goats during the peripartum period and the survival/growth performance of kids were evaluated. Twenty-three pregnant goats were divided into two groups 21-23 days before the due date. Group 1 (G1, n = 10) was given HRW from day 21 before delivery until day 21 after delivery. Group 2 (G2, n = 13) served as the control. Blood samples were weekly taken from 21 days before delivery until 21 days after delivery. Hydrogen-rich water increased serum glucose concentration on the delivery day more than in G2 (P = 0.016). Hydrogen-rich water decreased serum total cholesterol (P = 0.02) and creatinine (P = 0.05) concentration at delivery. Group effect and time effect were significant in triglyceride (P < 0.001, P = 0.001, respectively) and albumin (P < 0.001, P = 0.002, respectively) concentration. Aspartate transaminase decreased towards the delivery day in G1 (P < 0.05). Serum non-esterified fatty acids concentration was lower in G1 than in G2, but there was no significant differences (P > 0.05). Beta-hydroxybutyric acid concentration an increased in both groups during the prepartum period, although there was no significance (P > 0.05). Hydrogen-rich water did not affect the birth weight and growth performance of the kids (P > 0.05), but it increased their survival rates and overall health, although there was no significance (P > 0.05). In conclusion, HRW may have an impact on the metabolic profiles during the peripartum period and have a positive effect on lipid profiles. Additionally, intaking HRW to goats during the peripartum period may improve the health and survival of kids and reduce their mortality.
Collapse
Affiliation(s)
- Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye.
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Murat Can Demir
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Menekşe Bulut
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Food Engineering, Iğdır University, Iğdır, Türkiye
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods, Iğdır University, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Türkiye; Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, Iğdır, Türkiye
| |
Collapse
|
8
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
9
|
Luyao X, Wenhai G, Jiaying D, Ya C, Yun C, Wei L, Jiean X, Wen S, Xiaodong Z, Changjun W, Hongzhi Y, Jinwen X, Yaxing Z. Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate immune signaling and pyroptosis. Int Immunopharmacol 2024; 127:111399. [PMID: 38142641 DOI: 10.1016/j.intimp.2023.111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. Hydrogen (H2) is the lightest gas with multiple biological effects such as high selective anti-oxidation, anti-inflammation and anti-apoptosis. However, the dose effects and innate immune mechanisms of intraperitoneal injection of H2 on ALD are limited. Here, we used acute ethanol-induced hepatotoxicity mice models to estimate the actions of intraperitoneal injection of H2 on ALD. The effects of H2 on acute ethanol-induced liver damage were examined by hepatic oil red O staining, quantitative PCR (qPCR) for lipid metabolic genes, hepatic triglyceride (TG) and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Hepatic mitochondrial superoxide (MitoSOX), 3-nitrotyrosine (3-NT), malondialdehyde (MDA), and glutathione (GSH) levels were examined to evaluate oxidative stress. Immunoblot, and immunofluorescence staining were used to further confirm the innate immune molecular targets of H2. Our results showed that intraperitoneal injection of H2 improved acute ethanol-induced liver injury in mice in a dose dependent manner, as indicated by decreasing serum ALT and AST levels, hepatic TG levels, and increasing lipid export genes (Mttp and Apob) mRNA levels and reducing fatty acid uptake gene (CD36) mRNA levels. Mechanistically, H2 inhibited hepatic oxidative stress as indicated by reducing reactive oxygen species (ROS), 3-NT, and MDA levels in the liver, while increasing hepatic GSH levels; inhibited the overactived TLR4/9-NF-κB-TNF-α/IL-1β/IL-18 innate immune signaling; suppressed the canonical Caspase-1-GSDMD pyroptosis signaling, and the non-canonical pyroptosis signaling, such as Caspase-11-GSDMD, Caspase-8-GSDMD and Caspase-3-GSDME signaling. Therefore, our study highlights that intraperitoneal injection of H2 may represent a novel therapeutic and safe strategy for ALD via modulating oxidative stress, innate immunity and pyroptosis.
