1
|
Fareed MM, Khalid H, Khalid S, Shityakov S. Deciphering Molecular Mechanisms of Carbon Tetrachloride- Induced Hepatotoxicity: A Brief Systematic Review. Curr Mol Med 2024; 24:1124-1134. [PMID: 37818557 DOI: 10.2174/0115665240257603230919103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
The liver plays a critical role in metabolic processes, making it vulnerable to injury. Researchers often study carbon tetrachloride (CCl4)-induced hepatotoxicity in model organisms because it closely resembles human liver damage. This toxicity occurs due to the activation of various cytochromes, including CYP2E1, CYP2B1, CYP2B2, and possibly CYP3A, which produce the trichloromethyl radical (CCl3*). CCl3* can attach to biological molecules such as lipids, proteins, and nucleic acids, impairing lipid metabolism and leading to fatty degeneration. It can also combine with DNA to initiate hepatic carcinogenesis. When exposed to oxygen, CCl3* generates more reactive CCl3OO*, which leads to lipid peroxidation and membrane damage. At the molecular level, CCl4 induces the release of several inflammatory cytokines, including TNF-α and NO, which can either help or harm hepatotoxicity through cellular apoptosis. TGF-β contributes to fibrogenesis, while IL-6 and IL-10 aid in recovery by minimizing anti-apoptotic activity and directing cells toward regeneration. To prevent liver damage, different interventions can be employed, such as antioxidants, mitogenic agents, and the maintenance of calcium sequestration. Drugs that prevent CCl4- induced cytotoxicity and proliferation or enhance CYP450 activity may offer a protective response against hepatic carcinoma.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- School of Science and Engineering, Department of Computer Science, Università degli Studi di Verona, Verona, Italy
- Laboratorio di Bioinformatica Applicata, Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Hina Khalid
- Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sana Khalid
- School of Life Science and Medicine, Shandong University of Technology, Zibo, China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
2
|
Sakiani S, Heller T, Koh C. Current and investigational drugs in early clinical development for portal hypertension. Front Med (Lausanne) 2022; 9:974182. [PMID: 36300180 PMCID: PMC9589453 DOI: 10.3389/fmed.2022.974182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The development of portal hypertension leads to a majority of complications associated with chronic liver disease. Therefore, adequate treatment of portal hypertension is crucial in the management of such patients. Current treatment options are limited and consist mainly of medications that decrease the hyperdynamic circulation, such as non-selective beta blockers, and treatment of hypervolemia with diuretics. Despite these options, mortality rates have not improved over the last two decades. Newer, more effective treatment options are necessary to help improve survival and quality of life in these patients. Areas covered Multiple preclinical models and clinical studies have demonstrated potential efficacy of a variety of new treatment modalities. We introduce treatment options including the use of vasodilation promotors, vasoconstriction inhibitors, anticoagulants, antiangiogenics, and anti-inflammatory drugs. We examine the most recent studies for treatment options within these drug classes and offer insights as to which show the most promise in this field. Methodology Published studies that identified novel medical treatment options of portal hypertension were searched using PubMed (https://pubmed.ncbi.nlm.nih.gov/). Clinical trials listed in Clinicaltrials.gov were also searched with a focus on more recent and ongoing studies, including those with completed recruitment. Searching with key terms including "portal hypertension" as well as individually searching specific treatment medications that were listed in other publications was carried out. Finally, current societal guidelines and recent review articles relevant to the management of portal hypertension were evaluated, and listed references of interest were included. Conclusion Many ongoing early phase studies demonstrate promising results and may shape the field of portal hypertension management in future. As concrete results become available, larger RCTs will be required before making definitive conclusions regarding safety and efficacy and whether or not they can be incorporated into routine clinical practice. Statins, anticoagulants, and PDE inhibitors have been among the most studied and appear to be most promising.
