1
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
2
|
Halliez MCM, Motta JP, Feener TD, Guérin G, LeGoff L, François A, Colasse E, Favennec L, Gargala G, Lapointe TK, Altier C, Buret AG. Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2016; 310:G574-85. [PMID: 26744469 PMCID: PMC4836132 DOI: 10.1152/ajpgi.00144.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder. It is characterized by abdominal hypersensitivity, leading to discomfort and pain, as well as altered bowel habits. While it is common for IBS to develop following the resolution of infectious gastroenteritis [then termed postinfectious IBS (PI-IBS)], the mechanisms remain incompletely understood. Giardia duodenalis is a cosmopolitan water-borne enteropathogen that causes intestinal malabsorption, diarrhea, and postinfectious complications. Cause-and-effect studies using a human enteropathogen to help investigate the mechanisms of PI-IBS are sorely lacking. In an attempt to establish causality between giardiasis and postinfectious visceral hypersensitivity, this study describes a new model of PI-IBS in neonatal rats infected with G. duodenalis At 50 days postinfection with G. duodenalis (assemblage A or B), long after the parasite was cleared, rats developed visceral hypersensitivity to luminal balloon distension in the jejunum and rectum, activation of the nociceptive signaling pathway (increased c-fos expression), histological modifications (villus atrophy and crypt hyperplasia), and proliferation of mucosal intraepithelial lymphocytes and mast cells in the jejunum, but not in the rectum. G. duodenalis infection also disrupted the intestinal barrier, in vivo and in vitro, which in turn promoted the translocation of commensal bacteria. Giardia-induced bacterial paracellular translocation in vitro correlated with degradation of the tight junction proteins occludin and claudin-4. The extensive observations associated with gut hypersensitivity described here demonstrate that, indeed, in this new model of postgiardiasis IBS, alterations to the gut mucosa and c-fos are consistent with those associated with PI-IBS and, hence, offer avenues for new mechanistic research in the field.
Collapse
Affiliation(s)
- Marie C. M. Halliez
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France; ,2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Jean-Paul Motta
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Troy D. Feener
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| | - Gaetan Guérin
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Laetitia LeGoff
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Arnaud François
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France; ,3Service d'Anatomie et de Cytologie Pathologique CHU Rouen, Rouen cedex, France; and
| | - Elodie Colasse
- 3Service d'Anatomie et de Cytologie Pathologique CHU Rouen, Rouen cedex, France; and
| | - Loic Favennec
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Gilles Gargala
- 1Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and University of Reims Champagne-Ardennes, and Institute for Biomedical Research, Rouen and Reims, France;
| | - Tamia K. Lapointe
- 4Snyder Institute for Chronic Diseases, Inflammation Research Network, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- 4Snyder Institute for Chronic Diseases, Inflammation Research Network, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - André G. Buret
- 2Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
3
|
Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:75-90. [PMID: 27379637 DOI: 10.1007/978-3-319-27592-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract is unique in that it is innervated by several distinct populations of neurons, whose cell bodies are either intrinsic (enteric, viscerofugal) or extrinsic (sympathetic, sensory afferents) to the wall of the gut. We are usually completely unaware of the continuous, complicated orchestra of functions that these neurons conduct. However, for patients with Inflammatory Bowel Disease (IBD) or functional gastrointestinal disorders, such as Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Whilst bouts of inflammation underlie the symptoms associated with IBD, over the past few years there is increased pre-clinical and clinical evidence that infection and inflammation are key risk factors for the development of several functional gastrointestinal disorders, in particular IBS. There is a strong correlation between prior exposure to gut infection and symptom occurrence; with the duration and severity of the initial illness the strongest associated risk factors. This review discusses the current body of evidence for neuroplasticity during inflammation and how in many cases fails to reset back to normal, long after healing of the damaged tissues. Recent evidence suggests that the altered expression and function of key ion channels and receptors within extrinsic sensory neurons play fundamental roles in the aberrant pain sensation associated with these gastrointestinal diseases and disorders.
