1
|
Yildiz B, Demirel R, Staudacher JJ, Beseren H, Yildiz G, Akpinar AE, Park SH, Ozden O. SIRT2 deacetylates and decreases the expression of FOXM1 in colon cancer. J Biochem Mol Toxicol 2024; 38:e70018. [PMID: 39425454 DOI: 10.1002/jbt.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
New FOXM1-specific inhibitors with the potential to be used for therapeutic purposes are under extensive research. We hypothesized that deacetylation of FOXM1 would decrease protein expression, thus providing novel therapeutic management of colon cancers. Immunostaining was used to determine FOXM1 and SIRT2 expressions in human colon cancer tissue microarrays (n = 90) from Stage I to Stage IV. SIRT2-FOXM1 interaction was evaluated in colon cancer cells using immunoprecipitation. Deacetylation of FOXM1 via SIRT2 was determined using in vitro deacetylation assays. FOXM1 could be hyper-acetylated when p300 and pCAF histone acetyltransferases were administered alongside deacetylase inhibitors. We detected that SIRT2 and FOXM1 physically interacted, and SIRT2 deacetylated FOXM1 in vitro. SIRT2 overexpression led to a significant decrease while knockdown of SIRT2 increased the FOXM1 expression in HCT116 human colon carcinoma cells. In the analysis of 90 human colorectal cancer samples, high SIRT2 expression was observed in about 49% of colorectal cancer, intermediate in 29%, and low or no staining in 22%. Strong SIRT2 expression was found to be negatively associated with the FOXM1 staining in our clinical cohort. This study reveals a molecular interaction and association between SIRT2 and FOXM1 expression in colon cancer cell lines and human colon cancer samples, and suggests that targeting SIRT2 activity using small molecule modulators may be a promising therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Baris Yildiz
- Department of Physiology, Institute of Health Sciences, Kafkas University, Kars, Türkiye
| | - Ramazan Demirel
- Department of Bioengineering, Institute of Natural and Applied Sciences, Kafkas University, Kars, Türkiye
| | - Jonas J Staudacher
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Hatice Beseren
- Department of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, Kars, Türkiye
| | - Gulden Yildiz
- Department of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, Kars, Türkiye
| | - Ali Emre Akpinar
- Department of Molecular Biology and Genetic, Faculty of Science, Cumhuriyet University, Sivas, Türkiye
| | - Seong-Hoon Park
- Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Türkiye
| |
Collapse
|
2
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Ansari MJ, Bokov D, Markov A, Jalil AT, Shalaby MN, Suksatan W, Chupradit S, AL-Ghamdi HS, Shomali N, Zamani A, Mohammadi A, Dadashpour M. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal 2022; 20:49. [PMID: 35392964 PMCID: PMC8991477 DOI: 10.1186/s12964-022-00838-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal vasculature is one of the most conspicuous traits of tumor tissue, largely contributing to tumor immune evasion. The deregulation mainly arises from the potentiated pro-angiogenic factors secretion and can also target immune cells' biological events, such as migration and activation. Owing to this fact, angiogenesis blockade therapy was established to fight cancer by eliminating the nutrient and oxygen supply to the malignant cells by impairing the vascular network. Given the dominant role of vascular-endothelium growth factor (VEGF) in the angiogenesis process, the well-known anti-angiogenic agents mainly depend on the targeting of its actions. However, cancer cells mainly show resistance to anti-angiogenic agents by several mechanisms, and also potentiated local invasiveness and also distant metastasis have been observed following their administration. Herein, we will focus on clinical developments of angiogenesis blockade therapy, more particular, in combination with other conventional treatments, such as immunotherapy, chemoradiotherapy, targeted therapy, and also cancer vaccines. Video abstract.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240 Russian Federation
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation
- Industrial University, Tyumen, Russian Federation
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Hasan S. AL-Ghamdi