Collapse
Affiliation(s)
- Sasan Sakiani
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, United States
| | - Theo Heller
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Koh
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Skill NJ, Elliott CM, Ceballos B, Saxena R, Pepin R, Bettcher L, Ellensberg M, Raftery D, Malucio MA, Ekser B, Mangus RS, Kubal CA. Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS). Ann Transplant 2019; 24:341-349. [PMID: 31182705 PMCID: PMC6582681 DOI: 10.12659/aot.913800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.
Collapse
Affiliation(s)
- Nicholas J Skill
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Campbell M Elliott
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Brian Ceballos
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology, Indiana University Medical School, Indianapolis, IN, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Matthew Ellensberg
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Mary A Malucio
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Richard S Mangus
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | | |
Collapse
|
4
|
Hu XD, Geng HY, Wang L, Xu HF, Su Y, Liang S, Qian LX. Supersonic Shear Wave Imaging of the Spleen for Staging of Liver Fibrosis in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2343-2351. [PMID: 28705556 DOI: 10.1016/j.ultrasmedbio.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The goal of the work described here was to explore the cause of spleen stiffness (SS) in hepatic fibrogenesis and evaluate the value of SS in liver fibrosis (LF) staging. LF was induced with carbon tetrachloride (CCl4) in rats (n = 40). Supersonic shear wave imaging and contrast-enhanced ultrasound were performed to determine liver stiffness (LS), SS and splenic hemodynamics. SS, LS and free portal pressure exhibited moderate correlations with fibrosis stage (r = 0.744-0.835, p < 0.001). Time-intensity curves of contrast-enhanced ultrasound for the spleen were presented as decreasing peak intensity and slope of decrease, and increasing time to peak. Splenic sinus dilation and congestion were observed on histopathologic analysis. The area under the receiver operating characteristic curve of SS was higher than that of LS for differentiating LF stages 0-2 from stages 3-4 (Z = 2.293, p = 0.02). SS is a reliable diagnostic marker for the assessment of LF in the CCl4 model, especially for severe fibrosis. Elevated portal pressure is the cause of increasing SS.
Collapse
Affiliation(s)
- Xiang-Dong Hu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Geng
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hu-Feng Xu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Su
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Si Liang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin-Xue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Di Pascoli M, Sacerdoti D, Pontisso P, Angeli P, Bolognesi M. Molecular Mechanisms Leading to Splanchnic Vasodilation in Liver Cirrhosis. J Vasc Res 2017; 54:92-99. [PMID: 28402977 DOI: 10.1159/000462974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
In liver cirrhosis, portal hypertension is a consequence of enhanced intrahepatic vascular resistance and portal blood flow. Significant vasodilation in the arterial splanchnic district is crucial for an increase in portal flow. In this pathological condition, increased levels of circulating endogenous vasodilators, including nitric oxide, prostacyclin, carbon monoxide, epoxyeicosatrienoic acids, glucagon, endogenous cannabinoids, and adrenomedullin, and a decreased vascular response to vasoconstrictors are the main mechanisms underlying splanchnic vasodilation. In this review, the molecular pathways leading to splanchnic vasodilation will be discussed in detail.
