1
|
Hur S, Jeong H, Kim K, Kim KH, Kim SH, Lee Y, Nam KT. MIST1 regulates endoplasmic reticulum stress-induced hepatic apoptosis as a candidate marker of fatty liver disease progression. Cell Death Dis 2024; 15:805. [PMID: 39516480 PMCID: PMC11549289 DOI: 10.1038/s41419-024-07217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The liver regenerates after injury; however, prolonged injury can lead to chronic inflammation, fatty liver disease, fibrosis, and cancer. The mechanism involving the complex pathogenesis of the progression of liver injury to chronic liver disease remains unclear. In this study, we investigated the dynamics of gene expression associated with the progression of liver disease. We analyzed changes in gene expression over time in a mouse model of carbon tetrachloride (CCl4)-induced fibrosis using high-throughput RNA sequencing. Prolonged CCl4-induced liver injury increased the expression levels of genes associated with the unfolded protein response (UPR), which correlated with the duration of injury, with substantial, progressive upregulation of muscle, intestine, and stomach expression 1 (Mist1, bhlha15) in the mouse fibrosis model and other liver-damaged tissues. Knockdown of MIST1 in HepG2 cells decreased tribbles pseudokinase 3 (TRIB3) levels and increased apoptosis, consistent with the patterns detected in Mist1-knockout mice. MIST1 expression was confirmed in liver tissues from patients with metabolic dysfunction-associated steatohepatitis and alcoholic steatohepatitis (MASH) and correlated with disease progression. In conclusion, MIST1 is expressed in hepatocytes in response to damage, suggesting a new indicator of liver disease progression. Our results suggest that MIST1 plays a key role in the regulation of apoptosis and TRIB3 expression contributing to progressive liver disease after injury.
Collapse
Affiliation(s)
- Sumin Hur
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Keunyoung Kim
- Department of Pharmacy, Kangwon National University College of Pharmacy, Chuncheon, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hee Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yura Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Ohara Y, Liu H, Craig AJ, Yang S, Moreno P, Dorsey TH, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Ambs S, Hussain SP. ELAPOR1 induces the classical/progenitor subtype and contributes to reduced disease aggressiveness through metabolic reprogramming in pancreatic cancer. Int J Cancer 2024; 155:569-581. [PMID: 38630934 DOI: 10.1002/ijc.34960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 04/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with distinct molecular subtypes described as classical/progenitor and basal-like/squamous PDAC. We hypothesized that integrative transcriptome and metabolome approaches can identify candidate genes whose inactivation contributes to the development of the aggressive basal-like/squamous subtype. Using our integrated approach, we identified endosome-lysosome associated apoptosis and autophagy regulator 1 (ELAPOR1/KIAA1324) as a candidate tumor suppressor in both our NCI-UMD-German cohort and additional validation cohorts. Diminished ELAPOR1 expression was linked to high histological grade, advanced disease stage, the basal-like/squamous subtype, and reduced patient survival in PDAC. In vitro experiments demonstrated that ELAPOR1 transgene expression not only inhibited the migration and invasion of PDAC cells but also induced gene expression characteristics associated with the classical/progenitor subtype. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program associated with both upregulated ELAPOR1 and the classical/progenitor subtype, encompassing upregulated lipogenesis and downregulated amino acid metabolism. 1-Methylnicotinamide, a known oncometabolite derived from S-adenosylmethionine, was inversely associated with ELAPOR1 expression and promoted migration and invasion of PDAC cells in vitro. Taken together, our data suggest that enhanced ELAPOR1 expression promotes transcriptome and metabolome characteristics that are indicative of the classical/progenitor subtype, whereas its reduction associates with basal-like/squamous tumors with increased disease aggressiveness in PDAC patients. These findings position ELAPOR1 as a promising candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Nader Hanna
- Division of General & Oncologic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Öling S, Struck E, Noreen-Thorsen M, Zwahlen M, von Feilitzen K, Odeberg J, Pontén F, Lindskog C, Uhlén M, Dusart P, Butler LM. A human stomach cell type transcriptome atlas. BMC Biol 2024; 22:36. [PMID: 38355543 PMCID: PMC10865703 DOI: 10.1186/s12915-024-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The identification of cell type-specific genes and their modification under different conditions is central to our understanding of human health and disease. The stomach, a hollow organ in the upper gastrointestinal tract, provides an acidic environment that contributes to microbial defence and facilitates the activity of secreted digestive enzymes to process food and nutrients into chyme. In contrast to other sections of the gastrointestinal tract, detailed descriptions of cell type gene enrichment profiles in the stomach are absent from the major single-cell sequencing-based atlases. RESULTS Here, we use an integrative correlation analysis method to predict human stomach cell type transcriptome signatures using unfractionated stomach RNAseq data from 359 individuals. We profile parietal, chief, gastric mucous, gastric enteroendocrine, mitotic, endothelial, fibroblast, macrophage, neutrophil, T-cell, and plasma cells, identifying over 1600 cell type-enriched genes. CONCLUSIONS We uncover the cell type expression profile of several non-coding genes strongly associated with the progression of gastric cancer and, using a sex-based subset analysis, uncover a panel of male-only chief cell-enriched genes. This study provides a roadmap to further understand human stomach biology.