- Internal Medicine Department, Division of Dermatology, Albaha University, Al Bahah, Kingdom of Saudi Arabia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Subramaniam D, Ponnurangam S, Ramalingam S, Kwatra D, Dandawate P, Weir SJ, Umar S, Jensen RA, Anant S. Honokiol Affects Stem Cell Viability by Suppressing Oncogenic YAP1 Function to Inhibit Colon Tumorigenesis. Cells 2021; 10:1607. [PMID: 34206989 PMCID: PMC8303768 DOI: 10.3390/cells10071607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
Honokiol (HNK) is a biphenolic compound that has been used in traditional medicine for treating various ailments, including cancers. In this study, we determined the effect of HNK on colon cancer cells in culture and in a colitis-associated cancer model. HNK treatment inhibited proliferation and colony formation while inducing apoptosis. In addition, HNK suppressed colonosphere formation. Molecular docking suggests that HNK interacts with reserve stem cell marker protein DCLK1, with a binding energy of -7.0 Kcal/mol. In vitro kinase assays demonstrated that HNK suppressed the DCLK1 kinase activity. HNK also suppressed the expression of additional cancer stem cell marker proteins LGR5 and CD44. The Hippo signaling pathway is active in intestinal stem cells. In the canonical pathway, YAP1 is phosphorylated at Ser127 by upstream Mst1/2 and Lats1/2. This results in the sequestration of YAP1 in the cytoplasm, thereby not allowing YAP1 to translocate to the nucleus and interact with TEAD1-4 transcription factors to induce gene expression. However, HNK suppressed Ser127 phosphorylation in YAP1, but the protein remains sequestered in the cytoplasm. We further determined that this occurs by YAP1 interacting with PUMA. To determine if this also occurs in vivo, we performed studies in an AOM/DSS induced colitis-associated cancer model. HNK administered by oral gavage at a dose of 5mg/kg bw for 24 weeks demonstrated a significant reduction in the expression of YAP1 and TEAD1 and in the stem marker proteins. Together, these data suggest that HNK prevents colon tumorigenesis in part by inducing PUMA-YAP1 interaction and cytoplasmic sequestration, thereby suppressing the oncogenic YAP1 activity.
Collapse
Affiliation(s)
| | - Sivapriya Ponnurangam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Satish Ramalingam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Deep Kwatra
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020; 21:E401. [PMID: 31936346 PMCID: PMC7013436 DOI: 10.3390/ijms21020401] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Cezara Vlad
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - Luminita-Claudia Miclea
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maria-Magdalena Mocanu
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| |
Collapse
|
6
|
Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers (Basel) 2019; 12:E48. [PMID: 31877856 PMCID: PMC7016989 DOI: 10.3390/cancers12010048] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is characterised by uncontrolled cell division and abnormal cell growth, which is largely caused by a variety of gene mutations. There are continuous efforts being made to develop effective cancer treatments as resistance to current anticancer drugs has been on the rise. Natural products represent a promising source in the search for anticancer treatments as they possess unique chemical structures and combinations of compounds that may be effective against cancer with a minimal toxicity profile or few side effects compared to standard anticancer therapy. Extensive research on natural products has shown that bioactive natural compounds target multiple cellular processes and pathways involved in cancer progression. In this review, we discuss honokiol, a plant bioactive compound that originates mainly from the Magnolia species. Various studies have proven that honokiol exerts broad-range anticancer activity in vitro and in vivo by regulating numerous signalling pathways. These include induction of G0/G1 and G2/M cell cycle arrest (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins), epithelial-mesenchymal transition inhibition via the downregulation of mesenchymal markers and upregulation of epithelial markers. Additionally, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases (activation of 5' AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling), inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)). Combining these studies provides significant insights for the potential of honokiol to be a promising candidate natural compound for chemoprevention and treatment.