Collapse
Affiliation(s)
- Xu Luyao
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guo Wenhai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute), Guangzhou, Guangdong 510080, China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Dai Jiaying
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cheng Ya
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chen Yun
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liu Wei
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xu Jiean
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Su Wen
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhang Xiaodong
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wang Changjun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute), Guangzhou, Guangdong 510080, China
| | - Yang Hongzhi
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Xu Jinwen
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhang Yaxing
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
10
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Okuda A, Kintaka Y, Tanabe K, Nakayama T, Shimouchi A, Oku T, Nakamura S. Fructooligosaccharide feeding during gestation to pregnant mice provided excessive folic acid decreases maternal and female fetal oxidative stress by increasing intestinal microbe-derived hydrogen gas. Nutr Res 2023; 120:72-87. [PMID: 37948786 DOI: 10.1016/j.nutres.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Fructooligosaccharide (FOS) is fermented by intestinal microbes to generate intestinal microbe-derived hydrogen gas (IMDH). Oxidative stress increases during gestation, whereas hydrogen gas has antioxidant effects with therapeutic benefits. We have previously reported that the offspring from a pregnant, excessive folic acid mouse model (PEFAM) had abnormal glucose metabolism after growth. We hypothesized that IMDH by FOS feeding during gestation in PEFAM would suppress maternal and fetal oxidative stress. C57BL/6J mice on day 1 of gestation were divided into 3 groups and dissected at gestational day 18. The control (CONT) diet was AIN-93G containing folic acid 2 mg/kg diet; PEFAM was fed with an excessive folic acid (EFA) diet containing folic acid 40 mg/kg diet, and the EFA-FOS diet was replaced half of the sucrose in the EFA diet. Hydrogen gas concentrations in maternal livers and whole fetuses in EFA-FOS were significantly higher than those in CONT and EFA, respectively (P < .05). Maternal and fetal 8-hydroxy-2'-deoxyguanosine in EFA-FOS were not significantly different from those in the CONT group, whereas those in the EFA group were significantly increased compared with CONT and EFA-FOS (P < .05). In EFA-FOS, expression of protein and mRNA of superoxide dismutase and heme oxygenase 1 in mothers and superoxide dismutase in fetuses were not significantly different from those in CONT, whereas those in EFA were significantly increased (P < .05). The protein expression of Nrf2 in mothers and fetuses were not significantly different between EFA-FOS and CONT. Therefore, FOS feeding to PEFAM during gestation decreases maternal and fetal oxidative stress through IMDH.
Collapse
Affiliation(s)
- Asuka Okuda
- Graduate School of Human Life Sciences, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan.
| | - Yuri Kintaka
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Faculty of School of Health Sciences, Sapporo University of Health Sciences, 2-1-15 Nakanumanishi 4-jo, Higashi-ku, Sapporo, Hokkaido 007-0894, Japan
| | - Kenichi Tanabe
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Department of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akito Shimouchi
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyuki Oku
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| | - Sadako Nakamura
- Graduate School of Human Life Sciences, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
12
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
13
|
Ageta K, Hirayama T, Aokage T, Seya M, Meng Y, Nojima T, Yamamoto H, Obara T, Nakao A, Yumoto T, Tsukahara K, Naito H. Hydrogen inhalation attenuates lung contusion after blunt chest trauma in mice. Surgery 2023; 174:343-349. [PMID: 37210236 PMCID: PMC10193194 DOI: 10.1016/j.surg.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 04/09/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated. Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would reduce pulmonary inflammation and acute lung injury associated with lung contusion. METHODS Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation, lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung contusion was induced using a highly reproducible and standardized apparatus. Immediately after induction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air. Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis were performed 6 hours after contusion. RESULTS Histopathological examination of the lung tissue after contusion revealed perivascular/intra-alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar edema. These histological changes and the extent of lung contusion, as determined by computed tomography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation. CONCLUSION Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for treating lung contusion.
