1
|
Fioretzaki R, Sarantis P, Charalampakis N, Christofidis K, Mylonakis A, Koustas E, Karamouzis MV, Sakellariou S, Schizas D. Progastrin: An Overview of Its Crucial Role in the Tumorigenesis of Gastrointestinal Cancers. Biomedicines 2024; 12:885. [PMID: 38672239 PMCID: PMC11047876 DOI: 10.3390/biomedicines12040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Defining predictive biomarkers for targeted therapies and optimizing anti-tumor immune response is a main challenge in ongoing investigations. Progastrin has been studied as a potential biomarker for detecting and diagnosing various malignancies, and its secretion has been associated with cell proliferation in the gastrointestinal tract that may promote tumorigenesis. Progastrin is a precursor molecule of gastrin, synthesized as pre-progastrin, converted to progastrin after cleavage, and transformed into amidated gastrin via biosynthetic intermediates. In cancer, progastrin does not maturate in gastrin and becomes a circulating and detectable protein (hPG80). The development of cancer is thought to be dependent on the progressive dysregulation of normal signaling pathways involved in cell proliferation, thus conferring a growth advantage to the cells. Understanding the interaction between progastrin and the immune system is essential for developing future cancer strategies. To that end, the present review will approach the interlink between gastrointestinal cancers and progastrin by exploring the underlying molecular steps involved in the initiation, evolution, and progression of gastrointestinal cancers. Finally, this review will focus on the clinical applications of progastrin and investigate its possible use as a diagnostic and prognostic tumor circulating biomarker for disease progression and treatment effectiveness, as well as its potential role as an innovative cancer target.
Collapse
Affiliation(s)
- Rodanthi Fioretzaki
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (R.F.); (A.M.); (D.S.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Nikolaos Charalampakis
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 18537 Piraeus, Greece;
| | - Konstantinos Christofidis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.C.); (S.S.)
| | - Adam Mylonakis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (R.F.); (A.M.); (D.S.)
| | - Evangelos Koustas
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Stratigoula Sakellariou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.C.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (R.F.); (A.M.); (D.S.)
| |
Collapse
|
2
|
Fu J, Tang Y, Zhang Z, Tong L, Yue R, Cai L. Gastrin exerts a protective effect against myocardial infarction via promoting angiogenesis. Mol Med 2021; 27:90. [PMID: 34412590 PMCID: PMC8375043 DOI: 10.1186/s10020-021-00352-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background It is known that increased gastrin concentration is negatively correlated with cardiovascular mortality, and plasma gastrin levels are increased in patients after myocardial infarction (MI). However, whether gastrin can play a protective role in MI remains unknown. Methods Adult C57BL/6 mice were subjected to ligation of the left anterior descending coronary artery (LAD) and subcutaneous infusion of gastrin (120 μg/Kg body weight/day, 100 μL in the pump) for 28 days after MI. Plasma gastrin concentrations were measured through an ELISA detection kit. Mice were analyzed by echocardiography after surgery. CD31 and VEGF expression were quantified using immunofluorescence staining or/and western blot to assess the angiogenesis in peri-infarct myocardium. Capillary-like tube formation and cell migration assays were performed to detect gastrin-induced angiogenesis. Results We found that gastrin administration significantly ameliorated MI-induced cardiac dysfunction and reduced fibrosis at 28 days in post-MI hearts. Additionally, gastrin treatment significantly decreased cardiomyocyte apoptosis and increased angiogenesis in the infarct border zone without influencing cardiomyocyte proliferation. In vitro results revealed that gastrin up-regulated the PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway and promoted migration and tube formation of human coronary artery endothelial cells (HCAECs). Cholecystokinin 2 receptor (CCK2R) mediated the protective effect of gastrin since the CCK2R blocker CI988 attenuated the gastrin-mediated angiogenesis and cardiac function protection. Conclusion Our data revealed that gastrin promoted angiogenesis and improved cardiac function in post-MI mice, highlighting its potential as a therapeutic target candidate.
Collapse
Affiliation(s)
- Jinjuan Fu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China.,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Yuanjuan Tang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Lin Tong
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| | - Lin Cai
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Gastrin mediates cardioprotection through angiogenesis after myocardial infarction by activating the HIF-1α/VEGF signalling pathway. Sci Rep 2021; 11:15836. [PMID: 34349170 PMCID: PMC8339006 DOI: 10.1038/s41598-021-95110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.