Collapse
Affiliation(s)
| | | | - Yin Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| |
Collapse
|
7
|
Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation. Biomolecules 2019; 9:biom9120838. [PMID: 31817770 PMCID: PMC6995549 DOI: 10.3390/biom9120838] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Honokiol is a natural biphenolic compound extracted from traditional Chinese medicine Magnolia species, which have been known to display various biological effects including anti-cancer, anti-proliferative, anti-angiogenic, and anti-metastatic activities in cancer cells. Here, we found that honokiol sensitizes cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through downregulation of anti-apoptotic proteins survivin and c-FLIP. Ectopic expression of survivin and c-FLIP markedly abolished honokiol and TRAIL-induced apoptosis. Mechanistically, honokiol induced protein degradation of c-FLIP and survivin through STAMBPL1, a deubiquitinase. STAMBPL1 interacted with survivin and c-FLIP, resulted in reduction of ubiquitination. Knockdown of STAMBPL1 reduced survivin and c-FLIP protein levels, while overexpression of STAMBPL1 inhibited honokinol-induced survivin and c-FLIP degradation. Our findings provided that honokiol could overcome TRAIL resistance through survivin and c-FLIP degradation induced by inhibition of STAMBPL1 expression.
Collapse
|
8
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
9
|
Anuja K, Chowdhury AR, Saha A, Roy S, Rath AK, Kar M, Banerjee B. Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int J Radiat Biol 2019; 95:667-679. [PMID: 30753097 DOI: 10.1080/09553002.2019.1580401] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Radiation therapy is an integral part of current treatment modality for colorectal cancer. Recent studies have revealed the presence of cancer stem-like cells (CSCs) population, in different tumors are responsible for therapeutic resistance and disease relapse, including colorectal cancer with poorer survival rate. Hence, characterization of the effect of Ionizing Radiation (IR) in colorectal cancer may serve to explain possible mechanisms. Material and methods: Parental HCT116 and HCT-15 cells and derived colonospheres were irradiated and dose was optimized based on cell survival assay and cell cycle analysis. DNA damage response (DDR) was elucidated by γH2AX foci formation, COMET assay, and ATM, p-ATM, ERCC1 expression post-treatment. The expression level of developmental marker (β-catenin), CSC markers (CD44, KLF4) and telomeric components (TRF2, RAP1, hTERT) were evaluated. Results: We observed cell survival was more in colonospheres post-irradiation and also exhibited decreased γH2AX foci, olive tail moment, increased ERCC1, and p-ATM expression than its parental counterpart which corresponds to efficient DDR. Differential expression of developmental marker, CSC markers, and telomeric components were observed after irradiation. Conclusion: This study highlighted the presence of CSC phenotype in colonospheres having increased DNA repair capacity. Differential expression of developmental marker, CSC markers and telomeric components between parental and colonospheres may contribute in radio-resistance property of CSCs.
Collapse
Affiliation(s)
- Kumari Anuja
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Amit Roy Chowdhury
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Arka Saha
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Souvick Roy
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| | | | - Madhabananda Kar
- c Department of Surgical Oncology , All India Institute of Medical Sciences (AIIMS) , Bhubaneswar , India
| | - Birendranath Banerjee
- a Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University , Bhubaneswar , India
| |
Collapse
|
10
|
Abbasian M, Baharlouei A, Arab-Bafrani Z, Lightfoot DA. Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells. J Cancer Res Clin Oncol 2018; 145:97-107. [DOI: 10.1007/s00432-018-2769-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
|
11
|
Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med 2018; 22:1894-1908. [PMID: 29363886 PMCID: PMC5824386 DOI: 10.1111/jcmm.13474] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Honokiol, an active natural product derived from Magnolia officinalis, exerted anticancer effects through a variety of mechanisms on multiple types of cancers. In this study, the molecular mechanisms of honokiol in suppressing the human oral squamous cell carcinoma (OSCC) cells were evaluated. Treatment of two OSCC cell lines with honokiol resulted in reducing the cell proliferation and arresting the cell cycle at G1 stage which was correlated with the down‐regulation of Cdk2 and Cdk4 and the up‐regulation of cell cycle suppressors, p21 