1
|
Abad C, Demeules M, Guillou C, Gondé H, Zoubairi R, Tan YV, Pinto-Espinoza C, Schäfer W, Mann AM, Vouret-Craviari V, Koch-Nolte F, Adriouch S. Administration of an AAV vector coding for a P2X7-blocking nanobody-based biologic ameliorates colitis in mice. J Nanobiotechnology 2024; 22:27. [PMID: 38212782 PMCID: PMC10785547 DOI: 10.1186/s12951-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Mélanie Demeules
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Charlotte Guillou
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Henri Gondé
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | - Yossan-Var Tan
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France
| | | | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Univ Rouen Normandie, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, 76000, Rouen, France.
- Faculty of Medicine and Pharmacy, INSERM U1234 - PANTHER Lab, 22 Boulevard Gambetta, CS 76183, University of Rouen, 76000, Rouen, France.
| |
Collapse
|
2
|
Zhong P, Wu H, Ma Y, Xu X, Jiang Y, Jin C, Zhu Q, Liu X, Suo Z, Wang J. P2X4 receptor modulates gut inflammation and favours microbial homeostasis in colitis. Clin Transl Med 2023; 13:e1227. [PMID: 37085966 PMCID: PMC10122071 DOI: 10.1002/ctm2.1227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disease of the intestine. In addition to genetic susceptibility, environmental factors and dysregulated host immunity, the gut microbiota is implicated in the pathogenesis of Crohn's disease (CD) or ulcerative colitis (UC), the two primary types of IBD. The P2X4 receptor has been demonstrated to have a crucial role in preventing infection, inflammation, and organ damage. However, it remains unclear whether the P2X4 receptor affects IBD and the underlying mechanisms. METHODS Colitis was induced in mice administrated with dextran sodium sulphate (DSS). 16S rDNA sequencing was used to analyze the gut microbiota in knockout and wild-type mice. Clinical and histopathological parameters were monitored throughout the disease progression. RESULTS Gene Expression Omnibus analysis showed the downregulation of P2RX4 (P2rx4) expression in colonic tissues from patients or mice with IBD. However, its expression at the protein levels was upregulated on day 4 or 6 and then downregulated on day 7 in C57BL/6 mice treated with DSS. Gene ablation of P2rx4 aggravated DSS-induced colitis accompanying gut microbiota dysbiosis in mice. Moreover, P2X4 receptor-positive modulator ivermectin alleviated colitis and corrected dysregulated microbiota in wild-type C57BL/6 mice. Further antibiotic-treated gut microbiota depletion, cohousing experiment, and fecal microbiota transplantation proved that gut microbiota dysbiosis was associated with the aggravation of colitis in the mouse model initiated by P2rx4. CONCLUSIONS Our findings elaborate on an unrevealed etiopathophysiological mechanism by which microbiota dysbiosis induced by the P2X4 receptor influences the development of colitis, indicating that the P2X4 receptor represents a promising target for treating patients with CD and UC.
Collapse
Affiliation(s)
- Peijie Zhong
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Yizhuo Jiang
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Qiaozhen Zhu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Xinlei Liu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Zhimin Suo
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| |
Collapse
|
3
|
Jooss T, Zhang J, Zimmer B, Rezzonico-Jost T, Rissiek B, Felipe Pelczar P, Seehusen F, Koch-Nolte F, Magnus T, Zierler S, Huber S, Schemann M, Grassi F, Nicke A. Macrophages and glia are the dominant P2X7-expressing cell types in the gut nervous system-No evidence for the role of neuronal P2X7 receptors in colitis. Mucosal Immunol 2023; 16:180-193. [PMID: 36634819 DOI: 10.1016/j.mucimm.2022.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7-/- controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies.
Collapse
Affiliation(s)
- Tina Jooss
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Jiong Zhang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Schemann
- Human Biology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
4
|
Cheng N, Zhang L, Liu L. Understanding the Role of Purinergic P2X7 Receptors in the Gastrointestinal System: A Systematic Review. Front Pharmacol 2021; 12:786579. [PMID: 34987401 PMCID: PMC8721002 DOI: 10.3389/fphar.2021.786579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of purinergic P2X7 receptor (P2X7R) is of interest due to its involvement in inflammation and mediating immune cell responses. P2X7R is particularly implicated in the development of inflammatory bowel disease (IBD). However, the extent of the actions of P2X7R in the gastrointestinal (GI) system under physiological and pathophysiological conditions remains to be elucidated. This systematic review aimed to identify, summarize and evaluate the evidence for a critical role of P2X7R in the GI system. Methods: We searched PubMed, Embase and Scopus with search terms pertained to P2X7R in the GI system in disease or physiological state, including “P2X7 or P2X7 receptor or purinergic signaling” in combination with any of the terms “intestine or colon or gut or gastrointestinal,” “pathology or inflammation or disease or disorder,” and “physiology or expression.” Titles and abstracts were screened for potentially eligible full texts, and animal and human studies published in English were included in this study. Data were extracted from papers meeting inclusion criteria. Meta-analysis was not feasible given the study diversity. Results: There were 48 papers included in this review. We identified 14 experimental colitis models, three sepsis models and one ischemia-reperfusion injury model. Among them, 11 studies examined P2X7R in GI infections, six studies on immune cell regulation, four studies on GI inflammation, two studies on GI malignancies, three studies involving intestinal injury due to various causes, two studies on ATP-activated P2X7R in the GI system and two studies on metabolic regulation. Conclusion: Evidence supports P2X7R mediating inflammation and immune cell responses in GI inflammation, infections and injury due to IBD and other challenges to the intestinal wall. P2X7R inhibition by gene knockout or by application of P2X7R antagonists can reduce tissue damage by suppressing inflammation. P2X7R is also implicated in GI malignancies and glucose and lipid homeostasis. P2X7R blockade, however, did not always lead to beneficial outcomes in the various pathological models of study.
Collapse
Affiliation(s)
- Nathalie Cheng
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Lu Liu,
| |
Collapse
|
5
|
Schachter J, Alvarez CL, Bazzi Z, Faillace MP, Corradi G, Hattab C, Rinaldi DE, Gonzalez-Lebrero R, Molineris MP, Sévigny J, Ostuni MA, Schwarzbaum PJ. Extracellular ATP hydrolysis in Caco-2 human intestinal cell line. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183679. [PMID: 34216588 DOI: 10.1016/j.bbamem.2021.183679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Extracellular nucleotides and nucleosides activate signaling pathways that play major roles in the physiology and pathophysiology of the gastrointestinal tract. Ectonucleotidases hydrolyze extracellular nucleotides and thus regulate ligand exposure to purinergic receptors. In this study, we investigated the expression, localization and activities of ectonucleotidases using Caco-2 cells, a model of human intestinal epithelial cells. In addition, by studying ATP release and the rates of extracellular ATP (eATP) hydrolysis, we analyzed the contribution of these processes to the regulation of eATP in these cells. Results show that Caco-2 cells regulate the metabolism of eATP and by-products by ecto-nucleoside triphosphate diphosphohydrolase-1 and -2, a neutral ecto-phosphatase and ecto-5'-nucleotidase. All these ectoenzymes were kinetically characterized using intact cells, and their presence confirmed by denatured and native gels, western blot and cytoimmunofluorescence techniques. In addition, regulation of eATP was studied by monitoring the dynamic balance between intracellular ATP release and ectoATPase activity. Following mechanical and hypotonic stimuli, Caco-2 cells triggered a strong but transient release of intracellular ATP, with almost no energy cost, leading to a steep increase of eATP concentration, which was later reduced by ectoATPase activity. A data-driven algorithm allowed quantifying and predicting the rates of ATP release and ATP consumption contributing to the dynamic accumulation of ATP at the cell surface.