Collapse
Affiliation(s)
- Marco Di Pascoli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padua, Italy
| | | | | | | | | |
Collapse
|
6
|
Licinio R, Losurdo G, Carparelli S, Iannone A, Giorgio F, Barone M, Principi M, Ierardi E, Di Leo A. Helicobacter pylori, liver cirrhosis, and portal hypertension: an updated appraisal. Immunopharmacol Immunotoxicol 2016; 38:408-413. [PMID: 27788611 DOI: 10.1080/08923973.2016.1247855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Helicobacter pylori (H. pylori) is the most common cause of gastritis and peptic ulcer. However, H. pylori is even involved in extragastric diseases, and it has been hypothesized that H. pylori could be a risk factor for several hepatic diseases. For instance, a direct involvement of H. pylori in the development of portal hypertension (PH) in cirrhotic patients has been postulated. METHODS We performed a literature search in major databases to elucidate the relationship between H. pylori, portal hypertension, and liver cirrhosis. RESULTS The effect of H. pylori on PH may be multifactorial. Endothelial dysfunction, alterations in the vasodilating dynamics, and neoangiogenesis are the most appealing theories about this issue, but the proofs come mainly from experimental studies, therefore a solid pathophysiological basis is still to be demonstrated. Congestive gastropathy (CG) and gastric antral vascular ectasia (GAVE) are two common endoscopic entities responsible for acute/chronic upper gastrointestinal bleeding, and a link with H. pylori has been hypothesized: the gastric mucosa, exposed to H. pylori, could develop both inflammatory microcirculatory alterations and thrombi, resembling the histologic pattern of GAVE. CONCLUSIONS Despite clues for an association between H. pylori and PH have been shown, these evidences are mostly experimental, therefore, in the absence of a direct proof on human beings, the role of H. pylori in the development of PH is uncertain. However, since this germ may be a cause of peptic ulcer, it should be found and eradicated in cirrhotic patients to reduce the risk of blood loss anemia.
Collapse
Affiliation(s)
- Raffaele Licinio
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Giuseppe Losurdo
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Sonia Carparelli
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Andrea Iannone
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Floriana Giorgio
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Michele Barone
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Mariabeatrice Principi
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Enzo Ierardi
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| | - Alfredo Di Leo
- a Department of Emergency and Organ Transplantation , Section of Gastroenterology, AOU Policlinico , Bari , Italy
| |
Collapse
|
7
|
Elshal M, Abu-Elsaad N, El-Karef A, Ibrahim TM. The multi-kinase inhibitor pazopanib targets hepatic stellate cell activation and apoptosis alleviating progression of liver fibrosis. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1293-304. [DOI: 10.1007/s00210-015-1157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
|
8
|
Theodorakis N, Maluccio M, Skill N. Murine study of portal hypertension associated endothelin-1 hypo-response. World J Gastroenterol 2015; 21:4817-4828. [PMID: 25944995 PMCID: PMC4408454 DOI: 10.3748/wjg.v21.i16.4817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate endothelin-1 hypo-responsive associated with portal hypertension in order to improve patient treatment outcomes.
METHODS: Wild type, eNOS-/- and iNOS-/- mice received partial portal vein ligation surgery to induce portal hypertension or sham surgery. Development of portal hypertension was determined by measuring the splenic pulp pressure, abdominal aortic flow and portal systemic shunting. To measure splenic pulp pressure, a microtip pressure transducer was inserted into the spleen pulp. Abdominal aortic flow was measured by placing an ultrasonic Doppler flow probe around the abdominal aorta between the diaphragm and celiac artery. Portal systemic shunting was calculated by injection of fluorescent microspheres in to the splenic vein and determining the percentage accumulation of spheres in liver and pulmonary beds. Endothelin-1 hypo-response was evaluated by measuring the change in abdominal aortic flow in response to endothelin-1 intravenous administration. In addition, thoracic aorta endothelin-1 contraction was measured in 5 mm isolated thoracic aorta rings ex-vivo using an ADI small vessel myograph.
RESULTS: In wild type and iNOS-/- mice splenic pulp pressure increased from 7.5 ± 1.1 mmHg and 7.2 ± 1 mmHg to 25.4 ± 3.1 mmHg and 22 ± 4 mmHg respectively. In eNOS-/- mice splenic pulp pressure was increased after 1 d (P = NS), after which it decreased and by 7 d was not significantly elevated when compared to 7 d sham operated controls (6.9 ± 0.6 mmHg and 7.3 ± 0.8 mmHg respectively, P = 0.3). Abdominal aortic flow was increased by 80% and 73% in 7 d portal vein ligated wild type and iNOS when compared to shams, whereas there was no significant difference in 7 d portal vein ligated eNOS-/- mice when compared to shams. Endothelin-1 induced a rapid reduction in abdominal aortic blood flow in wild type, eNOS-/- and iNOS-/- sham mice (50% ± 8%, 73% ± 9% and 47% ± 9% respectively). Following portal vein ligation endothelin-1 reduction in blood flow was significantly diminished in each mouse group. Abdominal aortic flow was reduced by 19% ± 9%, 32% ± 10% and 9% ± 9% in wild type, eNOS-/- and iNOS-/- mice respectively.