Collapse
Affiliation(s)
- Kohei Ageta
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takahiro Hirayama
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mizuki Seya
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Ying Meng
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hirotsugu Yamamoto
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takafumi Obara
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kohei Tsukahara
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences.
| |
Collapse
|
14
|
Ma K, Hu X, Nambu K, Ueda D, Ichimaru N, Fujino M, Li XK. Coral calcium carried hydrogen ameliorates the severity of non-alcoholic steatohepatitis induced by a choline deficient high carbohydrate fat-free diet in elderly rats. Sci Rep 2023; 13:11646. [PMID: 37468618 DOI: 10.1038/s41598-023-38856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Hydrogen has been reported to act as an antioxidant, anti-apoptosis and anti-inflammatory agent. Coral calcium carried hydrogen (G2-SUISO) is a safer and more convenient form of hydrogen agent than others. The mechanism underlying the hepatoprotective effects of G2-SUISO using an elderly non-alcoholic steatohepatitis (NASH) rat model was investigated. Two days after fasting, six-month-old elderly male F344/NSlc rats were given a choline deficient high carbohydrate fat-free (CDHCFF) diet from day 0 to day 3 as CDHCFF control group, and then switched to a normal diet from days 4 to 7 with or without 300 mg/kg G2-SUISO. Rats in each group were finally being sacrificed on day 3 or day 7. In the CDHCFF diet group, G2-SUISO decreased the liver weight-to-body weight ratio, the serum AST, ALT, total cholesterol levels, inflammatory infiltration, pro-inflammatory cytokine expression and lipid droplets with inhibiting lipogenic pathways by reducing sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase and fatty acid synthase gene expression compared with the CDHCFF diet alone. G2-SUISO had beneficial effects of anti-apoptosis as well the down-regulation of pro-apoptotic molecules including NF-κB, caspase-3, caspase-9 and Bax. These findings suggest that G2-SUISO treatment exerts a significant hepatoprotective effect against steatosis, inflammation and apoptosis in elderly NASH rats.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
15
|
Liu H, Kang X, Ren P, Kuang X, Yang X, Yang H, Shen X, Yan H, Kang Y, Zhang F, Wang X, Guo L, Fan W. Hydrogen gas ameliorates acute alcoholic liver injury via anti-inflammatory and antioxidant effects and regulation of intestinal microbiota. Int Immunopharmacol 2023; 120:110252. [PMID: 37196556 DOI: 10.1016/j.intimp.2023.110252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Alcoholic liver disease (ALD) is a globally prevalent liver-related disorder characterized by severe oxidative stress and inflammatory liver damage, for which no effective treatment is currently available. Hydrogen gas (H2) has been demonstrated to be an efficient antioxidant in various diseases in animals as well as humans. However, the protective effects of H2 on ALD and its underlying mechanisms remain to be elucidated. The present study demonstrated that H2 inhalation ameliorated liver injury, and attenuated liver oxidative stress, inflammation, and steatosis in an ALD mouse model. Moreover, H2 inhalation improved gut microbiota, including increasing the abundance of Lachnospiraceae and Clostridia, and decreasing the abundance of Prevotellaceae and Muribaculaceae, and also improved intestinal barrier integrity. Mechanistically, H2 inhalation blocked activation of the LPS/TLR4/NF-κB pathway in liver. Notably, it was further demonstrated that the reshaped gut microbiota may accelerate alcohol metabolism, regulate lipid homeostasis and maintain immune balance by bacterial functional potential prediction (PICRUSt). Fecal microbiota transplantation from mice that had undergone H2 inhalation significantly alleviated acute alcoholic liver injury. In summary, the present study showed that H2 inhalation alleviated liver injury by reducing oxidative stress and inflammation, while also improving intestinal flora and enhancing the intestinal barrier. H2 inhalation may serve as an effective intervention for preventing and treating ALD in a clinical context.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Huan Yan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Fan Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
16
|
Xie F, Song Y, Yi Y, Jiang X, Ma S, Ma C, Li J, Zhanghuang Z, Liu M, Zhao P, Ma X. Therapeutic Potential of Molecular Hydrogen in Metabolic Diseases from Bench to Bedside. Pharmaceuticals (Basel) 2023; 16:ph16040541. [PMID: 37111299 PMCID: PMC10141176 DOI: 10.3390/ph16040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress and chronic inflammation have been implicated in the pathophysiology of metabolic diseases, including diabetes mellitus (DM), metabolic syndrome (MS), fatty liver (FL), atherosclerosis (AS), and obesity. Molecular hydrogen (H2) has long been considered a physiologically inert gas. In the last two decades, accumulating evidence from pre-clinical and clinical studies has indicated that H2 may act as an antioxidant to exert therapeutic and preventive effects on various disorders, including metabolic diseases. However, the mechanisms underlying the action of H2 remain unclear. The purpose of this review was to (1) provide an overview of the current research on the potential effects of H2 on metabolic diseases; (2) discuss the possible mechanisms underlying these effects, including the canonical anti-oxidative, anti-inflammatory, and anti-apoptotic effects, as well as suppression of ER stress, activation of autophagy, improvement of mitochondrial function, regulation of gut microbiota, and other possible mechanisms. The potential target molecules of H2 will also be discussed. With more high-quality clinical trials and in-depth mechanism research, it is believed that H2 will eventually be applied to clinical practice in the future, to benefit more patients with metabolic disease.