Collapse
Affiliation(s)
- J Schachter
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - C L Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Z Bazzi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M P Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - G Corradi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - C Hattab
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - D E Rinaldi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - J Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - M A Ostuni
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - P J Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
6
|
Douguet L, Janho Dit Hreich S, Benzaquen J, Seguin L, Juhel T, Dezitter X, Duranton C, Ryffel B, Kanellopoulos J, Delarasse C, Renault N, Furman C, Homerin G, Féral C, Cherfils-Vicini J, Millet R, Adriouch S, Ghinet A, Hofman P, Vouret-Craviari V. A small-molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy. Nat Commun 2021; 12:653. [PMID: 33510147 PMCID: PMC7843983 DOI: 10.1038/s41467-021-20912-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Only a subpopulation of non-small cell lung cancer (NSCLC) patients responds to immunotherapies, highlighting the urgent need to develop therapeutic strategies to improve patient outcome. We develop a chemical positive modulator (HEI3090) of the purinergic P2RX7 receptor that potentiates αPD-1 treatment to effectively control the growth of lung tumors in transplantable and oncogene-induced mouse models and triggers long lasting antitumor immune responses. Mechanistically, the molecule stimulates dendritic P2RX7-expressing cells to generate IL-18 which leads to the production of IFN-γ by Natural Killer and CD4+ T cells within tumors. Combined with immune checkpoint inhibitor, the molecule induces a complete tumor regression in 80% of LLC tumor-bearing mice. Cured mice are also protected against tumor re-challenge due to a CD8-dependent protective response. Hence, combination treatment of small-molecule P2RX7 activator followed by immune checkpoint inhibitor represents a strategy that may be active against NSCLC.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Combined Modality Therapy
- Female
- HEK293 Cells
- Humans
- Immune Checkpoint Inhibitors/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immunotherapy/methods
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-18/genetics
- Interleukin-18/immunology
- Interleukin-18/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Structure
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2X7/metabolism
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Survival Analysis
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Mice
Collapse
Affiliation(s)
| | - Serena Janho Dit Hreich
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- FHU OncoAge, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Jonathan Benzaquen
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- FHU OncoAge, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Laetitia Seguin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- FHU OncoAge, Nice, France
| | - Thierry Juhel
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Xavier Dezitter
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, Lille, France
| | | | - Bernhard Ryffel
- INEM-UMR7355, Institute of Molecular Immunology and Neurogenetic, University and CNRS, Orleans, France
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Cecile Delarasse
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Nicolas Renault
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, Lille, France
| | - Christophe Furman
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, Lille, France
| | - Germain Homerin
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Hautes Etudes d'Ingénieur (HEI), JUNIA, UC Lille, Laboratoire de Chimie Durable et Santé, Lille, France
| | - Chloé Féral
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- FHU OncoAge, Nice, France
| | | | - Régis Millet
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, Lille, France
| | - Sahil Adriouch
- Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Alina Ghinet
- Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, University of Lille, Lille, France
- Hautes Etudes d'Ingénieur (HEI), JUNIA, UC Lille, Laboratoire de Chimie Durable et Santé, Lille, France
- Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, Iasi, Romania
| | - Paul Hofman
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- FHU OncoAge, Nice, France
- Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France
| | - Valérie Vouret-Craviari
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
- FHU OncoAge, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
7
|
Martínez-Cuesta MÁ, Blanch-Ruiz MA, Ortega-Luna R, Sánchez-López A, Álvarez Á. Structural and Functional Basis for Understanding the Biological Significance of P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21228454. [PMID: 33182829 PMCID: PMC7696479 DOI: 10.3390/ijms21228454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways. Diverse drugs and a few endogenous molecules have been highlighted as extracellular allosteric modulators of P2X7R. Therefore, studies in human cells that constitutively express P2X7R need to investigate the precise endogenous mediator located nearby the activation/modulation domains of the receptor. Such research could help us understand the possible physiological ATP-mediated P2X7R homeostasis signaling.
Collapse
Affiliation(s)
- María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| | - María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.); (A.S.-L.)
- CIBERehd, Valencia, Spain
- Correspondence: (M.Á.M.-C.); (Á.Á.); Tel.: +34-963983716 (M.Á.M.-C.); +34-963864898 (Á.Á.)
| |
Collapse
|
8
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
9
|
Vuerich M, Mukherjee S, Robson SC, Longhi MS. Control of Gut Inflammation by Modulation of Purinergic Signaling. Front Immunol 2020; 11:1882. [PMID: 33072065 PMCID: PMC7544737 DOI: 10.3389/fimmu.2020.01882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two of the most common IBD manifestations and are both associated with unfettered inflammation, often refractory to conventional immunosuppressive treatment. In both conditions, imbalance between effector and regulatory cell immune responses has been documented and is thought to contribute to disease pathogenesis. Purinergic signaling is a known modulator of systemic and local inflammation and growing evidences point to extracellular ATP/adenosine imbalance as a key determinant factor in IBD-associated immune dysregulation. In vitro and pre-clinical studies suggest a role for both ATP (P2) and adenosine (P1) receptors in dictating onset and severity of the disease. Moreover, our experimental data indicate ENTPD1/CD39 and CD73 ectoenzymes as pivotal modulators of intestinal inflammation, with clear translational importance. Here we will provide an updated overview of the current knowledge on the role of the purinergic signaling in modulating immune responses in IBD. We will also review and discuss the most promising findings supporting the use of purinergic-based therapies to correct immune dysregulation in CD and UC.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Samiran Mukherjee
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Cao F, Hu LQ, Yao SR, Hu Y, Wang DG, Fan YG, Pan GX, Tao SS, Zhang Q, Pan HF, Wu GC. P2X7 receptor: A potential therapeutic target for autoimmune diseases. Autoimmun Rev 2019; 18:767-777. [PMID: 31181327 DOI: 10.1016/j.autrev.2019.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
P2X7 receptor (P2X7R), a distinct ligand-gated ion channel, is a member of purinergic type 2 receptor family with ubiquitous expression in human body. Previous studies have revealed a pivotal role of P2X7R in innate and adaptive immunity. Once activated, it will meditate some vital cascaded responses including the assembly of nucleotide-binding domain (NOD) like receptor protein 3 (NLRP3) inflammasome, non-classical secretion of IL-1β, modulation of cytokine-independent pathways in inflammation such as P2X7R- transglutaminase-2 (TG2) and P2X7R-cathepsin pathway, activation and regulation of T cells, etc. In fact, above responses have been identified to be involved in the development of autoimmunity, specifically, the NLRP3 inflammasome could promote inflammation in massive autoimmune diseases and TG2, as well as cathepsin may contribute to joint destruction and degeneration in inflammatory arthritis. Recently, numerous evidences further suggested the significance of P2X7R in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In this review, we will succinctly discuss the biological characteristics and summarize the recent progress of the involvement of P2X7R in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Qin Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Shu-Ran Yao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan Hu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Gui-Xia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China.
| |
Collapse
|
11
|
Benzaquen J, Heeke S, Janho Dit Hreich S, Douguet L, Marquette CH, Hofman P, Vouret-Craviari V. Alternative splicing of P2RX7 pre-messenger RNA in health and diseases: Myth or reality? Biomed J 2019; 42:141-154. [PMID: 31466708 PMCID: PMC6717933 DOI: 10.1016/j.bj.2019.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) tremendously increases the use of genetic information by generating protein isoforms that differ in protein-protein interactions, catalytic activity and/or subcellular localization. This review is not dedicated to AS in general, but rather we focus our attention on AS of P2RX7 pre-mRNA. Whereas P2RX7 mRNA is expressed by virtually all eukaryotic mammalian cells, the expression of this channel receptor is restrained to certain cells. When expressed at the cell membrane, P2RX7 controls downstream events including release of inflammatory molecules, phagocytosis, cell proliferation and death and metabolic events. Therefore, P2RX7 is an important actor of health and diseases. In this review, we summarize the general mechanisms leading to AS. Further, we recapitulate our current knowledge concerning the functional regions in P2RX7, identified at the genetic or exonic levels, and how AS may affect the expression of these regions. Finally, the potential of P2RX7 splice variants to control the fate of cancer cells is discussed.