CONCLUSION: Aberrant endothelin-1 response in murine portal hypertension is NOS isoform independent. Moreover, portal hypertension in the portal vein ligation model is independent of ET-1 function.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiopathology
- Blood Flow Velocity
- Disease Models, Animal
- Endothelin-1/administration & dosage
- Hypertension, Portal/genetics
- Hypertension, Portal/metabolism
- Hypertension, Portal/physiopathology
- Injections, Intravenous
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/blood
- Nitric Oxide Synthase Type II/deficiency
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type III/deficiency
- Nitric Oxide Synthase Type III/genetics
- Portal Pressure/drug effects
- Regional Blood Flow
- Time Factors
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/administration & dosage
Collapse
|
9
|
Jiang B, Deng Q, Huo Y, Li W, Shibuya M, Luo J. Endothelial Gab1 deficiency aggravates splenomegaly in portal hypertension independent of angiogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G416-26. [PMID: 25501549 DOI: 10.1152/ajpgi.00292.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Certain pathological changes, including angiogenesis, actively contribute to the pathogenesis of splenomegaly in portal hypertension (PH), although the detailed molecular and cellular mechanisms remain elusive. In this study, we demonstrated that endothelial Grb-2-associated binder 1 (Gab1) plays a negative role in PH-associated splenomegaly independent of angiogenesis. PH, which was induced by partial portal vein ligation, significantly enhanced Gab1 expression in endothelial cells in a time-dependent manner. Compared with controls, endothelium-specific Gab1 knockout (EGKO) mice exhibited a significant increase in spleen size while their PH levels remained similar. Pathological analysis indicated that EGKO mice developed more severe hyperactive white pulp and fibrosis in the enlarged spleen but less angiogenesis in both the spleen and mesenteric tissues. Mechanistic studies showed that the phosphorylation of endothelial nitric oxide synthase (eNOS) in EGKO mice was significantly lower than in controls. In addition, the dysregulation of fibrosis and inflammation-related transcription factors [e.g., Krüppel-like factor (KLF) 2 and KLF5] and the upregulation of cytokine genes (e.g., TNF-α and IL-6) were observed in EGKO mice. We thus propose that endothelial Gab1 mediates multiple pathways in inhibition of the pathogenesis of splenomegaly in PH via prevention of endothelial dysfunction and overproduction of proinflammatory/profibrotic cytokines.
Collapse
Affiliation(s)
- Beibei Jiang
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Qiuping Deng
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yingqing Huo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Wei Li
- People's Hospital, Peking University, Beijing, China; and
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China;
| |
Collapse
|
10
|
Zhao X, Deng B, Xu XY, Yang SJ, Zhang T, Song YJ, Liu XT, Wang YQ, Cai DY. Glycyrrhizinate reduces portal hypertension in isolated perfused rat livers with chronic hepatitis. World J Gastroenterol 2013; 19:6069-76. [PMID: 24106408 PMCID: PMC3785629 DOI: 10.3748/wjg.v19.i36.6069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of diammonium glycyrrhizinate (Gly) on portal hypertension (PHT) in isolated portal perfused rat liver (IPPRL) with carbon tetrachloride (CCl4)-induced chronic hepatitis.