Collapse
Affiliation(s)
- Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yifei Song
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yang Yi
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xue Jiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Chen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Junyu Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ziyi Zhanghuang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| |
Collapse
|
17
|
Wu HT, Chao TH, Ou HY, Tsai LM. Coral Hydrate, a Novel Antioxidant, Improves Alcohol Intoxication in Mice. Antioxidants (Basel) 2022; 11:antiox11071290. [PMID: 35883781 PMCID: PMC9311879 DOI: 10.3390/antiox11071290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-drinking culture may cause individuals to periodically experience unpleasant hangovers. In addition, ethanol catabolism stimulates the production of free radicals that may cause liver injury and further lead to the development of chronic alcoholic fatty liver disease. Although a number of studies have suggested that hydrogenated water may be consumed to act as free radical scavenger, its instability limits its application. In this study, we used coral hydrate (i.e., hydrogenated coral materials) as a more stable hydrogen source and evaluated its effects in a murine model of alcohol intoxication. In solution, coral hydrate exhibited much more stable redox potential than did hydrogenated water. Furthermore, administration of coral hydrate by oral gavage significantly prolonged the time to fall asleep and decreased the total sleep time in mice that received intraperitoneal injection of ethanol. The mice receiving coral hydrate also had lower plasma ethanol and acetaldehyde levels than controls. In line with this observation, hepatic expression of alcohol dehydrogenase, acetaldehyde dehydrogenase, catalase and glutathione peroxidase were all significantly increased by the treatment. Meanwhile, alcohol-induced upregulation of pro-inflammatory factors was attenuated by the administration of coral hydrate. Taken together, our data suggest that coral hydrate might be an effective novel treatment for alcohol intoxication.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
| | - Ting-Hsing Chao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, Tainan Municipal Hospital (Managed by Show-Chwan Medical Care Corporation), Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2609926; Fax: +886-6-2606351
| |
Collapse
|
18
|
Free fatty acid-induced miR-181a-5p stimulates apoptosis by targeting XIAP and Bcl2 in hepatic cells. Life Sci 2022; 301:120625. [PMID: 35551953 DOI: 10.1016/j.lfs.2022.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
AIMS Non-alcoholic fatty liver disease is one of the major health concerns in the World. The dietary free fatty acids (FFAs) affect the metabolic status of the hepatocytes by modulating cellular pathways. In this study, we showed that free fatty acids stimulate apoptosis by upregulating miR-181a-5p expression, which in turn targets XIAP and Bcl2. METHODS Huh7 cells were incubated with FFAs for 72 h and the expression of XIAP, Bcl2, bax, pAkt, Akt, PTEN and β-actin were determined by Western blots, and miR-181a-5p expression was determined using real-time RT-PCR. The Huh7 cells were transfected with either miR-181a-5p pre-miRs or anti-miR-181a-5p and the regulation of apoptosis and proliferation was studied. Three groups of C57BL/6 mice (n = 6 per group) were fed with standard diet, CSAA or CDAA diet for 6, 18, 32 and 54 weeks. Total protein and RNA were isolated from the liver tissues and used for Western blots and real-time RT-PCR respectively. KEY FINDINGS FFAs inhibited Akt phosphorylation, expression of XIAP and Bcl2, while upregulating the expression of PTEN, bax, and miR-181a-5p in Huh7 cells. Similar results were observed when the Huh7 cells were transfected with miR-181a-5p premiRs, while these changes were reversed in anti-miR-181a-5p-transfected, FFA-treated Huh7 cells. The CDAA-fed mice showed a significant inhibition of Akt phosphorylation, XIAP and Bcl2, whereas PTEN and bax expression were upregulated. The expression of miR-181a-5p was also significantly higher in CDAA-fed mice. SIGNIFICANCE These findings showed that free fatty acids induced apoptosis via upregulating miR-181a-5p in hepatic cells.