Collapse
Affiliation(s)
- Jonathan Benzaquen
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France
| | - Simon Heeke
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | | | | - Charles Hugo Marquette
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; FHU OncoAge, Nice, France; University of Cote d'Azur, CHU de Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Paul Hofman
- University of Cote d'Azur, CNRS, INSERM, IRCAN, Nice, France; Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France; Hospital-Related Biobank (BB-0033-00025), Pasteur Hospital, Nice, France; FHU OncoAge, Nice, France
| | | |
Collapse
|
12
|
Abstract
Inflammatory bowel disease is a chronic nonspecific inflammatory disease of the intestine. Its pathogenesis is not yet fully understood. It may be related to heredity, environmental triggers, infection, immune dysfunction and other factors. Purinergic receptor (P2X7R) ligand-gated ion channel is closely related to inflammation and widely expressed in intestinal cells. Previous studies have shown that ATP/P2X7R signal is involved in the pathogenesis of intestinal inflammation, but its specific mechanism needs further study. This article reviews the research progress of P2X7 receptor in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajun Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| | - Xiaowei Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
13
|
Hu WS, Li SH, Wu QF. Purinergic signaling in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:125-130. [DOI: 10.11569/wcjd.v27.i2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disease of the gut. In recent years, its incidence has continued to rise. So far, the exact cause of IBD is still unknown. Prinergic signaling is widely involved in the body's inflammatory immune response and is closely related to the occurrence of pain. A growing body of evidence indicates that purinergic signaling and its receptor system play an important role in IBD, and are widely involved in the development of IBD, which provides a new idea for its treatment. This article reviews the role of purinergic signaling in IBD.
Collapse
Affiliation(s)
- Wei-Shang Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Si-Hui Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Qiao-Feng Wu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
14
|
ATP as a Pathophysiologic Mediator of Bacteria-Host Crosstalk in the Gastrointestinal Tract. Int J Mol Sci 2018; 19:ijms19082371. [PMID: 30103545 PMCID: PMC6121306 DOI: 10.3390/ijms19082371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, such as adenosine triphosphate (ATP), are released from host cells including nerve termini, immune cells, injured or dead cells, and the commensal bacteria that reside in the gut lumen. Extracellular ATP interacts with the host through purinergic receptors, and promotes intercellular and bacteria-host communication to maintain the tissue homeostasis. However, the release of massive concentrations of ATP into extracellular compartments initiates acute and chronic inflammatory responses through the activation of immunocompetent cells (e.g., T cells, macrophages, and mast cells). In this review, we focus on the functions of ATP as a pathophysiologic mediator that is required for the induction and resolution of inflammation and inter-species communication.
Collapse
|
15
|
Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018; 9:212. [PMID: 29593540 PMCID: PMC5861216 DOI: 10.3389/fphar.2018.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation-related intestinal diseases are a set of various conditions presenting an overactive enteric immune system. A continuous overproduction of pro-inflammatory cytokines and a decreased production of anti-inflammatory modulators are generally observed, while morpho-functional alterations of the enteric nervous system lead to intestinal secretory and motor dysfunctions. The factors at the basis of these conditions are still to be totally identified and current therapeutic strategies are aimed only at achieving and maintaining remission states, by using therapeutic tools like aminosalicylates, corticosteroids, immunomodulators, biological drugs (i.e., monoclonal antibodies), and eventually surgery. Recent reports described a key role of purinergic mediators (i.e., adenosine and its nucleotides ATP and ADP) in the regulation of the activity of immune cells and enteric nervous system, showing also that alterations of the purinergic signaling are linked to pathological conditions of the intestinal tract. These data prompted to a series of investigations to test the therapeutic potential for inflammation-related intestinal conditions of compounds able to restore or modulate an altered purinergic signaling within the gut. This review provides an overview on these investigations, describing the results of preclinical and/or clinical evaluation of compounds able to stimulate or inhibit specific P2 (i.e., P2X7) or P1 (i.e., A2A or A3) receptor signaling and to modify the adenosine levels through the modulation of enzymes activity (i.e., Adenosine Deaminase) or nucleoside transporters. Recent developments in the field are also reported and the most promising purine-based therapeutic strategies for the treatment of inflammation-related gastrointestinal disorders are schematically summarized.
Collapse
Affiliation(s)
- Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
16
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
17
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
18
|
Jiao D, Wong CK, Tsang MSM, Chu IMT, Liu D, Zhu J, Chu M, Lam CWK. Activation of Eosinophils Interacting with Bronchial Epithelial Cells by Antimicrobial Peptide LL-37: Implications in Allergic Asthma. Sci Rep 2017; 7:1848. [PMID: 28500314 PMCID: PMC5431911 DOI: 10.1038/s41598-017-02085-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/05/2017] [Indexed: 01/21/2023] Open
Abstract
The role of antimicrobial peptide LL-37 in asthma exacerbation is unclear. Microbial infection, which is the most common inducer of asthma exacerbation, is accompanied by elevated LL-37. The present study found that co-culture of eosinophils and bronchial epithelial cell line BEAS-2B significantly enhanced intercellular adhesion molecule-1 on both cells and CD18 expression on eosinophils upon LL-37 stimulation. IL-6, CXCL8 and CCL4 were substantially released in co-culture in the presence of LL-37. LL-37 triggered the activation of eosinophils interacting with BEAS-2B cells in a P2X purinoceptor 7/epidermal growth factor receptor-dependent manner. Eosinophils and BEAS-2B cells differentially contribute to the expression of cytokines/chemokines in co-culture, while soluble mediators were sufficient to mediate the intercellular interactions. Intracellular p38-mitogen-activated protein kinase, extracellular signal-regulated kinase and NF-κB signaling pathways were essential for LL-37-mediated activation of eosinophils and BEAS-2B cells. By using the ovalbumin-induced asthmatic model, intranasal administration of mCRAMP (mouse ortholog of LL-37) in combination with ovalbumin during the allergen challenge stage significantly enhanced airway hyperresponsiveness and airway inflammation in sensitized mice, thereby implicating a deteriorating role of LL-37 in allergic asthma. This study provides evidence of LL-37 in triggering asthma exacerbation via the activation of eosinophils interacting with bronchial epithelial cells in inflammatory airway.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China. .,Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Dehua Liu
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
19
|
Jun HK, Jung YJ, Choi BK. Inflammasome activators induce fibronectin expression and release in macrophages. Cell Microbiol 2017; 19. [PMID: 27870323 DOI: 10.1111/cmi.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
Abstract
Extracellular fibronectin (Fn) can activate pro-inflammatory pathways and serves as an endogenous danger signalling molecule; thus, it has been suggested as a biomarker for several diseases. In the present study, we found that pathogen-derived activators of the inflammasomes induce the expression and secretion of Fn in macrophages through a mechanism involving adenosine triphosphate and caspase-1 activation. We also found that plasma Fn induces caspase-1 activation and cell death in macrophages, epithelial cells, and fibroblasts. Together, these results indicate that Fn plays a critical role in inflammasome-activated cells by amplifying caspase-1 activation and inducing inflammatory cell death.