Collapse
Affiliation(s)
- S Öling
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - E Struck
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - M Noreen-Thorsen
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - M Zwahlen
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - K von Feilitzen
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - J Odeberg
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
- The University Hospital of North Norway (UNN), 9019, Tromsø, Norway
- Department of Haematology, Coagulation Unit, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - F Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - C Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - M Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - P Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - L M Butler
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway.
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden.
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76, Stockholm, Sweden.
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Bilekova S, Garcia-Colomer B, Cebrian-Serrano A, Schirge S, Krey K, Sterr M, Kurth T, Hauck SM, Lickert H. Inceptor facilitates acrosomal vesicle formation in spermatids and is required for male fertility. Front Cell Dev Biol 2023; 11:1240039. [PMID: 37691832 PMCID: PMC10483240 DOI: 10.3389/fcell.2023.1240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Spermatogenesis is a crucial biological process that enables the production of functional sperm, allowing for successful reproduction. Proper germ cell differentiation and maturation require tight regulation of hormonal signals, cellular signaling pathways, and cell biological processes. The acrosome is a lysosome-related organelle at the anterior of the sperm head that contains enzymes and receptors essential for egg-sperm recognition and fusion. Even though several factors crucial for acrosome biogenesis have been discovered, the precise molecular mechanism of pro-acrosomal vesicle formation and fusion is not yet known. In this study, we investigated the role of the insulin inhibitory receptor (inceptor) in acrosome formation. Inceptor is a single-pass transmembrane protein with similarities to mannose-6-phosphate receptors (M6PR). Inceptor knockout male mice are infertile due to malformations in the acrosome and defects in the nuclear shape of spermatozoa. We show that inceptor is expressed in early spermatids and mainly localizes to vesicles between the Golgi apparatus and acrosome. Here we show that inceptor is an essential factor in the intracellular transport of trans-Golgi network-derived vesicles which deliver acrosomal cargo in maturing spermatids. The absence of inceptor results in vesicle-fusion defects, acrosomal malformation, and male infertility. These findings support our hypothesis of inceptor as a universal lysosomal or lysosome-related organelle sorting receptor expressed in several secretory tissues.
Collapse
Affiliation(s)
- Sara Bilekova
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Balma Garcia-Colomer
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Helmholtz Center Munich, Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Helmholtz Center Munich, Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Silvia Schirge
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Krey
- School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, Dresden University of Technology, Dresden, Germany
| | - Stefanie M. Hauck
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Heiko Lickert
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Institute of Diabetes and Regeneration Research, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Post LA, Kulas JA, Milstein JL, Sebastian SVL, Hosseini-Barkooie S, Stevenson ME, Bloom GS, Ferris HA. Inceptor as a regulator of brain insulin sensitivity. Sci Rep 2023; 13:11582. [PMID: 37463909 DOI: 10.1038/s41598-023-36248-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/31/2023] [Indexed: 07/20/2023] Open
Abstract
While historically viewed as an insulin insensitive organ, it is now accepted that insulin has a role in brain physiology. Changes in brain insulin and IGF1 signaling have been associated with neurological diseases, however the molecular factors regulating brain insulin sensitivity remain uncertain. In this study, we proposed that a recently described protein, termed Inceptor, may play a role in brain insulin and IGF1 resistance. We studied Inceptor in healthy and diseased nervous tissue to understand the distribution of the protein and examine how it may change in states of insulin resistance. We found that Inceptor is in fact present in cerebellum, hippocampus, hypothalamus, and cortex of the brain in neurons, with higher levels in cortex of female compared to male mice. We also confirmed that Inceptor colocalized with IR and IGF1R in brain. We saw little difference in insulin receptor signaling following Inceptor knockdown in neuron cultures, or in Inceptor levels with high-fat diet in mouse or Alzheimer's disease in mouse or human tissue. These results all provide significant advancements to our understanding of Inceptor in the brain. PROTOCOL REGISTRATION: The Stage 1 registered report manuscript was accepted-in-principle on 9 August 2022. This manuscript was registered through Open Science Forum (OSF) on 24 August 2022 and is available here: https://osf.io/9q8sw .
