1
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in Gastrointestinal Nutrient Absorption and its Determinants During Pregnancy in Monogastric Mammals: A Scoping Review. Nutr Rev 2025; 83:e1172-e1196. [PMID: 38926118 DOI: 10.1093/nutrit/nuae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
CONTEXT Pregnancy increases nutrient demand, but how nutrient uptake and its determinants adapt to facilitate this is unclear. OBJECTIVE This review aimed to identify and characterize evidence and evidence gaps regarding changes in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals. DATA SOURCES A scoping review of peer-reviewed sources was conducted across PubMed, Scopus, Web of Science, Embase, and ProQuest (theses and dissertations) databases. DATA EXTRACTION Data extracted included species, pregnancy stages and outcomes. Where sufficient data for a given outcome was available, relative values were summarized graphically or in tables, to allow comparison across pregnancy stages and/or small intestine regions. Searches identified 26 855 sources, of which only 159 were eligible. Mechanistic studies were largely restricted to rodents, and most compared non- and late-pregnant groups, with fewer studies including early- or mid-pregnant groups. DATA ANALYSIS During pregnancy, there is some evidence for greater capacity for glucose uptake but unchanged amino acid uptake, and good evidence for increased uptake of calcium, iron, and zinc, and slower gastrointestinal passage of nutrients. The available evidence indicates that acute glucose uptake, gastric emptying, and the activities of sucrase, maltase, and lactase do not change during pregnancy. Gaps in the knowledge include the effects of pregnancy on uptake of specific amino acids, lipids, and most minerals and vitamins. CONCLUSION The results indicate that the gastrointestinal tract adapts during pregnancy to facilitate increased nutrient absorption. Additional data is required in order to assess the underlying mechanisms for and impacts on the absorption of many nutrients, as well as to determine the timing of these adaptations.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Richard L Young
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Clarke GS, Vincent AD, Ladyman SR, Gatford KL, Page AJ. Circadian patterns of behaviour change during pregnancy in mice. J Physiol 2024; 602:6531-6552. [PMID: 38477893 PMCID: PMC11607885 DOI: 10.1113/jp285553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Food intake and activity adapt during pregnancy to meet the increased energy demands. In comparison to non-pregnant females, pregnant mice consume more food, eating larger meals during the light phase, and reduce physical activity. How pregnancy changes the circadian timing of behaviour was less clear. We therefore randomised female C57BL/6J mice to mating for study until early (n = 10), mid- (n = 10) or late pregnancy (n = 11) or as age-matched, non-pregnant controls (n = 12). Mice were housed individually in Promethion cages with a 12 h light-12 h dark cycle [lights on at 07.00 h, Zeitgeber (ZT)0] for behavioural analysis. Food intake between ZT10 and ZT11 was greater in pregnant than non-pregnant mice on days 6.5-12.5 and 12.5-17.5. In mice that exhibited a peak in the last 4 h of the light phase (ZT8-ZT12), peaks were delayed by 1.6 h in the pregnant compared with the non-pregnant group. Food intake immediately after dark-phase onset (ZT13-ZT14) was greater in the pregnant than non-pregnant group during days 12.5-17.5. Water intake patterns corresponded to food intake. From days 0.5-6.5 onwards, the pregnant group moved less during the dark phase, with decreased probability of being awake, in comparison to the non-pregnant group. The onset of dark-phase activity, peaks in activity, and wakefulness were all delayed during pregnancy. In conclusion, increased food intake during pregnancy reflects increased amplitude of eating behaviour, without longer duration. Decreases in activity also contribute to positive energy balance in pregnancy, with delays to all measured behaviours evident from mid-pregnancy onwards. KEY POINTS: Circadian rhythms synchronise daily behaviours including eating, drinking and sleep, but how these change in pregnancy is unclear. Food intake increased, with delays in peaks of food intake behaviour late in the light phase from days 6.5 to 12.5 of pregnancy, in comparison to the non-pregnant group. The onset of activity after lights off (dark phase) was delayed in pregnant compared with non-pregnant mice. Activity decreased by ∼70% in the pregnant group, particularly in the dark (active) phase, with delays in peaks of wakefulness evident from days 0.5-6.5 of pregnancy onwards. These behavioural changes contribute to positive energy balance during pregnancy. Delays in circadian behaviours during mouse pregnancy were time period and pregnancy stage specific, implying different regulatory mechanisms.