Collapse
Affiliation(s)
| | | | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea.,Dental Research Institute, School of Dentistry, Seoul National University, Jongno-gu, Seoul, South Korea
| |
Collapse
|
20
|
Abstract
The P2X7 receptor is a trimeric ion channel gated by extracellular adenosine 5'-triphosphate. The receptor is present on an increasing number of different cells types including stem, blood, glial, neural, ocular, bone, dental, exocrine, endothelial, muscle, renal and skin cells. The P2X7 receptor induces various downstream events in a cell-specific manner, including inflammatory molecule release, cell proliferation and death, metabolic events, and phagocytosis. As such this receptor plays important roles in heath and disease. Increasing knowledge about the P2X7 receptor has been gained from studies of, but not limited to, protein chemistry including cloning, site-directed mutagenesis, crystal structures and atomic modeling, as well as from studies of primary tissues and transgenic mice. This chapter focuses on the P2X7 receptor itself. This includes the P2RX7 gene and its products including splice and polymorphic variants. This chapter also reviews modulators of P2X7 receptor activation and inhibition, as well as the transcriptional regulation of the P2RX7 gene via its promoter and enhancer regions, and by microRNA and long-coding RNA. Furthermore, this chapter discusses the post-translational modification of the P2X7 receptor by N-linked glycosylation, adenosine 5'-diphosphate ribosylation and palmitoylation. Finally, this chapter reviews interaction partners of the P2X7 receptor, and its cellular localisation and trafficking within cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
21
|
Gicquel T, Le Daré B, Boichot E, Lagente V. Purinergic receptors: new targets for the treatment of gout and fibrosis. Fundam Clin Pharmacol 2016; 31:136-146. [PMID: 27885718 DOI: 10.1111/fcp.12256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate is involved in many metabolic reactions, but it has also a role as a cellular danger signal transmitted through purinergic receptors (PRs). Indeed, adenosine 5'-triphosphate (ATP) can bind to PRs which are found in the membrane of many cell types, although the relative proportions of the receptor subtypes differ. PRs are classified according to genetic and pharmacological criteria and especially their affinities for agonists and their transduction mechanism (i.e. as metabotropic P2YRs or ionotropic P2XRs). Extracellular ATP release by activated or necrotic cells may activate various PRs and especially P2X7R, the best-characterized PR, on immune cells. P2X7R is known to regulate the activation of the Nod-like receptor (NLR)-family protein, NLRP3 inflammasome, which permit the release of IL-1β, a potent pro-inflammatory cytokine. The P2X7R/NLRP3 pathway is involved in many inflammatory diseases, such as gout, and in fibrosis diseases associated with inflammatory process, liver or lung fibrosis. Some authors imaging also a real promising therapeutic potential of P2X7R blockage. Thus, several pharmaceutical companies have developed P2X7R antagonists as novel anti-inflammatory drug candidates. Clinical trials of the efficacy of these antagonists are now underway. A better understanding of the P2X7R/NLRP3 signalling pathways permits the identification of targets and the development of a new class of drugs able to inhibit the fibrogenesis process and collagen deposition.
Collapse
Affiliation(s)
- Thomas Gicquel
- Laboratoire de toxicologie biologique et médico-légale, CHU Rennes, F-35033, Rennes, France.,UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Brendan Le Daré
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France.,CHU Rennes, Pôle Pharmacie, F-35033, Rennes, France
| | - Elisabeth Boichot
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Vincent Lagente
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| |
Collapse
|
22
|
P2X7 receptor-dependent tuning of gut epithelial responses to infection. Immunol Cell Biol 2016; 95:178-188. [PMID: 27559003 PMCID: PMC5181772 DOI: 10.1038/icb.2016.75] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
Infection and injury of the gut are associated with cell damage and release of molecules such as extracellular adenosine 5'-triphosphate (ATP), which is recognised by the purinergic P2X7 receptor (P2X7R). P2X7R is widely expressed in the gut by antigen-presenting cells (APCs) and epithelial cells, but the role of the P2X7R on epithelial cells is poorly understood. We investigated P2X7R in intestinal epithelium in vitro and in vivo using two model infections, Toxoplasma gondii and Trichinella spiralis. Lipopolysaccharide and ATP treatment of intestinal epithelial cells and infection with T. gondii in vitro did not promote inflammasome-associated interleukin-1β (IL-1β) or IL-18 secretion, but promoted C-C motif chemokine ligand 5 (CCL5), tumour necrosis factor-α and IL-6 production that were significantly reduced when the P2X7R was blocked. Similarly, in vivo, infection with either T. spiralis or T. gondii induced rapid upregulation of epithelial CCL5 in wild-type (wild-type (WT)) mice that was significantly reduced in P2X7R-/- littermate controls. The effects of reduced epithelial CCL5 were assayed by investigating recruitment of dendritic cells (DCs) to the epithelium. Infection induced a rapid recruitment of CD11c+CD103+ DC subsets into the epithelial layer of WT mice but not P2X7R-/- mice. In vitro chemotaxis assays and bone marrow chimeras demonstrated the importance of epithelial P2X7R in DC recruitment. P2X7R signalling in epithelial cells mediates chemokine responses to promote initiation of host immunity to infection.
Collapse
|
23
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
24
|
Quinn EM, Coleman C, Molloy B, Dominguez Castro P, Cormican P, Trimble V, Mahmud N, McManus R. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation. PLoS One 2015; 10:e0140049. [PMID: 26444573 PMCID: PMC4596691 DOI: 10.1371/journal.pone.0140049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis.
Collapse
Affiliation(s)
- Emma M. Quinn
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Ciara Coleman
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Ben Molloy
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Patricia Dominguez Castro
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Grange Research Centre, Teagasc, Dunsany, Ireland
| | - Valerie Trimble
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Nasir Mahmud
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
| | - Ross McManus
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre, St James’s Hospital, Dublin, 8, Ireland
- * E-mail:
| |
Collapse
|
25
|
Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis. PLoS One 2015; 10:e0129048. [PMID: 26053862 PMCID: PMC4460092 DOI: 10.1371/journal.pone.0129048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/04/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Oral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis. PRINCIPAL FINDINGS Mice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFκB activation in P2X7R-deficient mice. CONCLUSIONS Our data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation.