Collapse
|
4
|
Xue B, Kasparek MS, Müller MH, Kreis ME. Modulation of intestinal afferent nerve sensitivity to inflammatory mediators following systemic endotoxin in mice. Neurogastroenterol Motil 2015; 27:550-8. [PMID: 25817056 DOI: 10.1111/nmo.12531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/23/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endotoxin exposure may be followed by visceral hypersensitvity but potential mechanisms are not fully explored. We aimed to test the hypothesis that mast cells and the cyclooxygenase pathway (COX) mediate modulation of afferent nerve sensitivity following systemic endotoxin. METHODS C57Bl6 mice received endotoxin injection i.p. to induce systemic inflammation. Control animals received normal saline. Extracellular multi-unit afferent nerve discharge was recorded from jejunal mesenteric nerves in vitro. Afferent nerve response to 5-hydroxytryptamine (5-HT, 250 μmol/L), bradykinin (BK, 0.5 μmol/L), and to mechanical ramp distension of the intestinal lumen from 0 to 60 cmH2O were recorded 2 h following endotoxin administration. KEY RESULTS Following endotoxin administration peak afferent discharge to 5-HT and BK was increased compared to controls (p < 0.05). Pre-perfusion with the mast cell stabilizer Doxantrazole (10(-4) M), or the cyclooxygenase inhibitor Naproxen inhibited the increased response to 5-HT and BK (p < 0.05 vs endotoxin pretreatment). Mechanosensitivity during luminal ramp distension from 10 to 60 cmH2O was increased following endotoxin pretreatment compared to controls (p < 0.05). This increase in sensitivity following endotoxin was no longer observed after Doxantrazole or Naproxen administration for pressures from 10 to 30 cmH2O (p < 0.05). Selective COX-2 inhibition by NS398 (10 μM) but not COX-1 inhibition by SC560 (300 μM) reduced increased afferent discharge in endotoxin pretreated animals to 5-HT, BK and mechanical ramp distension from 10 to 40 cmH2O (all p < 0.05). CONCLUSIONS & INFERENCES Systemic endotoxin sensitizes mesenteric afferent nerve fibers to 5-HT, BK and mechanical stimuli. The underlying mechanism responsible for this sensitization seems to involve mast cells and the COX-2 pathway.
Collapse
Affiliation(s)
- B Xue
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China; Department of Surgery, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
5
|
Abstract
The gastrointestinal tract is innervated by several distinct populations of neurons, whose cell bodies either reside within (intrinsic) or outside (extrinsic) the gastrointestinal wall. Normally, most individuals are unaware of the continuous, complicated functions of these neurons. However, for patients with gastrointestinal disorders, such as IBD and IBS, altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Although bouts of intestinal inflammation underlie the symptoms associated with IBD, increasing preclinical and clinical evidence indicates that infection and inflammation are also key risk factors for the development of other gastrointestinal disorders. Notably, a strong correlation exists between prior exposure to gut infection and symptom occurrence in IBS. This Review discusses the evidence for neuroplasticity (structural, synaptic or intrinsic changes that alter neuronal function) affecting gastrointestinal function. Such changes are evident during inflammation and, in many cases, long after healing of the damaged tissues, when the nervous system fails to reset back to normal. Neuroplasticity within distinct populations of neurons has a fundamental role in the aberrant motility, secretion and sensation associated with common clinical gastrointestinal disorders. To find appropriate therapeutic treatments for these disorders, the extent and time course of neuroplasticity must be fully appreciated.
Collapse
|
6
|
Xue B, Müller MH, Li J, Pesch T, Kasparek MS, Sibaev A, Hausmann M, Rogler G, Kreis ME. Mast cells and the cyclooxygenase pathway mediate colonic afferent nerve sensitization in a murine colitis model. Auton Neurosci 2013; 174:47-53. [PMID: 23384476 DOI: 10.1016/j.autneu.2013.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 12/16/2012] [Accepted: 01/01/2013] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Intestinal inflammation alters colonic afferent nerve sensitivity which may contribute to patients' perception of abdominal discomfort. We aimed to explore whether mast cells and the cyclooxygenase pathway are involved in altered afferent nerve sensitivity during colitis. METHODS C57Bl6 mice received 3% dextran-sulfate sodium (DSS) in drinking water for 7 days to induce colitis. Control animals received regular water. On day 8 inflammation was assessed in the proximal colon by morphology and histology. Extracellular afferent nerve discharge was recorded from the mesenteric nerve of a 2 cm colonic segment. Subgroups were treated in vitro with the mast cell stabilizer doxantrazole (10⁻⁴M) or the cyclooxygenase inhibitor naproxen (10⁻⁵M). RESULTS DSS colitis resulted in morphological and histological signs of inflammation. At baseline, peak firing was 11±2 imp s⁻¹ in colitis segments and 5±1 imp s⁻¹ in uninflamed control segments (p<0.05; mean ± SEM; each n=6). In colitis segments, afferent nerve discharge to bradykinin (0.5 μM) was increased to 47±7 compared to 23±6 imp s⁻¹ in recordings from non-inflamed control tissue (p<0.05). Mechanosensitivity during luminal ramp distension (0-80 cm H₂O) was increased reaching 24±5 imp s⁻¹ at 80 cm H₂O during colitis compared to 14±2 in non-inflamed controls (p<0.05). Doxantrazole or naproxen reduced afferent discharge to bradykinin and luminal ramp distension in colitis segments to control levels. CONCLUSION Intestinal inflammation sensitizes mesenteric afferent nerve fibers to bradykinin and mechanical stimuli. The underlying mechanism responsible for this sensitization seems to involve mast cells and prostaglandins.