METHODS: PHT model was replicated with CCl4 in rats for 84 d. Model was identified by measuring the ascetic amounts, hepatic function, portal pressure in vivo, splenic index, and pathological alterations. Inducible nitric oxide synthase (iNOS) in liver was assessed by immunohistochemistry. IPPRLs were performed at d0, d28, d56, and d84. After phenylephrine-induced constriction, Gly was geometrically used to reduce PHT. Gly action was expressed as median effective concentration (EC50) and area under the curve (AUC). Underlying mechanism was exploited by linear correlation between AUC values of Gly and existed iNOS in portal triads.
RESULTS: PHT model was confirmed with ascites, splenomegaly, serum biomarkers of hepatic injury, and elevated portal pressure. Pathological findings had shown normal hepatic structure at d0, degenerations at d28, fibrosis at d56, cirrhosis at d84 in PHT rats. Pseudo lobule ratios decreased and collagen ratios increased progressively along with PHT development. Gly does dose-dependently reduce PHT in IPPRLs with CCl4-induced chronic hepatitis. Gly potencies were increased gradually along with PHT development, characterized with its EC50 at 2.80 × 10-10, 3.03 × 10-11, 3.77 × 10-11 and 4.65×10-11 mol/L at d0, d28, d56 and d84, respectively. Existed iNOS was located at hepatocyte at d0, stellate cells at d28, stellate cells and macrophages at d56, and macrophages in portal triads at d84. Macrophages infiltrated more into portal triads and expressed more iNOS along with PHT development. AUC values of Gly were positively correlated with existed iNOS levels in portal triads.
CONCLUSION: Gly reduces indirectly PHT in IPPRL with CCl4-induced chronic hepatitis. The underlying mechanisms may relate to rescue NO bioavailability from macrophage-derived peroxynitrite in portal triads.
Collapse
|
11
|
Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 2013; 33:213-23. [PMID: 23782454 DOI: 10.3109/10799893.2013.802805] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TGR5 is the G-protein-coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.
Collapse
Affiliation(s)
- Vanesa Stepanov
- Department of Pharmacology, Clinical Pharmacology and Toxicology, University of Novi Sad, Novi Sad, Serbia.
| | | | | |
Collapse
|
12
|
Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol 2013; 19:1707-1717. [PMID: 23555159 PMCID: PMC3607747 DOI: 10.3748/wjg.v19.i11.1707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/13/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension (PHT) is defined as a pathological increase in portal venous pressure and frequently accompanies cirrhosis. Portal pressure can be increased by a rise in portal blood flow, an increase in vascular resistance, or the combination. In cirrhosis, the primary factor leading to PHT is an increase in intra-hepatic resistance to blood flow. Although much of this increase is a mechanical consequence of architectural disturbances, there is a dynamic and reversible component that represents up to a third of the increased vascular resistance in cirrhosis. Many vasoactive substances contribute to the development of PHT. Among these, nitric oxide (NO) is the key mediator that paradoxically regulates the sinusoidal (intra-hepatic) and systemic/splanchnic circulations. NO deficiency in the liver leads to increased intra-hepatic resistance while increased NO in the circulation contributes to the hyperdynamic systemic/splanchnic circulation. NO mediated-angiogenesis also plays a role in splanchnic vasodilation and collateral circulation formation. NO donors reduce PHT in animals models but the key clinical challenge is the development of an NO donor or drug delivery system that selectively targets the liver.
Collapse
|
13
|
Salvianolic Acid B reducing portal hypertension depends on macrophages in isolated portal perfused rat livers with chronic hepatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:786365. [PMID: 23118797 PMCID: PMC3480689 DOI: 10.1155/2012/786365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/29/2012] [Indexed: 01/30/2023]
Abstract
This study is aimed to investigate the effects of Sal B on portal hypertension (PH). PH with chronic hepatitis was induced by carbon tetrachloride (CCl4) in rats. The model was confirmed with elevated portal pressures and increased serum CD163 levels. The inducible nitric oxide synthase (iNOS) or heme oxygenase-1 (HO-1) in portal triads was assessed. The isolated portal perfused rat liver (IPPRL) was performed at d0, d28, d56
, and d84 in the progression of chronic hepatitis. After constricting with phenylephrine, the portal veins were relaxed with Sal B. The EC50 of Sal B for relaxing portal veins was
−2.04 × 10−9, 7.28 × 10−11, 1.52 × 10−11, and 8.44 × 10−11 mol/L at d0, d28, d56, and d84, respectively.