Collapse
|
26
|
Evaluation and comparison of three different separation techniques for analysis of retroamide enantiomers and their biological evaluation against h-P2X7 receptor. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 986-987:35-43. [DOI: 10.1016/j.jchromb.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
27
|
Kim SH, Lee HY, Jang YS. Expression of the ATP-gated P2X7 Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment. Immune Netw 2015; 15:44-9. [PMID: 25713508 PMCID: PMC4338267 DOI: 10.4110/in.2015.15.1.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Interactions between microbes and epithelial cells in the gastrointestinal tract are closely associated with regulation of intestinal mucosal immune responses. Recent studies have highlighted the modulation of mucosal immunity by microbe-derived molecules such as ATP and short-chain fatty acids. In this study, we undertook to characterize the expression of the ATP-gated P2X7 receptor (P2X7R) on M cells and its role in gastrointestinal mucosal immune regulation because it was poorly characterized in Peyer's patches, although purinergic signaling via P2X7R and luminal ATP have been considered to play an important role in the gastrointestinal tract. Here, we present the first report on the expression of P2X7R on M cells and characterize the role of P2X7R in immune enhancement by ATP or LL-37.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea. ; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Korea
| | - Ha-Yan Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea. ; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
28
|
Bilodeau MS, Arguin G, Gendron FP. C/EBPβ regulates P2X7 receptor expression in response to glucose challenge in intestinal epithelial cells. Biochem Cell Biol 2015; 93:38-46. [DOI: 10.1139/bcb-2014-0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of the ATP-dependent P2X7 receptor modulates glucose transport in intestinal epithelial cells through the downregulation of glucose transporter GLUT2. In the present study, we show that an increase in glucose concentration stimulates P2X7 receptor transcription via modulation of CCAAT/enhancer binding proteins (C/EBPs) α and β expression. The described human P2X7 receptor promoter region (GenBank Y12851) was cloned upstream of a luciferase reporter gene in pGL4.10 plasmid and used to determine whether C/EBPs, namely C/EBPα and C/EBPβ, are able to stimulate the transcription of P2X7 receptor. Results show that C/EBPβ was the main regulator of P2X7 receptor expression in response to a glucose challenge. Chromatin immunoprecipitation (ChIP) assays further revealed that C/EBPβ occupied the –213 to +6 nt P2X7 promoter region. Surprisingly, C/EBPα was also able to bind this region as revealed by ChIP assays, but without inducing receptor transcription. In fact, C/EBPα and the C/EBPβ-LIP isoform blocked the C/EBPβ-dependent regulation of P2X7 receptor transcription. These findings suggest that glucose is not only the major source of energy for cell function but may also act as a signaling molecule to stimulate the expression of regulatory proteins.
Collapse
Affiliation(s)
- Maude S. Bilodeau
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| |
Collapse
|
29
|
Abstract
Intestinal epithelial cells are fundamental to maintain barrier integrity and to participate in food degradation and absorption, but they can also decipher signals coming from the outside world and 'educate' the immune system accordingly. In particular, they interact with dendritic cells (DCs) and other intraepithelial immune cells to drive tolerogenic responses under steady state, but they can also release immune mediators to recruit inflammatory cells and to elicit immunity to infectious agents. When these interactions are deregulated, immune disorders can develop. In this review, we discuss some important features of epithelial cells and DCs and their fruitful interactions.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
30
|
Hofman P, Cherfils-Vicini J, Bazin M, Ilie M, Juhel T, Hébuterne X, Gilson E, Schmid-Alliana A, Boyer O, Adriouch S, Vouret-Craviari V. Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res 2015; 75:835-45. [PMID: 25564520 DOI: 10.1158/0008-5472.can-14-1778] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colitis-associated cancer (CAC) is a complication of inflammatory bowel disease (IBD). Binding of extracellular ATP to the purinergic receptor P2RX7 has emerged as a critical event in controlling intestinal inflammation, acting to limit elevation of proinflammatory mast cells and cytokines and promote survival of regulatory T cells (Treg) and enteric neurons. In this study, we investigated the effect of P2RX7 blockade in an established mouse model of CAC. Using genetic and pharmacologic tools, we found unexpectedly that while P2RX7 mediated inflammatory responses, it also acted at an early time to suppress CAC development. P2RX7 blockade enhanced proliferation of intestinal epithelial cells and protected them from apoptosis. The proliferative effects of P2RX7 blockade were associated with an increased production of TGFβ1 that was sufficient to stimulate the proliferation of intestinal epithelial cells. Finally, P2RX7 blockade also altered immune cell infiltration and promoted Treg accumulation within lesions of the digestive system. Taken together, our findings reveal an unexpected role for P2RX7 in preventing CAC, suggesting cautions in the use of P2RX7 inhibitors to treat IBD given the possibility of increasing risks CAC as a result.
Collapse
Affiliation(s)
- Paul Hofman
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France. Centre Antoine Lacassagne, Nice, France
| | - Julien Cherfils-Vicini
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Centre Antoine Lacassagne, Nice, France
| | - Marie Bazin
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Centre Antoine Lacassagne, Nice, France
| | - Marius Ilie
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, Nice, France. Centre Antoine Lacassagne, Nice, France
| | - Thierry Juhel
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Centre Antoine Lacassagne, Nice, France
| | - Xavier Hébuterne
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Laboratory of Gastroenterology, Archet II Hospital, Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Centre Antoine Lacassagne, Nice, France. Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, Nice, France
| | - Annie Schmid-Alliana
- University of Nice-Sophia Antipolis, Nice, France. iBV, UMR7277 CNRS-UMR1091 INSERM, Nice, France
| | - Olivier Boyer
- INSERM U905, Rouen, France. Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, Rouen, France
| | - Sahil Adriouch
- INSERM U905, Rouen, France. Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, Rouen, France
| | - Valérie Vouret-Craviari
- Institute for Research on Cancer and Aging, Nice, France; IRCAN U1081 UMR CNRS 7284, Nice Cedex, France. University of Nice-Sophia Antipolis, Nice, France. Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
31
|
Rescigno M. Microbial Sensing and Regulation of Mucosal Immune Responses by Intestinal Epithelial Cells. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages. Genes Immun 2014; 15:477-86. [PMID: 25008860 DOI: 10.1038/gene.2014.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Abstract
Recent clinical trials in patients with inflammatory diseases like multiple sclerosis (MS) or inflammatory bowel disease (IBD) have shown the beneficial effects of probiotic helminth administration, although the underlying mechanism of action remains largely unknown. Potential cellular targets may include innate immune cells that propagate inflammation in these diseases, like pro-inflammatory macrophages. We here investigated the effects of the helminth Trichuris suis soluble products (SPs) on the phenotype and function of human inflammatory (granulocyte-macrophage colony-stimulating factor (GM-CSF)-differentiated) macrophages. Interestingly, we here show that T. suis SPs potently skew inflammatory macrophages into a more anti-inflammatory state in a Toll-like receptor 4 (TLR4)-dependent manner, and less effects are seen when stimulating macrophages with TLR2 or -3 ligands. Gene microarray analysis of GM-CSF-differentiated macrophages further revealed that many TLR4-induced inflammatory mediators, including interleukin (IL)-12B, CCL1 and CXCL9, are downregulated by T. suis SPs. In particular, we observed a strong reduction in the expression and function of P2RX7, a purinergic receptor involved in macrophage inflammation, leading to reduced IL-1β secretion. In conclusion, we show that T. suis SPs suppress a broad range of inflammatory pathways in GM-CSF-differentiated macrophages in a TLR4-dependent manner, thereby providing enhanced mechanistic insight into the therapeutic potential of this helminth for patients with inflammatory diseases.