Collapse
Affiliation(s)
- B Xue
- Department of Pathophysiology, Shandong University, Medical School, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND Endocannabinoids influence immune function and nociceptive signaling. This study examines cannabinoid modulation of sensory signaling from the GI tract following an acute inflammatory response triggered by systemic administration of bacterial lipopolysaccharide (LPS). METHODS A segment of proximal jejunum was intubated, to measure intraluminal pressure, in anesthetized rats. Afferent impulse traffic was recorded from a single isolated paravascular nerve bundle supplying the jejunal loop. Drugs and LPS were administered intravenously and changes in afferent firing were determined. KEY RESULTS The non-selective cannabinoid agonist, WIN55,212-2 (1 mg kg(-1) i.v.) and the anandamide transport inhibitor, VDM11 (1 mg kg(-1) i.v.) but not the fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3 mg kg(-1)) caused a significant increase in afferent activity. The WIN55,212-2-induced afferent response was mediated by activation of CB(1) receptors whereas the VDM11 response was mediated by both CB(1) and CB(2) receptor mechanisms. LPS (10 mg kg(-1)) evoked an increase in afferent activity which was significantly reduced in the presence of WIN55,212-2 and VDM11 but not URB597. The inhibitory effect of WIN55,212-2 was prevented by CB(1) but not CB(2) receptor antagonism. In contrast, the inhibitory effect of VDM11 remained unaltered after CB(1) or CB(2) receptor blockade. CONCLUSIONS & INFERENCES Endocannabinoids play a role in modulating afferent signaling and may represent a target for the treatment of visceral hypersensitivity. In contrast to the effects of blocking endocannabinoid uptake (VDM11), inhibiting breakdown of endocannabinoids (URB597) had no effect on baseline or LPS induced afferent firing. Therefore, uptake of cannabinoids rather than breakdown via FAAH terminates their action in the GI tract.
Collapse
Affiliation(s)
- J Donovan
- University of Sheffield, Department of Biomedical Sciences, Sheffield, UK.
| | | |
Collapse
|
8
|
Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol 2011; 106:1290-8. [PMID: 21427712 DOI: 10.1038/ajg.2011.86] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Serotonin (5-hydroxytryptamine, 5-HT) metabolism may be altered in gut disorders, including in the irritable bowel syndrome (IBS). We assessed in patients with IBS vs. healthy controls (HCs) the number of colonic 5-HT-positive cells; the amount of mucosal 5-HT release; their correlation with mast cell counts and mediator release, as well as IBS symptoms; and the effects of mucosal 5-HT on electrophysiological responses in vitro. METHODS We enrolled 25 Rome II IBS patients and 12 HCs. IBS symptom severity and frequency were graded 0-4. 5-HT-positive enterochromaffin cells and tryptase-positive mast cells were assessed with quantitative immunohistochemistry on colonic biopsies. Mucosal 5-HT and mast cell mediators were assessed by high-performance liquid chromatography or immunoenzymatic assay, respectively. The impact of mucosal 5-HT on electrophysiological activity of rat mesenteric afferent nerves was evaluated in vitro. RESULTS Compared with HCs, patients with IBS showed a significant increase in 5-HT-positive cell counts (0.37 ± 0.16% vs. 0.56 ± 0.26%; P=0.039), which was significantly greater in patients with diarrhea-predominant IBS vs. constipation-predominant IBS (P=0.035). Compared with HCs, 5-HT release in patients with IBS was 10-fold significantly increased (P < 0.001), irrespective of bowel habit, and was correlated with mast cell counts. A significant correlation was found between the mucosal 5-HT release and the severity of abdominal pain (r(s)=0.582, P=0.047). The area under the curve, but not peak sensory afferent discharge evoked by IBS samples in rat jejunum, was significantly inhibited by the 5-HT₃ receptor antagonist granisetron (P<0.005). CONCLUSIONS In patients with IBS, 5-HT spontaneous release was significantly increased irrespective of bowel habit and correlated with mast cell counts and the severity of abdominal pain. Our results suggest that increased 5-HT release contributes to development of abdominal pain in IBS, probably through mucosal immune activation.