More macrophages infiltrated in portal triads and expressed more iNOS or HO-1 as PH advanced. The areas under the curve (AUCs) of Sal B for reducing PH were positively correlated with the levels of iNOS or HO-1 in portal triads, and so did with serum CD163 levels. Sal B reduces PH in IPPRL with chronic hepatitis, via promoting portal relaxation due to macrophage-originated NO or CO in portal triads, partly at least.
Collapse
|
14
|
Huang HC, Wang SS, Hsin IF, Chang CC, Lee FY, Lin HC, Chuang CL, Lee JY, Hsieh HG, Lee SD. Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats. Hepatology 2012; 56:248-58. [PMID: 22290687 DOI: 10.1002/hep.25625] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Angiogenesis in liver cirrhosis leads to splanchnic hyperemia, increased portal inflow, and portosystemic collaterals formation, which may induce lethal complications, such as gastroesophageal variceal hemorrhage and hepatic encephalopathy. Cannabinoids (CBs) inhibit angiogenesis, but the relevant influences in cirrhosis are unknown. In this study, Spraque-Dawley rats received common bile duct ligation (BDL) to induce cirrhosis. BDL rats received vehicle, arachidonyl-2-chloroethylamide (cannabinoid receptor type 1 [CB(1) ] agonist), JWH-015 (cannabinoid receptor type 2 [CB(2) ] agonist), and AM630 (CB(2) antagonist) from days 35 to 42 days after BDL. On the 43rd day, hemodynamics, presence of CB receptors, severity of portosystemic shunting, mesenteric vascular density, vascular endothelial growth factor (VEGF), VEGFR-1, VEGFR-2, phospho-VEGFR-2, cyclooxygenase (COX)-1, COX-2, and endothelial nitric oxide synthase (eNOS) expressions as well as plasma VEGF levels were evaluated. Results showed that CB(1) and CB(2) receptors were present in left adrenal veins of sham rats, splenorenal shunts (the most prominent intra-abdominal shunts) of BDL rats, and mesentery of sham and BDL rats. CB(2) receptor was up-regulated in splenorenal shunts of BDL rats. Both acute and chronic JWH-015 treatment reduced portal pressure and superior mesenteric arterial blood flow. Compared with vehicle, JWH-015 significantly alleviated portosystemic shunting and mesenteric vascular density in BDL rats, but not in sham rats. The concomitant use of JWH-015 and AM630 abolished JWH-015 effects. JWH-133, another CB(2) agonist, mimicked the JWH-015 effects. JWH-015 decreased mesenteric COX-1, COX-2 messenger RNA expressions, and COX-1, COX-2, eNOS protein expressions. Furthermore, JWH-015 decreased intrahepatic angiogenesis and fibrosis. CONCLUSIONS CB(2) agonist alleviates portal hypertension (PH), severity of portosystemic collaterals and mesenteric angiogenesis, intrahepatic angiogenesis, and fibrosis in cirrhotic rats. The mechanism is, at least partly, through COX and NOS down-regulation. CBs may be targeted in the control of PH and portosystemic collaterals.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Department Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. BEST PRACTICE & RESEARCH. CLINICAL GASTROENTEROLOGY 2011. [PMID: 21497738 DOI: 10.1016/j.bpg.2011.02.005.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Multiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury. Sustained fibrogenesis leads to cirrhosis, characterized by a distortion of the liver parenchyma and vascular architecture. Uncovering the intricate mechanisms that underlie liver fibrogenesis forms the basis for efforts to develop targeted therapies to reverse the fibrotic response and improve the outcomes of patients with chronic liver disease.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Ave, Room 11-76, New York, NY 10029, USA.