Collapse
|
33
|
Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, Christofi FL. Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 2014; 20:1259-87. [PMID: 24859298 PMCID: PMC4340257 DOI: 10.1097/mib.0000000000000047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), functional dyspepsia, or motility disorders are not adequate, and purinergic drugs offer exciting new possibilities. Gastrointestinal symptoms that could be targeted for therapy include visceral pain, inflammatory pain, dysmotility, constipation, and diarrhea. The focus of this review is on the potential for developing purinergic drugs for clinical trials to treat gastrointestinal symptoms. Purinergic receptors are divided into adenosine P1 (A(1), A(2A), A(2B), A(3)), ionotropic ATP-gated P2X ion channel (P2X(1-7)), or metabotropic P2Y(1,2,4,6,11-14) receptors. There is good experimental evidence for targeting A(2A), A(2B), A(3), P2X(7), and P2X(3) receptors or increasing endogenous adenosine levels to treat IBD, inflammatory pain, IBS/visceral pain, inflammatory diarrhea, and motility disorders. Purine genes are also potential biomarkers of disease. Advances in medicinal chemistry have an accelerated pace toward clinical trials: Methotrexate and sulfasalazine, used to treat IBD, act by stimulating CD73-dependent adenosine production. ATP protects against NSAID-induced enteropathy and has pain-relieving properties in humans. A P2X(7)R antagonist AZD9056 is in clinical trials for Crohn's disease. A(3) adenosine receptor drugs target inflammatory diseases (e.g., CF101, CF102). Dipyridamole, a nucleoside uptake inhibitor, is in trials for endotoxemia. Drugs for pain in clinical trials include P2X(3)/P2X(2/3) (AF-219) and P2X(7) (GSK1482160) antagonists and A(1) (GW493838) or A(2A) (BVT.115959) agonists. Iberogast is a phytopharmacon targeting purine mechanisms with efficacy in IBS and functional dyspepsia. Purinergic drugs have excellent safety/efficacy profile for prospective clinical trials in IBD, IBS, functional dyspepsia, and inflammatory diarrhea. Genetic polymorphisms and caffeine consumption may affect susceptibility to treatment. Further studies in animals can clarify mechanisms and test new generation drugs. Finally, there is still a huge gap in our knowledge of human pathophysiology of purinergic signaling.
Collapse
Affiliation(s)
- Fernando Ochoa-Cortes
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Andromeda Liñán-Rico
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health
| | - Fievos L. Christofi
- Department of Anesthesiology, The Wexner Medical Center at The Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease. Inflamm Bowel Dis 2014; 20:444-57. [PMID: 24412990 DOI: 10.1097/01.mib.0000441201.10454.06] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Extracellular nucleotides released in conditions of cell stress alert the immune system from tissue injury or inflammation. We hypothesized that the P2X7 receptor (P2X7-R) could regulate key elements in inflammatory bowel disease pathogenesis. METHODS Colonoscopy samples obtained from patients with Crohn's disease (CD), ulcerative colitis, and controls were used to analyze P2X7-R expression by RT and real-time PCR, immunohistochemistry, and confocal microscopy. Inflammatory response was determined by the levels of cytokines by enzyme-linked immunosorbent assay in cultures of intestinal explants. Apoptosis was determined by the TUNEL assay. P2X7-R C57BL/6 mice were treated with trinitrobenzene sulfonic acid or dextran sulfate sodium (DSS) for inducing colitis. RESULTS P2X7-R was expressed in higher levels in inflamed CD epithelium and lamina propria, where it colocalizes more with dendritic cells and macrophages. Basal levels of P2X7-R mRNA were higher in CD inflamed mucosa compared with noninflamed CD and controls and were upregulated after interferon-γ in controls. Apoptotic rates were higher in CD epithelium and lamina propria compared with ulcerative colitis and controls. Levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17 were higher, whereas IL-10 was lower in CD compared with controls. Levels of tumor necrosis factor-α-α and interleukin-1β increased after adenosine-triphosphate and decreased after KN62 treatment in CD. P2X7-R animals did not develop trinitrobenzene sulfonic acid or DSS colitis. CONCLUSIONS The upregulation of P2X7-R in CD inflamed mucosa is consistent with the involvement of purinoceptors in inflammation and apoptosis. These observations may implicate purinergic signaling in the pathogenesis of intestinal inflammation, and the P2X7-R may represent a novel therapeutic target in CD.
Collapse
|
35
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
36
|
Makarenkova HP, Shestopalov VI. The role of pannexin hemichannels in inflammation and regeneration. Front Physiol 2014; 5:63. [PMID: 24616702 PMCID: PMC3933922 DOI: 10.3389/fphys.2014.00063] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/02/2014] [Indexed: 12/19/2022] Open
Abstract
Tissue injury involves coordinated systemic responses including inflammatory response, targeted cell migration, cell-cell communication, stem cell activation and proliferation, and tissue inflammation and regeneration. The inflammatory response is an important prerequisite for regeneration. Multiple studies suggest that extensive cell-cell communication during tissue regeneration is coordinated by purinergic signaling via extracellular adenosine triphosphate (ATP). Most recent data indicates that ATP release for such communication is mediated by hemichannels formed by connexins and pannexins. The Pannexin family consists of three vertebrate proteins (Panx 1, 2, and 3) that have low sequence homology with other gap junction proteins and were shown to form predominantly non-junctional plasma membrane hemichannels. Pannexin-1 (Panx1) channels function as an integral component of the P2X/P2Y purinergic signaling pathway and is arguably the major contributor to pathophysiological ATP release. Panx1 is expressed in many tissues, with highest levels detected in developing brain, retina and skeletal muscles. Panx1 channel expression and activity is reported to increase significantly following injury/inflammation and during regeneration and differentiation. Recent studies also report that pharmacological blockade of the Panx1 channel or genetic ablation of the Panx1 gene cause significant disruption of progenitor cell migration, proliferation, and tissue regeneration. These findings suggest that pannexins play important roles in activation of both post-injury inflammatory response and the subsequent process of tissue regeneration. Due to wide expression in multiple tissues and involvement in diverse signaling pathways, pannexins and connexins are currently being considered as therapeutic targets for traumatic brain or spinal cord injuries, ischemic stroke and cancer. The precise role of pannexins and connexins in the balance between tissue inflammation and regeneration needs to be further understood.
Collapse
Affiliation(s)
- Helen P Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA
| | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, Vavilov Institute for General Genetics Moscow, Russia
| |
Collapse
|
37
|
P2X7 receptor polymorphisms do not influence endothelial function and vascular tone in neo-diagnosed, treatment-naive essential hypertensive patients. J Hypertens 2013; 31:2362-9. [DOI: 10.1097/hjh.0b013e3283653ff5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosário A, Schanaider A, Coutinho-Silva R, de Souza HSP. Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:65-78. [PMID: 24184714 DOI: 10.1016/j.bbadis.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND The P2X7 receptor (P2X7-R) is a non-selective adenosine triphosphate-gated cation channel present in epithelial and immune cells, and involved in inflammatory response. Extracellular nucleotides released in conditions of cell stress or inflammation may function as a danger signal alerting the immune system from inflammation. We investigated the therapeutic action of P2X7-R blockade in a model of inflammatory bowel disease. METHODS Rats with trinitrobenzene sulfonic (TNBS) acid-induced colitis were treated with the P2X7-R antagonists A740003 or brilliant blue G (BBG) through intra-peritoneal (IP) or intra-colonic (IC) injection prior to colitis induction. Clinical and endoscopic follow-up, histological scores, myeloperoxidase activity, densities of collagen fibers and goblet cells were evaluated. P2X7-R expression, NF-kappa B and Erk activities, and densities of T-cells and macrophages were analyzed by immunoperoxidase. The inflammatory response was determined by measuring inflammatory cytokines in cultures of colon explants, by enzyme-linked immunosorbent assay. Colonic apoptosis was determined by the TUNEL assay. RESULTS IP-BBG significantly attenuated the severity of colitis, myeloperoxidase activity, collagen deposition, densities of lamina propria T-cells and macrophages, while maintaining goblet cell densities. IP-BBG inhibited the increase in P2X7-R expression in parallel with apoptotic rates. TNF-α and interleukin-1β stabilized in low levels, while TGF-β and interleukin-10 did not change following IP-BBG-therapy. Colonic NF-kappa-B and Erk activation were significantly lower in IP-BBG-treated animals. Prophylactic IP-A740003 also protected rats against the development of TNBS-colitis. CONCLUSIONS Prophylactic systemic P2X7-R blockade is effective in the prevention of experimental colitis, probably due to a systemic anti-inflammatory action, interfering with a stress-inflammation amplification loop mediated by P2X7-R.