Collapse
|
9
|
De Winter BY, De Man JG. Interplay between inflammation, immune system and neuronal pathways: Effect on gastrointestinal motility. World J Gastroenterol 2010; 16:5523-35. [PMID: 21105185 PMCID: PMC2992670 DOI: 10.3748/wjg.v16.i44.5523] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response representing the leading cause of death in critically ill patients, mostly due to multiple organ failure. The gastrointestinal tract plays a pivotal role in the pathogenesis of sepsis-induced multiple organ failure through intestinal barrier dysfunction, bacterial translocation and ileus. In this review we address the role of the gastrointestinal tract, the mediators, cell types and transduction pathways involved, based on experimental data obtained from models of inflammation-induced ileus and (preliminary) clinical data. The complex interplay within the gastrointestinal wall between mast cells, residential macrophages and glial cells on the one hand, and neurons and smooth muscle cells on the other hand, involves intracellular signaling pathways, Toll-like receptors and a plethora of neuroactive substances such as nitric oxide, prostaglandins, cytokines, chemokines, growth factors, tryptases and hormones. Multidirectional signaling between the different components in the gastrointestinal wall, the spinal cord and central nervous system impacts inflammation and its consequences. We propose that novel therapeutic strategies should target inflammation on the one hand and gastrointestinal motility, gastrointestinal sensitivity and even pain signaling on the other hand, for instance by impeding afferent neuronal signaling, by activation of the vagal anti-inflammatory pathway or by the use of pharmacological agents such as ghrelin and ghrelin agonists or drugs interfering with the endocannabinoid system.
Collapse
|
10
|
Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 2010; 299:G723-32. [PMID: 20576919 DOI: 10.1152/ajpgi.00494.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined whether bacterial cell products that might gain access to the intestinal interstitium could activate mouse colonic nociceptive dorsal root ganglion (DRG) neurons using molecular and electrophysiological recording techniques. Colonic projecting neurons were identified by using the retrograde tracer fast blue and Toll-like receptor (TLR) 1, 2, 3, 4, 5, 6, 9, adapter proteins Md-1 and Md-2, and MYD88 mRNA expression was observed in laser-captured fast blue-labeled neurons. Ultrapure LPS 1 microg/ml phosphorylated p65 NF-kappaB subunits increased transcript for TNF-alpha and IL-1beta and stimulated secretion of TNF-alpha from acutely dissociated DRG neurons. In current-clamp recordings from colonic DRG neurons, chronic incubation (24 h) of ultrapure LPS significantly increased neuronal excitability. In acute studies, 3-min superfusion of standard-grade LPS (3-30 microg/ml) reduced the rheobase by up to 40% and doubled action potential discharge rate. The LPS effects were not significantly different in TLR4 knockout mice compared with wild-type mice. In contrast to standard-grade LPS, acute application of ultrapure LPS did not increase neuronal excitability in whole cell recordings or afferent nerve recordings from colonic mesenteric nerves. However, acute application of bacterial lysate (Escherichia coli NLM28) increased action potential discharge over 60% compared with control medium. Moreover, lysate also activated afferent discharge from colonic mesenteric nerves, and this was significantly increased in chronic dextran sulfate sodium salt mice. These data demonstrate that bacterial cell products can directly activate colonic DRG neurons leading to production of inflammatory cytokines by neurons and increased excitability. Standard-grade LPS may also have actions independent of TLR signaling.