and p27. In addition, the caspase‐dependent programmed cell death was substantially detected, and the autophagy was induced as the autophagosome formation and autophagic flux proceeded. Modulation of autophagy by autophagic inducer, rapamycin or inhibitors, 3‐MA or bafilomycin, potentiated the honokiol‐mediated anti‐OSCC effects where honokiol exerted multiple actions in suppression of MAPK pathway and regulation of Akt/mTOR or AMPK pathways. As compared to clinical therapeutic agent, 5‐FU, honokiol exhibited more potent activity against OSCC cells and synergistically enhanced the cytotoxic effect of 5‐FU. Furthermore, orally administrated honokiol exerted effective antitumour activity in vivo in OSCC‐xenografted mice. Thus, this study revealed that honokiol could be a promising candidate in preventing human OSCCs.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Development Center for Biotechnology, Institute of Biologics, New Taipei City, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology and Blood Bank, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| |
Collapse
|
12
|
Honokiol targets mitochondria to halt cancer progression and metastasis. Mol Nutr Food Res 2016; 60:1383-95. [DOI: 10.1002/mnfr.201501007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
|
13
|
Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, Jensen RA, Anant S, Mammen JMV. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog 2014; 54:1710-21. [PMID: 25491779 DOI: 10.1002/mc.22242] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 09/04/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Departments of Surgery, The University of Kansas Medical Center, Kansas City, Kansas
| | - Anand Venugopal
- Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Prabhu Ramamoorthy
- Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - David Standing
- Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dharmalingam Subramaniam
- Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Shahid Umar
- Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Roy A Jensen
- Departments of Pathology, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Shrikant Anant
- Departments of Surgery, The University of Kansas Medical Center, Kansas City, Kansas.,Departments of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Joshua M V Mammen
- Departments of Surgery, The University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
14
|
Kaushik G, Kwatra D, Subramaniam D, Jensen RA, Anant S, Mammen JM. Honokiol affects melanoma cell growth by targeting the AMP-activated protein kinase signaling pathway. Am J Surg 2014; 208:995-1002; discussion 1001-2. [PMID: 25450590 PMCID: PMC4433539 DOI: 10.1016/j.amjsurg.2014.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is an aggressive form of skin cancer with limited effective therapeutic options. Melanoma research concentrates on maximizing the effect on cancer cells with minimal toxicity to normal cells. AMP-activated protein kinase (AMPK) is an important regulator of cellular energy homeostasis and has been shown to control tumor progression regulating the cell cycle, protein synthesis, and cell growth and/or survival. Honokiol (HNK) is a biphenolic compound derived from Magnolia officinalis, a plant that has been used in traditional Chinese and Japanese medicine for the treatment of various pathological conditions. Recent studies have shown that HNK has antitumor activity with relatively low toxicity. In this study, we demonstrated that the growth inhibitory effects of HNK on melanoma and melanoma cancer stem cells were mediated through the activation of AMPK and hence AMPK signaling in melanoma cells. METHODS We determined the effects of HNK treatment on various melanoma cell lines. HNK-induced cell growth inhibitory effects were determined using hexosaminidase assay. Protein expression studies were done by immunoblotting. Primary spheroid assay was used to assess stemness by growing single suspension cells in ultralow attachment plates. RESULTS HNK is highly effective in inhibiting melanoma cells by attenuating protein kinase B/mammalian target of rapamycin and AMPK signaling. HNK showed significant inhibition of the spheroid-forming capacity of melanoma cells and, hence, stemness. HNK significantly decreased the number and size of melanospheres in a dose-dependent manner. Western blot analyses showed enhanced phosphorylation of AMPK in melanoma cells. Furthermore, HNK decreased the cellular adenosine triphosphate pool in a dose-dependent manner with maximum effects observed at 48 hours. CONCLUSIONS The results suggest that HNK can target melanoma cells and mark them for cell death through AMPK signaling. Further studies are warranted for developing HNK as an effective chemopreventive/therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Surgery, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Deep Kwatra