Collapse
|
19
|
Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2249749. [PMID: 35340218 PMCID: PMC8956398 DOI: 10.1155/2022/2249749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Ageing is a physiological process of progressive decline in the organism function over time. It affects every organ in the body and is a significant risk for chronic diseases. Molecular hydrogen has therapeutic and preventive effects on various organs. It has antioxidative properties as it directly neutralizes hydroxyl radicals and reduces peroxynitrite level. It also activates Nrf2 and HO-1, which regulate many antioxidant enzymes and proteasomes. Through its antioxidative effect, hydrogen maintains genomic stability, mitigates cellular senescence, and takes part in histone modification, telomere maintenance, and proteostasis. In addition, hydrogen may prevent inflammation and regulate the nutrient-sensing mTOR system, autophagy, apoptosis, and mitochondria, which are all factors related to ageing. Hydrogen can also be used for prevention and treatment of various ageing-related diseases, such as neurodegenerative disorders, cardiovascular disease, pulmonary disease, diabetes, and cancer. This paper reviews the basic research and recent application of hydrogen in order to support hydrogen use in medicine for ageing prevention and ageing-related disease therapy.
Collapse
|
20
|
Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int J Mol Sci 2021; 22:ijms22094566. [PMID: 33925430 PMCID: PMC8123813 DOI: 10.3390/ijms22094566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although ionizing radiation (radiation) is commonly used for medical diagnosis and cancer treatment, radiation-induced damages cannot be avoided. Such damages can be classified into direct and indirect damages, caused by the direct absorption of radiation energy into DNA and by free radicals, such as hydroxyl radicals (•OH), generated in the process of water radiolysis. More specifically, radiation damage concerns not only direct damages to DNA, but also secondary damages to non-DNA targets, because low-dose radiation damage is mainly caused by these indirect effects. Molecular hydrogen (H2) has the potential to be a radioprotective agent because it can selectively scavenge •OH, a reactive oxygen species with strong oxidizing power. Animal experiments and clinical trials have reported that H2 exhibits a highly safe radioprotective effect. This paper reviews previously reported radioprotective effects of H2 and discusses the mechanisms of H2, not only as an antioxidant, but also in intracellular responses including anti-inflammation, anti-apoptosis, and the regulation of gene expression. In doing so, we demonstrate the prospects of H2 as a novel and clinically applicable radioprotective agent.
Collapse
|
21
|
Potential Therapeutic Applications of Hydrogen in Chronic Inflammatory Diseases: Possible Inhibiting Role on Mitochondrial Stress. Int J Mol Sci 2021; 22:ijms22052549. [PMID: 33806292 PMCID: PMC7961517 DOI: 10.3390/ijms22052549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are the largest source of reactive oxygen species (ROS) and are intracellular organelles that produce large amounts of the most potent hydroxyl radical (·OH). Molecular hydrogen (H2) can selectively eliminate ·OH generated inside of the mitochondria. Inflammation is induced by the release of proinflammatory cytokines produced by macrophages and neutrophils. However, an uncontrolled or exaggerated response often occurs, resulting in severe inflammation that can lead to acute or chronic inflammatory diseases. Recent studies have reported that ROS activate NLRP3 inflammasomes, and that this stimulation triggers the production of proinflammatory cytokines. It has been shown in literature that H2 can be based on the mechanisms that inhibit mitochondrial ROS. However, the ability for H2 to inhibit NLRP3 inflammasome activation via mitochondrial oxidation is poorly understood. In this review, we hypothesize a possible mechanism by which H2 inhibits mitochondrial oxidation. Medical applications of H2 may solve the problem of many chronic inflammation-based diseases, including coronavirus disease 2019 (COVID-19).
Collapse
|