Collapse
Affiliation(s)
- Lisa A Post
- Department of Neuroscience, University of Virginia, Charlottesville, USA
- Long-Term Health Education and Training Program, US Army Medical Center of Excellence, San Antonio, USA
| | - Joshua A Kulas
- Department of Neuroscience, University of Virginia, Charlottesville, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, USA
| | - Joshua L Milstein
- Department of Neuroscience, University of Virginia, Charlottesville, USA
| | - Sarah V L Sebastian
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, USA
| | | | - Max E Stevenson
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, USA
| | - George S Bloom
- Department of Neuroscience, University of Virginia, Charlottesville, USA
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, USA
| | - Heather A Ferris
- Department of Neuroscience, University of Virginia, Charlottesville, USA.
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, USA.
| |
Collapse
|
6
|
Korff C, Atkinson E, Adaway M, Klunk A, Wek RC, Vashishth D, Wallace JM, Anderson-Baucum EK, Evans-Molina C, Robling AG, Bidwell JP. NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy. Calcif Tissue Int 2023; 113:110-125. [PMID: 37147466 PMCID: PMC10330242 DOI: 10.1007/s00223-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily Atkinson
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA
| | - Deepak Vashishth
- Center for Biotechnology & Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
| | - Emily K Anderson-Baucum
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
- Department of Medicine, IUSM, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev 2022; 75:101948. [PMID: 35809361 PMCID: PMC10378711 DOI: 10.1016/j.gde.2022.101948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA. https://twitter.com/@madkinsthreats
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA; Department of Pathology & Immunology, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
8
|
Luo X, Xu JG, Wang Z, Wang X, Zhu Q, Zhao J, Bian L. Bioinformatics Identification of Key Genes for the Development and Prognosis of Lung Adenocarcinoma. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2022; 59:469580221096259. [PMID: 35635202 PMCID: PMC9158403 DOI: 10.1177/00469580221096259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Lung adenocarcinoma (LUAD) is a common malignant tumor with a poor prognosis. The present study aimed to screen the key genes involved in LUAD development and prognosis. Methods: The transcriptome data for 515 LUAD and 347 normal samples were downloaded from The Cancer Genome Atlas and Genotype Tissue Expression databases. The weighted gene co-expression network and differentially expressed genes were used to identify the central regulatory genes for the development of LUAD. Univariate Cox, LASSO, and multivariate Cox regression analyses were utilized to identify prognosis-related genes. Results: The top 10 central regulatory genes of LUAD included IL6, PECAM1, CDH5, VWF, THBS1, CAV1, TEK, HGF, SPP1, and ENG. Genes that have an impact on survival included PECAM1, HGF, SPP1, and ENG. The favorable prognosis genes included KDF1, ZNF691, DNASE2B, and ELAPOR1, while unfavorable prognosis genes included RPL22, ENO1, PCSK9, SNX7, and LCE5A. The areas under the receiver operating characteristic curves of the risk score model in the training and testing datasets were .78 and .758, respectively. Conclusion: Bioinformatics methods were used to identify genes involved in the development and prognosis of LUAD, which will provide a basis for further research on the treatment and prognosis of LUAD.
Collapse
Affiliation(s)
- Xuan Luo
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Guo Xu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - ZhiYuan Wang
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - XiaoFang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - QianYing Zhu
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhao
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Bian
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|