- Department of Molecular and Integrative Physiology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Roy A. Jensen
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
- Department of Molecular and Integrative Physiology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | - Joshua M.V. Mammen
- Department of Surgery, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
- Department of Molecular and Integrative Physiology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| |
Collapse
|
15
|
Saeed M, Kuete V, Kadioglu O, Börtzler J, Khalid H, Greten HJ, Efferth T. Cytotoxicity of the bisphenolic honokiol from Magnolia officinalis against multiple drug-resistant tumor cells as determined by pharmacogenomics and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1525-1533. [PMID: 25442261 DOI: 10.1016/j.phymed.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/15/2014] [Accepted: 07/21/2014] [Indexed: 06/04/2023]
Abstract
A main problem in oncology is the development of drug-resistance. Some plant-derived lignans are established in cancer therapy, e.g. the semisynthetic epipodophyllotoxins etoposide and teniposide. Their activity is, unfortunately, hampered by the ATP-binding cassette (ABC) efflux transporter, P-glycoprotein. Here, we investigated the bisphenolic honokiol derived from Magnolia officinalis. P-glycoprotein-overexpressing CEM/ADR5000 cells were not cross-resistant to honokiol, but MDA-MB-231 BRCP cells transfected with another ABC-transporter, BCRP, revealed 3-fold resistance. Further drug resistance mechanisms analyzed study was the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). HCT116 p53(-/-) did not reveal resistance to honokiol, and EGFR-transfected U87.MG EGFR cells were collateral sensitive compared to wild-type cells (degree of resistance: 0.34). To gain insight into possible modes of collateral sensitivity, we performed in silico molecular docking studies of honokiol to EGFR and EGFR-related downstream signal proteins. Honokiol bound with comparable binding energies to EGFR (-7.30 ± 0.01 kcal/mol) as the control drugs erlotinib (-7.50 ± 0.30 kcal/mol) and gefitinib (-8.30 ± 0.10 kcal/mol). Similar binding affinities of AKT, MEK1, MEK2, STAT3 and mTOR were calculated for honokiol (range from -9.0 ± 0.01 to 7.40 ± 0.01 kcal/mol) compared to corresponding control inhibitor compounds for these signal transducers. This indicates that collateral sensitivity of EGFR-transfectant cells towards honokiol may be due to binding to EGFR and downstream signal transducers. COMPARE and hierarchical cluster analyses of microarray-based transcriptomic mRNA expression data of 59 tumor cell lines revealed a specific gene expression profile predicting sensitivity or resistance towards honokiol.
Collapse
Affiliation(s)
- Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jonas Börtzler
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Hassan Khalid
- Medicinal and Aromatic Plants Research Institute (MAPRI), National Centre for Research, Khartoum, Sudan
| | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
16
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
17
|
Batinic-Haberle I, Tovmasyan A, Roberts ERH, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014; 20:2372-415. [PMID: 23875805 PMCID: PMC4005498 DOI: 10.1089/ars.2012.5147] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
Abstract
SIGNIFICANCE Superoxide dismutase (SOD) enzymes are indispensable and ubiquitous antioxidant defenses maintaining the steady-state levels of O2·(-); no wonder, thus, that their mimics are remarkably efficacious in essentially any animal model of oxidative stress injuries thus far explored. RECENT ADVANCES Structure-activity relationship (half-wave reduction potential [E1/2] versus log kcat), originally reported for Mn porphyrins (MnPs), is valid for any other class of SOD mimics, as it is dominated by the superoxide reduction and oxidation potential. The biocompatible E1/2 of ∼+300 mV versus normal hydrogen electrode (NHE) allows powerful SOD mimics as mild oxidants and antioxidants (alike O2·(-)) to readily traffic electrons among reactive species and signaling proteins, serving as fine mediators of redox-based signaling pathways. Based on similar thermodynamics, both SOD enzymes and their mimics undergo similar reactions, however, due to vastly different sterics, with different rate constants. CRITICAL ISSUES Although log kcat(O2·(-)) is a good measure of therapeutic potential of SOD mimics, discussions of their in vivo mechanisms of actions remain mostly of speculative character. Most recently, the therapeutic and mechanistic relevance of oxidation of ascorbate and glutathionylation and oxidation of protein thiols by MnP-based SOD mimics and subsequent inactivation of nuclear factor κB has been substantiated in rescuing normal and killing cancer cells. Interaction of MnPs with thiols seems to be, at least in part, involved in up-regulation of endogenous antioxidative defenses, leading to the healing of diseased cells. FUTURE DIRECTIONS Mechanistic explorations of single and combined therapeutic strategies, along with studies of bioavailability and translational aspects, will comprise future work in optimizing redox-active drugs.