Collapse
|
11
|
De Winter BY, Bredenoord AJ, Van Nassauw L, De Man JG, De Schepper HU, Timmermans JP, Pelckmans PA. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: role of CGRP and TRPV1 receptors. Eur J Pharmacol 2009; 615:177-84. [PMID: 19445917 DOI: 10.1016/j.ejphar.2009.04.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 01/30/2023]
Abstract
Activation of neuronal reflex pathways by inflammatory mediators is postulated as an important pathogenic mechanism in postoperative ileus. In this study, we investigated the involvement of afferent neurons and more specifically the role of the transient receptor potential vanilloid receptor type 1 (TRPV1) and calcitonin gene-related peptide (CGRP) in endotoxin-induced motility disturbances in mice. Mice were injected with either lipopolysaccharides (LPS) or saline (control) and pre-treated with hexamethonium (blocker of neuronal transmission), capsaicin (neurotoxin), CGRP 8-37 (CGRP antagonist) or BCTC (TRPV1 receptor antagonist). We measured gastric emptying and intestinal transit of Evans blue next to rectal temperature and a global sickness behaviour scale. In vehicle-treated mice, LPS significantly delayed gastric emptying, small intestinal transit and rectal temperature while the sickness behaviour scale was increased. Hexamethonium, capsaicin, CGRP8-37 and BCTC all reversed the endotoxin-induced delay in gastric emptying and significantly reduced the delay in intestinal transit without effect on the endotoxin-induced decrease in rectal temperature and increase in sickness behaviour scale. Our findings provide evidence for the involvement of afferent nerves in the pathogenesis of endotoxin-induced motility disturbances in mice mediated via CGRP and TRPV1 receptors. Blockade of CGRP and TRPV1 receptors may offer a novel strategy for the treatment of endotoxin-induced ileus.
Collapse
Affiliation(s)
- Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVES Imbalances in essential fatty acid levels have been reported in cystic fibrosis (CF), which may relate to elevated proinflammatory eicosanoid generation. The aim of this work was to better define eicosanoid metabolism in the CF intestine. MATERIALS AND METHODS We used the small intestine of the cystic fibrosis transmembrane conductance regulator knockout mouse (CF mouse) to measure eicosanoid metabolic gene expression by quantitative reverse transcription polymerase chain reaction and Western blot, and eicosanoid levels by enzyme immunoassay, as compared with wild-type (WT) littermates. RESULTS In the CF small intestine, expression of the secretory phospholipase A2 Pla2g5 mRNA was upregulated to 980% of WT levels. The following were downregulated: leukotriene C4 synthase Ltc4s (mRNA 55% of WT); omega-hydroxylase cytochrome P450s Cyp2c40 (mRNA 54% of WT), and Cyp4a10 (mRNA 4% of WT); and the major prostaglandin degradative enzymes prostaglandin dehydrogenase Hpgd (mRNA 27% of WT) and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase Ltb4dh (mRNA 64% and protein 30% of WT). The prostaglandins PGE2 and PGF2alpha were increased to 400% to 600% of WT levels in the CF mouse intestine, and the hydroxyeicosatetraenoic acids (HETEs) 12-, 15-, and 20-HETE were decreased to 3% to 20% of WT levels. CONCLUSIONS There are changes in eicosanoid metabolic gene expression that are accompanied by significant changes in specific eicosanoid levels. These changes are expected to play important roles in the pathophysiology of CF in the intestine.
Collapse
|
13
|
De Schepper HU, De Winter BY, Van Nassauw L, Timmermans JP, Herman AG, Pelckmans PA, De Man JG. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J Physiol 2008; 586:5247-58. [PMID: 18755744 DOI: 10.1113/jphysiol.2008.159731] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25-5 mg kg(-1)) or its vehicle (hydroxypropyl-beta-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6-S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Adelta-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Adelta-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition.