Collapse
Affiliation(s)
- Georgia S. Clarke
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Andrew D. Vincent
- Freemasons Centre for Male Health & Wellbeing, Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Department of AnatomySchool of Biomedical SciencesDunedinNew Zealand
| | - Kathryn L. Gatford
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Page AJ. Plasticity of gastrointestinal vagal afferents in terms of feeding-related physiology and pathophysiology. J Physiol 2024; 602:4763-4776. [PMID: 37737742 DOI: 10.1113/jp284075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Gastrointestinal vagal afferents play an important role in communicating food related information from the gut to the brain. This information initiates vago-vagal reflexes essential for gut functions, including gut motility and secretions. These afferents also play a role in energy homeostasis, signalling the arrival, amount and nutrient composition of a meal to the central nervous system where it is processed ultimately leading to termination of a meal. Vagal afferent responses to food related stimuli demonstrate a high degree of plasticity, responding to short term changes in nutritional demand, such as the fluctuations that occur across a 24-hr or in response to a fast, as well as long term changes in energy demand, such as occurs during pregnancy. This plasticity is disrupted in disease states, such as obesity or chronic stress where there is hypo- and hypersensitivity of these afferents, respectively. Improved understanding of the plasticity of these afferents will enable identification of new treatment options for diseases associated with vagal afferent function.
Collapse
Affiliation(s)
- Amanda J Page
- Vagal Afferent Research Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Clarke GS, Li H, Ladyman SR, Young RL, Gatford KL, Page AJ. Effect of pregnancy on the expression of nutrient-sensors and satiety hormones in mice. Peptides 2024; 172:171114. [PMID: 37926186 DOI: 10.1016/j.peptides.2023.171114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.
Collapse
Affiliation(s)
- Georgia S Clarke
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Hui Li
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia.
| |
Collapse
|
5
|
Abstract
Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals: a scoping review protocol. JBI Evid Synth 2022; 20:640-646. [PMID: 35165214 DOI: 10.11124/jbies-21-00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this review is to characterize the current state of literature and knowledge regarding adaptations of gastrointestinal nutrient absorption, and the determinants of this absorption during pregnancy in monogastric mammals. INTRODUCTION Energy demands increase significantly during pregnancy due to the metabolic demands associated with placental and fetal growth, and the deposition of fat stores that support postnatal lactation. Previous studies have examined anatomical changes within the small intestine, but have focused on specific pregnancy stages or specific regions of the small intestine. Importantly, little is known about changes in nutrient absorption during pregnancy, and the underlying mechanisms that lead to these changes. An understanding of these adaptations will inform research to improve pregnancy outcomes for both mothers and newborns in the future. INCLUSION CRITERIA This review will include primary literature that describes gastrointestinal nutrient absorption and/or its determinants during pregnancy in monogastric mammals, including humans and rodents. Only data for normal pregnancies will be included, and models of pathology and illness will be excluded. Studies must include comparisons between pregnant animals at known stages of pregnancy, and non-pregnant controls, or compare animals at different stages of pregnancy. METHODS The following databases will be searched for literature on this topic: PubMed, Scopus, Web of Science, Embase, MEDLINE, and ProQuest Dissertations and Theses. Evidence screening and selection will be carried out independently by two reviewers, and conflicts will be resolved through discussion with additional members of the review team. Data will be extracted and presented in tables and/or figures, together with a narrative summary.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
7
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
8
|
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021; 29:1813-1824. [PMID: 34623766 DOI: 10.1002/oby.23224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.
Collapse
Affiliation(s)
- Georgia S Clarke
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Richard L Young
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Page AJ. Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms. Nutrients 2021; 13:nu13030844. [PMID: 33807524 PMCID: PMC7998414 DOI: 10.3390/nu13030844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal vagal afferents (VAs) play an important role in food intake regulation, providing the brain with information on the amount and nutrient composition of a meal. This is processed, eventually leading to meal termination. The response of gastric VAs, to food-related stimuli, is under circadian control and fluctuates depending on the time of day. These rhythms are highly correlated with meal size, with a nadir in VA sensitivity and increase in meal size during the dark phase and a peak in sensitivity and decrease in meal size during the light phase in mice. These rhythms are disrupted in diet-induced obesity and simulated shift work conditions and associated with disrupted food intake patterns. In diet-induced obesity the dampened responses during the light phase are not simply reversed by reverting back to a normal diet. However, time restricted feeding prevents loss of diurnal rhythms in VA signalling in high fat diet-fed mice and, therefore, provides a potential strategy to reset diurnal rhythms in VA signalling to a pre-obese phenotype. This review discusses the role of the circadian system in the regulation of gastrointestinal VA signals and the impact of factors, such as diet-induced obesity and shift work, on these rhythms.
Collapse
Affiliation(s)
- Amanda J. Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; ; Tel.: +61-8-8128-4840
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institution (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|