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Emily R. H. Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- King Abdulaziz University, Jeddah, Saudi Arabia Kingdom
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical School, Durham, North Carolina
| |
Collapse
|
18
|
Afreen S, Dermime S. The immunoinhibitory B7-H1 molecule as a potential target in cancer: Killing many birds with one stone. Hematol Oncol Stem Cell Ther 2014; 7:1-17. [DOI: 10.1016/j.hemonc.2013.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
|
19
|
Lei Y, Li HX, Jin WS, Peng WR, Zhang CJ, Bu LJ, Du YY, Ma T, Sun GP. The radiosensitizing effect of Paeonol on lung adenocarcinoma by augmentation of radiation-induced apoptosis and inhibition of the PI3K/Akt pathway. Int J Radiat Biol 2013; 89:1079-86. [PMID: 23875954 DOI: 10.3109/09553002.2013.825058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To investigate the radiosensitizing effect and mechanism of action by the natural product Paeonol on lung adenocarcinoma both in vitro and in vivo. MATERIALS AND METHODS Two lung adenocarcinoma cell lines (human lung adenocarcinoma cell line A549 and mouse Lewis lung carcinoma (LLC) cell line) were chosen for this research. In order to select the experimental concentrations of Paeonol, cytotoxicity was determined using a MTT (3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide) assay. A clonogenic assay was performed to measure the radiosensitizing effects. Apoptosis was determined by the Tunel (terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling) assay and flow cytometry. Protein expression was analyzed by Western blotting. To test the radiosensitizing effect in vivo, a transplanted tumor model was established. RESULTS The MTT assay showed that Paeonol inhibited proliferation of cells. Paeonol concentration ranged from an IC5 (5% inhibiting concentration) to an IC20 and was used at non-toxic concentrations for subsequent experiments. The clonogenic assay showed that Paeonol enhanced the radiosensitivity of cells. Data from the Tunel assay and flow cytometry verified that Paeonol enhanced radiation-induced apoptosis. Paeonol inhibited the activation of the PI3K/AKT (Phosphatidylinositol 3-kinase/ Protein Kinase B) pathway and down-regulated the expression of COX-2 (Cyclooxygenase-2) and Survivin. Paeonol (1718 mg/kg) combined with 10 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the longest tumor growth time, tumor growth delay and the highest inhibition ratio when compared with the radiotherapy alone group. CONCLUSIONS It is reported for the first time that Paeonol has a radiosensitizing effect on lung adenocarcinoma both in vitro and in vivo. This effect could be related to the augmentation of radiation-induced apoptosis and the inhibition of the PI3K/Akt signalling pathway and its downstream proteins: COX-2 and Survivin.
Collapse
Affiliation(s)
- Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University , Hefei
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
He Z, Subramaniam D, Zhang Z, Zhang Y, Anant S. Honokiol as a Radiosensitizing Agent for Colorectal cancers. CURRENT COLORECTAL CANCER REPORTS 2013; 9. [PMID: 24307888 DOI: 10.1007/s11888-013-0191-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radioresistance is a frustrating obstacle for patients with colorectal cancers (CRCs) undergoing radiotherapy. There is an urgent need to find an effective agent to increase the sensitivity of CRCs to radiation. Honokiol, an active compound purified from Magnolia, was found to radiosensitize colorectal cancer cells both in vitro and in vivo. However, the mechanisms control important signaling that enhances radiosensitivity is currently unknown. In this study, we have reviewed important signaling pathways that are closely related to radiosensitization, such as cell cycle arrest, tumor angiogenesis, JAK/STAT3 signaling pathway and Mismatch repair. Studies show that honokiol can interfere with these pathways at different levels. With overall analysis, it may bring light on finding the possible mechanism by which honokiol acts as a radiosensitizing agent for CRCs.