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Martinez V, Melgar S. Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain 2008; 12:934-44. [PMID: 18280187 DOI: 10.1016/j.ejpain.2007.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/28/2007] [Indexed: 02/06/2023]
Abstract
Tetrodotoxin-resistant voltage-gated sodium channels subtype 9 (Na(v)1.9) are expressed in small-diameter dorsal root ganglion neurons and have been involved in persistent somatic hyperalgesic responses associated with inflammation. We assessed the role of Na(v)1.9 channels on acute colonic inflammation-induced visceral hypersensitivity in conscious mice, using Na(v)1.9 knockout (KO) mice. Colorectal distension (CRD)-induced visceral pain was assessed in conscious wild-type and Na(v)1.9 KO mice (C57Bl/6 background). The mechanical activity of the abdominal muscles during isobaric colorectal distension was used as a measure of visceral pain. Acute colonic inflammation was induced by intracolonic administration of the toll-like receptor (TLR) 7 activator, R-848 (40mug/animal). CRD was performed 5h later, thereafter animals were euthanized and the colonic content of inflammatory mediators assessed. Normal pain responses were similar in Na(v)1.9 KO and wild-type mice. In wild-type mice, R-848 administration increased the response to phasic CRD by 62% compared with vehicle-treated animals (vehicle: 0.16+/-0.04, R-848: 0.26+/-0.03, n=6-7, P<0.05). However, in Na(v)1.9 KO mice, intracolonic R-848 did not affect the response to CRD (0.11+/-0.02, n=7) compared to animals treated with vehicle (0.17+/-0.03, n=5; P>0.05). After R-848 administration, the colonic content of pro-inflammatory cytokines was increased in similar proportion in wild type and Na(v)1.9 KO mice, suggesting the presence of a similar acute inflammatory reaction in both groups of animals. These results suggest that Na(v)1.9 channels do not significantly contribute to normal visceral pain responses to acute colonic mechanical stimulation but may be important for the development of inflammation-related acute visceral hyperalgesic responses.
Collapse
Affiliation(s)
- V Martinez
- Integrative Pharmacology, Gastrointestinal Biology, AstraZeneca R&D Mölndal, Mölndal, Sweden.
| | | |
Collapse
|
15
|
Hamano N, Inada T, Iwata R, Asai T, Shingu K. The alpha2-adrenergic receptor antagonist yohimbine improves endotoxin-induced inhibition of gastrointestinal motility in mice. Br J Anaesth 2007; 98:484-90. [PMID: 17363407 DOI: 10.1093/bja/aem011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sepsis inhibits gastrointestinal motility. Although the exact mechanism of this is unclear, lipopolysaccharide is known to activate macrophages in the gastrointestinal wall, which upregulate their expression of inducible nitric oxide synthase (iNOS). This leads to an increased production of nitric oxide, which relaxes the gastrointestinal muscles. We studied endotoxaemic mice to determine whether yohimbine improved delayed gastric emptying and gastrointestinal transit. METHODS Male Balb/c mice (n = 49) were randomly allocated to two groups, and either yohimbine 25 microg or saline was injected s.c. Four hours later, mice in each group were further randomly allocated to two groups, and either lipopolysaccharide 100 microg or saline was injected intraperitoneally. Eight hours later, liquid containing fluorescent microbeads was infused into the stomach, and 30 min later, gastric emptying and gastrointestinal transit were measured using flow cytometry. We also studied whether yohimbine given after injection of lipopolysaccharide was effective (n = 22). In another group of mice (n = 32), iNOS in the gastrointestinal tract was measured using western blotting. RESULTS Lipopolysaccharide significantly inhibited gastric emptying and gastrointestinal transit. Yohimbine, given before or after lipopolysaccharide, significantly attenuated the inhibitory effects of lipopolysaccharide. Lipopolysaccharide increased the expression of iNOS in the small intestine and yohimbine suppressed the effects of lipopolysaccharide. CONCLUSIONS In endotoxaemic mice, yohimbine improved delayed gastric emptying and gastrointestinal transit, possibly by downregulating lipopolysaccharide-induced increased expression of iNOS.