Collapse
|
4
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Yang X, Yue R, Zhang J, Zhang X, Liu Y, Chen C, Wang X, Luo H, Wang WE, Chen X, Wang HJ, Jose PA, Wang H, Zeng C. Gastrin Protects Against Myocardial Ischemia/Reperfusion Injury via Activation of RISK (Reperfusion Injury Salvage Kinase) and SAFE (Survivor Activating Factor Enhancement) Pathways. J Am Heart Assoc 2018; 7:e005171. [PMID: 30005556 PMCID: PMC6064830 DOI: 10.1161/jaha.116.005171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) is one of the most predominant complications of ischemic heart disease. Gastrin has emerged as a regulator of cardiovascular function, playing a key protective role in hypoxia. Serum gastrin levels are increased in patients with myocardial infarction, but the pathophysiogical significance of this finding is unknown. The purpose of this study was to determine whether and how gastrin protects cardiac myocytes from IRI. METHODS AND RESULTS Adult male Sprague-Dawley rats were used in the experiments. The hearts in living rats or isolated Langendorff-perfused rat hearts were subjected to ischemia followed by reperfusion to induce myocardial IRI. Gastrin, alone or with an antagonist, was administered before the induction of myocardial IRI. We found that gastrin improved myocardial function and reduced the expression of myocardial injury markers, infarct size, and cardiomyocyte apoptosis induced by IRI. Gastrin increased the phosphorylation levels of ERK1/2 (extracellular signal-regulated kinase 1/2), AKT (protein kinase B), and STAT3 (signal transducer and activator of transcription 3), indicating its ability to activate the RISK (reperfusion injury salvage kinase) and SAFE (survivor activating factor enhancement) pathways. The presence of inhibitors of ERK1/2, AKT, or STAT3 abrogated the gastrin-mediated protection. The protective effect of gastrin was via CCK2R (cholecystokinin 2 receptor) because the CCK2R blocker CI988 prevented the gastrin-mediated protection of the heart with IRI. Moreover, we found a negative correlation between serum levels of cardiac troponin I and gastrin in patients with unstable angina pectoris undergoing percutaneous coronary intervention, suggesting a protective effect of gastrin in human cardiomyocytes. CONCLUSIONS These results indicate that gastrin can reduce myocardial IRI by activation of the RISK and SAFE pathways.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rongchuan Yue
- Department of Cardiology, North Sichuan Medical College First Affiliated Hospital, Nanchong, Sichuan, China
| | - Jun Zhang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqun Zhang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yukai Liu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Eric Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiongwen Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Cardiovascular Research Center & Department of Physiology, Temple University School of Medicine, Philadelphia, PA
| | - Huixia Judy Wang
- Department of Statistics, The George Washington University, Washington, DC
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Hongyong Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The present review summarizes the past year's literature, both clinical and basic science, regarding neuroendocrine and intracellular regulation of gastric acid secretion and proper use of antisecretory medications. RECENT FINDINGS Gastric acid kills microorganisms, modulates the gut microbiome, assists in digestion of protein, and facilitates absorption of iron, calcium, and vitamin B12. The main stimulants of acid secretion are gastrin, released from antral G cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Other stimulants include ghrelin, motilin, and hydrogen sulfide. The main inhibitor of acid secretion is somatostatin, released from oxyntic and antral D cells. Glucagon-like peptide-1 also inhibits acid secretion. Proton pump inhibitors (PPIs) reduce acid secretion and, as a result, decrease somatostatin and thus stimulate gastrin secretion. Although considered well tolerated drugs, concerns have been raised this past year regarding associations between PPI use and kidney disease, dementia, and myocardial infarction; the quality of evidence, however, is very low. SUMMARY Our understanding of the physiology of gastric secretion and proper use of PPIs continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders.
Collapse
|
7
|
Gassmann M, Muckenthaler MU. Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol (1985) 2015; 119:1432-40. [PMID: 26183475 DOI: 10.1152/japplphysiol.00248.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, and Universidad Peruana Cayetano Heredia, Lima, Peru; and
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg, and German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|