Collapse
Affiliation(s)
- Zhiyun He
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China ; Department of General Surgery, Second Hospital of Lanzhou, University of Lanzhou, Gansu 730030, China ; Department of Molecular and Integrative Physiology, Kansas City, Kansas, USA
| | | | | | | | | |
Collapse
|
21
|
Yu SD, Liu FY, Wang QR. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac J Cancer Prev 2013; 13:5345-51. [PMID: 23317182 DOI: 10.7314/apjcp.2012.13.11.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Shu-Dong Yu
- Department of Otolaryngology, Qianfoshan Hospital Affiliated to Shandong University, Shandong, China.
| | | | | |
Collapse
|
22
|
Zbidah M, Lupescu A, Herrmann T, Yang W, Foller M, Jilani K, Lang F. Effect of honokiol on erythrocytes. Toxicol In Vitro 2013; 27:1737-45. [PMID: 23673313 DOI: 10.1016/j.tiv.2013.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
Honokiol ((3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol), a component of Magnolia officinalis, stimulates apoptosis and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and by breakdown of cell membrane phosphatidylserine asymmetry with phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered following increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored, whether honokiol elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. As a result, a 48 h exposure to honokiol was followed by a slight but significant increase of [Ca(2+)]i (15 μM), significant decrease of forward scatter (5 μM), significant increase of annexin-V-binding (5 μM) and significant increase of ceramide formation (15 μM). Honokiol further induced slight, but significant hemolysis. Honokiol (15 μM) induced annexin-V-binding was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+). In conclusion, honokiol triggers suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of Ca(2+) entry and ceramide formation.
Collapse
Affiliation(s)
- Mohanad Zbidah
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Ponnurangam S, Mammen JMV, Ramalingam S, He Z, Zhang Y, Umar S, Subramaniam D, Anant S. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol Cancer Ther 2012; 11:963-72. [PMID: 22319203 DOI: 10.1158/1535-7163.mct-11-0999] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer stem cells are implicated in resistance to ionizing radiation (IR) and chemotherapy. Honokiol, a biphenolic compound has been used in traditional Chinese medicine for treating various ailments. In this study, we determined the ability of honokiol to enhance the sensitivity of colon cancer stem cells to IR. The combination of honokiol and IR suppressed proliferation and colony formation while inducing apoptosis of colon cancer cells in culture. There were also reduced numbers and size of spheroids, which was coupled with reduced expression of cancer stem cell marker protein DCLK1. Flow cytometry studies confirmed that the honokiol-IR combination reduced the number of DCLK1+ cells. In addition, there were reduced levels of activated Notch-1, its ligand Jagged-1, and the downstream target gene Hes-1. Furthermore, expression of components of the Notch-1 activating γ-secretase complex, presenilin 1, nicastrin, Pen2, and APH-1 was also suppressed. On the other hand, the honokiol effects were mitigated when the Notch intracellular domain was expressed. To determine the effect of honokiol-IR combination on tumor growth in vivo, nude mice tumor xenografts were administered honokiol intraperitoneally and exposed to IR. The honokiol-IR combination significantly inhibited tumor xenograft growth. In addition, there were reduced levels of DCLK1 and the Notch signaling-related proteins in the xenograft tissues. Together, these data suggest that honokiol is a potent inhibitor of colon cancer growth that targets the stem cells by inhibiting the γ-secretase complex and the Notch signaling pathway. These studies warrant further clinical evaluation for the combination of honokiol and IR for treating colon cancers.
Collapse
Affiliation(s)
- Sivapriya Ponnurangam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng S, Hu B, An HM. Traditional Chinese Medicinal Syndromes and Treatment in Colorectal Cancer. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jct.2012.326114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|