Collapse
Affiliation(s)
- Carla Caldas Marques
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; Laboratório de Imunologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Castrichini M, Lazzerini PE, Gamberucci A, Capecchi PL, Franceschini R, Natale M, Hammoud M, Moramarco A, Zimbone S, Gianchecchi E, Montilli C, Ricci G, Selvi E, Cantarini L, Galeazzi M, Laghi-Pasini F. The purinergic P2×7 receptor is expressed on monocytes in Behçet's disease and is modulated by TNF-α. Eur J Immunol 2013; 44:227-38. [PMID: 24105615 DOI: 10.1002/eji.201343353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 02/01/2023]
Abstract
The P2×7 receptor (P2×7r) is expressed in innate immune cells (e.g. monocyte/macrophages), playing a key role in IL-1β release. Since innate immune activation and IL-1β release seem to be implicated in Behçet's disease (BD), a systemic immune-inflammatory disorder of unknown origin, we hypothesized that P2×7r is involved in the pathogenesis of the disease. Monocytes were isolated from 18 BD patients and 17 healthy matched controls. In BD monocytes, an increased P2×7r expression and Ca(2+) permeability induced by the selective P2×7r agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) was observed. Moreover, IL-1β release from LPS-primed monocytes stimulated with BzATP was markedly higher in BD patients than in controls. TNF-α-incubated monocytes from healthy subjects almost reproduced the findings observed in BD patients, as demonstrated by the increase in P2×7r expression and BzATP-induced Ca(2+) intake. Our results provide evidence that in BD monocytes both the expression and function of the P2×7r are increased compared with healthy controls, as the possible result, at least in part, of a positive modulating effect of TNF-α on the receptor. These data indicate P2×7r as a new potential therapeutic target for the control of BD, further supporting the rationale for the use of anti-TNF-α drugs in the treatment of the disease.
Collapse
Affiliation(s)
- Monica Castrichini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 2013; 3:1034. [PMID: 22948816 PMCID: PMC3658010 DOI: 10.1038/ncomms2023] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023] Open
Abstract
Mast cells are known effector cells in allergic and inflammatory diseases, but their precise roles in intestinal inflammation remain unknown. Here we show that activation of mast cells in intestinal inflammation is mediated by ATP-reactive P2X7 purinoceptors. We find an increase in the numbers of mast cells expressing P2X7 purinoceptors in the colons of mice with colitis and of patients with Crohn's disease. Treatment of mice with a P2X7 purinoceptor-specific antibody inhibits mast cell activation and subsequent intestinal inflammation. Similarly, intestinal inflammation is ameliorated in mast cell-deficient KitW-sh/W-sh mice, and reconstitution with wild-type, but not P2x7−/− mast cells results in susceptibility to inflammation. ATP-P2X7 purinoceptor-mediated activation of mast cells not only induces inflammatory cytokines, but also chemokines and leukotrienes, to recruit neutrophils and subsequently exacerbate intestinal inflammation. These findings reveal the role of P2X7 purinoceptor-mediated mast cell activation in both the initiation and exacerbation of intestinal inflammation. Mast cells are mediators of type I allergic disease and inflammation. Here, Kurashima et al. show that mast cells are increased in the colons of mice with colitis, and that activation of the cells and subsequent inflammation can be blocked by inhibition of the purinoceptor, P2X7.
Collapse
|
42
|
Bourzac JF, L'Ériger K, Larrivée JF, Arguin G, Bilodeau MS, Stankova J, Gendron FP. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes. J Cell Physiol 2012; 228:120-9. [PMID: 22566162 DOI: 10.1002/jcp.24111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption.
Collapse
Affiliation(s)
- Jean-François Bourzac
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death. PLoS One 2012; 7:e51727. [PMID: 23272151 PMCID: PMC3522719 DOI: 10.1371/journal.pone.0051727] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/05/2012] [Indexed: 01/02/2023] Open
Abstract
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn’s disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria. Of particular interest, AIEC infection of neutrophil-like PLB-985 cells blocked autophagy at the autolysosomal step, which allowed intracellular survival of bacteria and exacerbated interleukin-8 (IL-8) production. Interestingly, this block in autophagy correlated with the induction of autophagic cell death. Likewise, stimulation of autophagy by nutrient starvation or rapamycin treatment reduced intracellular AIEC survival and IL-8 production. Finally, treatment with an inhibitor of autophagy decreased cell death of AIEC-infected neutrophil-like PLB-985 cells. In conclusion, excessive autophagy in AIEC infection triggered cell death of neutrophils.
Collapse
|
44
|
Jalilian I, Spildrejorde M, Seavers A, Curtis BL, McArthur JD, Sluyter R. Functional expression of the damage-associated molecular pattern receptor P2X7 on canine kidney epithelial cells. Vet Immunol Immunopathol 2012; 150:228-33. [DOI: 10.1016/j.vetimm.2012.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 09/10/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022]
|
45
|
Yao Y, Levings MK, Steiner TS. ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 2012; 42:3310-21. [PMID: 22987503 DOI: 10.1002/eji.201142213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/02/2012] [Accepted: 09/07/2012] [Indexed: 12/23/2022]
Abstract
Intestinal epithelial cells (IECs) normally promote the development of gut resident tolerogenic dendritic cells (DCs) and regulatory T cells, but how this process is altered in inflammatory bowel disease is not well characterized. Recently, we published that the cell injury signal ATP modulates IEC chemokine responses to the TLR5 ligand flagellin and exacerbates colitis in the presence of flagellin. We hypothesized that ATP switches these IECs from tolerogenic to proinflammatory, enhancing DC activation and immune responses to commensal antigens. Here, we report that ATP enhanced murine IEC production of KC, IL-6, TGF-β, and thymic stromal lymphopoietin in response to TLR1/2 stimulation by Pam(3) CSK(4) (PAM). Moreover, supernatants from IECs stimulated with ATP+PAM enhanced expression of CD80 on bone marrow derived dendritic cells, and increased their production of IL-12, IL-6, IL-23, TGF-β, and aldh1a2, suggesting a Th1/Th17 polarizing environment. DCs conditioned by stressed IECs stimulated an enhanced recall response to flagellin and supported the expansion of IFN-γ(+) and IL-17(+) memory T cells. Lastly, colonic administration of nonhydrolysable ATP increased production of IL-6 and Cxcl1 (KC) by IECs. These findings indicate that ATP influences the response of IECs to TLR ligands and biases the maturation of DCs to become inflammatory.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
46
|
Roberts JA, Lukewich MK, Sharkey KA, Furness JB, Mawe GM, Lomax AE. The roles of purinergic signaling during gastrointestinal inflammation. Curr Opin Pharmacol 2012; 12:659-66. [PMID: 23063457 DOI: 10.1016/j.coph.2012.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 02/09/2023]
Abstract
Extracellular purines play important roles as neurotransmitters and paracrine mediators in the gastrointestinal (GI) tract. Inflammation of the GI tract causes marked changes in the release and extracellular catabolism of purines, and can modulate purinoceptor expression and/or signaling. The functional consequences of this include suppression of the purinergic component of inhibitory neuromuscular and neurovascular transmission, increased release of purines from immune and epithelial cells, loss of enteric neurons to damage through P2X(7) purinoceptors, and enhanced activation of pain fibres. The purinergic system represents an important target for drug therapies that may improve GI inflammation and its consequences.