| | | |
Collapse
|
16
|
Abstract
Multiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury. Sustained fibrogenesis leads to cirrhosis, characterized by a distortion of the liver parenchyma and vascular architecture. Uncovering the intricate mechanisms that underlie liver fibrogenesis forms the basis for efforts to develop targeted therapies to reverse the fibrotic response and improve the outcomes of patients with chronic liver disease.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Ave, Room 11-76, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Abstract
Multiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury. Sustained fibrogenesis leads to cirrhosis, characterized by a distortion of the liver parenchyma and vascular architecture. Uncovering the intricate mechanisms that underlie liver fibrogenesis forms the basis for efforts to develop targeted therapies to reverse the fibrotic response and improve the outcomes of patients with chronic liver disease.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Ave, Room 11-76, New York, NY 10029, USA.
| | | |
Collapse
|
18
|
Shimada H, Staten NR, Rajagopalan LE. TGF-β1 mediated activation of Rho kinase induces TGF-β2 and endothelin-1 expression in human hepatic stellate cells. J Hepatol 2011; 54:521-8. [PMID: 21087804 DOI: 10.1016/j.jhep.2010.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 06/22/2010] [Accepted: 07/06/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS TGF-β1 a key pro-fibrotic factor activates signaling via the canonical ALK/SMAD as well as the Rho GTPase pathways. Rho kinase is a major downstream effector of Rho GTPase signaling. To understand the contribution of Rho kinase activation towards the synthesis of fibrotic mediators by hepatic stellate cells (HSC), we first profiled activated HSC and fibrotic liver tissues to identify common transcripts that were most significantly up-regulated across all samples. We then applied a pharmacologic as well as a genomics approach in a TGF-β1 activated human HSC line (LX-2) to study the involvement of Rho kinase signaling in the expression of a subset of these up-regulated fibrotic genes. METHODS Total RNA was profiled using microarray chips. Data analysis was performed using Ingenuity Pathway Analysis software. LX-2 cells were activated with 10 ng/ml of TGF-β1 for 24 h. Activation of downstream pathways was assessed by Western blotting with phospho-specific target biomarker antibodies. Targeted knockdown of Rho kinase isoforms 1 and 2 was achieved with RNAi. Secreted levels of endothelin-1, TGF-β2, and thrombospondin-1 were measured by ELISA. RESULTS TGF-β1 activated Rho kinase and Smad pathways in LX-2 cells. The syntheses of endothelin-1 and TGF-β2 were significantly inhibited in TGF-β1 treated LX-2 cells, by isoform non-selective Rho kinase inhibitors. siRNA knockdown of each isoform suggested that endothelin-1 synthesis was largely mediated by the Rho kinase-1 isoform, while both isoforms contributed to the synthesis of TGF-β2. CONCLUSIONS The TGF-β1 mediated secretion of endothelin-1 and TGF-β2 is mediated by Rho kinase activation in human HSC.
Collapse
Affiliation(s)
- Hideaki Shimada
- Inflammation Research Unit, Pfizer Global Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
19
|
Das A, Mukherjee P, Singla SK, Guturu P, Frost MC, Mukhopadhyay D, Shah VH, Patra CR. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. NANOTECHNOLOGY 2010; 21:305102. [PMID: 20610873 PMCID: PMC4154635 DOI: 10.1088/0957-4484/21/30/305102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 degrees C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.
Collapse
Affiliation(s)
- Amitava Das
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Basic Sciences, Biochemistry Division, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, CA 92350, USA
| | - Priyabrata Mukherjee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Sumit K Singla
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Praveen Guturu
- Department of Internal Medicine, UTMB, Galveston, TX 77555, USA
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
| | - Chitta Ranjan Patra
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905, USA
- Address for correspondence: Mayo Clinic College of Medicine, 200 First Street S.W., Guggenheim 1321A, Rochester, MN 55905, USA. and
| |
Collapse
|