Collapse
Affiliation(s)
- N Hamano
- Department of Anaesthesiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | |
Collapse
|
16
|
Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G, Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D, Corinaldesi R. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007; 132:26-37. [PMID: 17241857 DOI: 10.1053/j.gastro.2006.11.039] [Citation(s) in RCA: 559] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 10/12/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal mast cell infiltration may participate to abdominal pain in irritable bowel syndrome (IBS) patients. However, the underlying mechanisms remain unknown. We assessed the effect of mast cell mediators released from the colonic mucosa of IBS patients on the activation of rat sensory neurons in vitro. METHODS Colonic mast cell infiltration and mediator release were assessed with quantitative immunofluorescence and immunoenzymatic assays. The effect of mucosal mediators was tested on mesenteric sensory nerve firing and Ca(2+) mobilization in dorsal root ganglia in rats. RESULTS Mediators from IBS patients, but not controls, markedly enhanced the firing of mesenteric nerves (14.7 +/- 3.2 imp/sec vs 2.8 +/- 1.5 imp/sec; P < .05) and stimulated mobilization of Ca(2+) in dorsal root ganglia neurons (29% +/- 4% vs 11% +/- 4%; P < .05). On average, 64% of dorsal root ganglia responsive to mediators were capsaicin-sensitive, known to mediate nociception. Histamine and tryptase were mainly localized to mucosal mast cells. IBS-dependent nerve firing and Ca(2+) mobilization were correlated with the area of the colonic lamina propria occupied by mast cells (r = 0.74; P < .01, and r = 0.78; P < .01, respectively). IBS-dependent excitation of dorsal root ganglia was inhibited by histamine H(1) receptor blockade and serine protease inactivation (inhibition of 51.7%; P < .05 and 74.5%; P < .05; respectively). CONCLUSIONS Mucosal mast cell mediators from IBS patients excite rat nociceptive visceral sensory nerves. These results provide new insights into the mechanism underlying visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Internal Medicine and Gastroenterology, and CRBA, University of Bologna, St. Orsola Hospital, Via Massarenti 9, I-40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ali SA, Wang B, Alam M, Beck A, Stoeva S, Voelter W, Abbasi A, Duszenko M. Structure-activity relationship of an alpha-toxin Bs-Tx28 from scorpion (Buthus sindicus) venom suggests a new alpha-toxin subfamily. Arch Biochem Biophys 2005; 445:81-94. [PMID: 16309623 DOI: 10.1016/j.abb.2005.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
Scorpion venoms are among the most widely known source of peptidyl neurotoxins used for callipering different ion channels, e.g., for Na(+), K(+), Ca(+) or Cl(-). An alpha-toxin (Bs-Tx28) has been purified from the venom of scorpion Buthus sindicus, a common yellow scorpion of Sindh, Pakistan. The primary structure of Bs-Tx28 was established using a combination of MALDI-TOF-MS, LC-ESI-MS, and automated Edman degradation analysis. Bs-Tx28 consists of 65 amino acid residues (7274.3+/-2Da), including eight cysteine residues, and shows very high sequence identity (82-94%) with other long-chain alpha-neurotoxins, active against receptor site-3 of mammalian (e.g., Lqq-IV and Lqh-IV from scorpions Leiurus sp.) and insect (e.g., BJalpha-IT and Od-1 from Buthotus judaicus and Odonthobuthus doriae, respectively) voltage-gated Na(+) channels. Multiple sequence alignment and phylogenetic analysis of Bs-Tx28 with other known alpha- and alpha-like toxins suggests the presence of a new and separate subfamily of scorpion alpha-toxins. Bs-Tx28 which is weakly active in both, mammals and insects (LD(50) 0.088 and 14.3microg/g, respectively), shows strong induction of the rat afferent nerve discharge in a dose-dependent fashion (EC(50)=0.01microg/mL) which was completely abolished in the presence of tetrodotoxin suggesting the binding of Bs-Tx28 to the TTX-sensitive Na(+)-channel. Three-dimensional structural features of Bs-Tx28, established by homology modeling, were compared with other known classical alpha-mammal (AaH-II), alpha-insect (Lqh-alphaIT), and alpha-like (BmK-M4) toxins and revealed subtle variations in the Nt-, Core-, and RT-CT-domains (functional domains) which constitute a "necklace-like" structure differing significantly in all alpha-toxin subfamilies. On the other hand, a high level of conservation has been observed in the conserved hydrophobic surface with the only substitution of W43 (Y43/42) and an additional hydrophobic character at position F40 (L40/A/V/G39), as compared to the other mentioned alpha-toxins. Despite major differences within the primary structure and activities of Bs-Tx28, it shares a common structural and functional motif (e.g., transRT-farCT) within the RT-CT domain which is characteristic of scorpion alpha-mammal toxins.
Collapse
Affiliation(s)
- Syed Abid Ali
- International Center for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|