Collapse
Affiliation(s)
- Jane A Roberts
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
47
|
de Campos NE, Marques-da-Silva C, Corrêa G, Castelo-Branco MTL, de Souza HSP, Coutinho-Silva R. Characterizing the presence and sensitivity of the P2X7 receptor in different compartments of the gut. J Innate Immun 2012; 4:529-41. [PMID: 22508425 DOI: 10.1159/000336628] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 01/18/2012] [Indexed: 01/22/2023] Open
Abstract
Purinergic signaling has been established as an important feature of inflammation and homeostasis. The expression of a number of P2 receptor subtypes in the gut has been reported. In this study, using a well-known permeabilization method that is assessed by flow cytometry, we show that lymphocytes and macrophages from the mesenteric lymph nodes (MLN) and the peritoneal cavity exhibit different sensitivities to extracellular ATP. Compared with the macrophages, the lymphocytes are more sensitive to ATP in the MLN compartment, whereas in the peritoneal cavity the macrophages are more sensitive to ATP than the lymphocytes. In addition, we have shown that the epithelial cells from the small bowel are more resistant to the ATP effects than the cells from the colon. These cells, however, become susceptible after exposure to IFN-γ. Furthermore, by examining parameters such as pH manipulation, the exposure to divalent cations and the P2X7 antagonist Brilliant Blue G, and the use of cells from P2X7(-/-) mice, we have shown that the P2X7 receptors are the ATP-activated receptors responsible for the permeabilization phenomenon. In addition, using Western blot analysis, we have demonstrated the changes in the P2X7 receptor expression in immune cells isolated from different sites in the gut and in the gut-associated lymphoid tissues. Our findings suggest the existence of the site-specific modulation of P2X7 receptors on epithelial and immune cells, and we define purinergic signaling as a new regulatory element in the control of inflammation and cell fate in the gut and in the gut-associated lymphoid tissues.
Collapse
Affiliation(s)
- Nathalia Enes de Campos
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
48
|
Immunolocalization of NLRP3 Inflammasome in Normal Murine Airway Epithelium and Changes following Induction of Ovalbumin-Induced Airway Inflammation. J Allergy (Cairo) 2012; 2012:819176. [PMID: 22523501 PMCID: PMC3317233 DOI: 10.1155/2012/819176] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/15/2011] [Accepted: 12/04/2011] [Indexed: 11/17/2022] Open
Abstract
Little is known about innate immunity and components of inflammasomes in airway epithelium. This study evaluated immunohistological evidence for NLRP3 inflammasomes in normal and inflamed murine (Balb/c) airway epithelium in a model of ovalbumin (OVA) induced allergic airway inflammation. The airway epithelium of control mice exhibited strong cytoplasmic staining for total caspase-1, ASC, and NLRP3, whereas the OVA mice exhibited strong staining for active caspase-1, with redistribution of caspase-1, IL-1β and IL-18, indicating possible activation of the NLRP3 inflammasome. Active caspase-1, NLRP3, and other inflammasome components were also detected in tissue eosinophils from OVA mice, and may potentially contribute to IL-1β and IL-18 production. In whole lung, inRNA expression of NAIP and procaspase-1 was increased in OVA mice, whereas NLRP3, IL-1β and IL-18 decreased. Some OVA-treated mice also had significantly elevated and tightly correlated serum levels of IL-1β and TNFα. In cultured normal human bronchial epithelial cells, LPS priming resulted in a significant increase in NLRP3 and II-lp protein expression. This study is the first to demonstrate NLRP3 inflammasome components in normal airway epithelium and changes with inflammation. We propose activation and/or luminal release of the inflammasome is a feature of allergic airway inflammation which may contribute to disease pathogenesis.
Collapse
|
49
|
Madec S, Rossi C, Chiarugi M, Santini E, Salvati A, Ferrannini E, Solini A. Adipocyte P2X7 receptors expression: a role in modulating inflammatory response in subjects with metabolic syndrome? Atherosclerosis 2011; 219:552-8. [PMID: 21978920 DOI: 10.1016/j.atherosclerosis.2011.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 12/24/2022]
Abstract
OBJECTIVE P2X(7) receptor (P2X(7)R), upon its stimulation with extracellular ATP, modulates several inflammatory responses in different cell types. No information is available on its presence in human adipocytes and its potential involvement in the chronic inflammation associated with metabolic syndrome (MS). Therefore, we evaluated P2X(7)R presence and functional activity in adipocytes from visceral (VAT) and subcutaneous (SAT) adipose tissue of patients with MS and controls (CTL). METHODS Adipocyte gene expression of TNFα, IL-6 and PAI-1 (by realtime-PCR) and their plasma concentrations (ELISA); P2X(7)R expression (realtime-PCR, Western blot and immunofluorescence); P2X(7)R functional activity (intracellular calcium fluxes by fluorimetry); cytokine release from adipocytes (ELISA). The inflammasome components were also determined. RESULTS In VAT, TNFα, IL-6 and PAI-1 were more expressed in MS than in CTL. These differences were confirmed in SAT for IL-6 and PAI-1. Plasma IL-6, PAI-1 and TNFα levels were higher in MS. P2X(7)R mRNA and protein, identified in both VAT and SAT, were more abundant in MS than in CTL. Immunofluoresce confirmed the typical "ring-like" arrangement of P2X(7)R at the plasma membrane. Benzoyl-benzoyl-ATP raised intracellular calcium both in VAT and SAT, and induced IL-6, TNFα and PAI-1 release in both MS and CTL cells. This effect was partially inhibited by KN62, specific human P2X(7)R blocker, or by P2X(7)R gene silencing. The inflammasome was more activated in MS than in CTL adipocytes. CONCLUSION Human adipocytes express functionally active P2X(7)R, which modulate the release of inflammatory cytokines, at least in part via inflammasome activation. Adipocytes from MS patients show an enhanced P2X(7)R expression, which might contribute to the subclinical inflammatory status characterizing these patients and conferring them an increased CV risk.
Collapse
|
50
|
Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 2011; 32:256-64. [PMID: 21565554 DOI: 10.1016/j.it.2011.04.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 12/16/2022]
Abstract
In the intestine, multiple interactions occur with the external world. Thus, the intestinal mucosal barrier has to tolerate millions of microorganisms that commonly inhabit the gut, degrade and absorb food, and establish tolerance or immunity, depending on the nature of the encountered antigens. Recent findings have highlighted that intestinal epithelial cells are not simply a barrier, but also are crucial for integrating these external and internal signals and for coordinating the ensuing immune response. Here, I review these findings and show how epithelial cells harmonize information that comes from inflammatory and non-inflammatory components of the microbiota to preserve intestinal homeostasis. If dysregulated, this immunomodulatory function of epithelial cells might contribute to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Maria Rescigno
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy.
| |
Collapse
|