1
|
Szabó P, Bonet S, Hetényi R, Hanna D, Kovács Z, Prisztóka G, Križalkovičová Z, Szentpéteri J. Systematic review: pain, cognition, and cardioprotection-unpacking oxytocin's contributions in a sport context. Front Physiol 2024; 15:1393497. [PMID: 38915776 PMCID: PMC11194439 DOI: 10.3389/fphys.2024.1393497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This systematic review investigates the interplay between oxytocin and exercise; in terms of analgesic, anti-inflammatory, pro-regenerative, and cardioprotective effects. Furthermore, by analyzing measurement methods, we aim to improve measurement validity and reliability. Methods Utilizing PRISMA, GRADE, and MECIR protocols, we examined five databases with a modified SPIDER search. Including studies on healthy participants, published within the last 20 years, based on keywords "oxytocin," "exercise" and "measurement," 690 studies were retrieved initially (455 unique records). After excluding studies of clinically identifiable diseases, and unpublished and reproduction-focused studies, 175 studies qualified for the narrative cross-thematic and structural analysis. Results The analysis resulted in five categories showing the reciprocal impact of oxytocin and exercise: Exercise (50), Physiology (63), Environment (27), Social Context (65), and Stress (49). Exercise-induced oxytocin could promote tissue regeneration, with 32 studies showing its analgesic and anti-inflammatory effects, while 14 studies discussed memory and cognition. Furthermore, empathy-associated OXTR rs53576 polymorphism might influence team sports performance. Since dietary habits and substance abuse can impact oxytocin secretion too, combining self-report tests and repeated salivary measurements may help achieve precision. Discussion Oxytocin's effect on fear extinction and social cognition might generate strategies for mental training, and technical, and tactical development in sports. Exercise-induced oxytocin can affect the amount of stress experienced by athletes, and their response to it. However, oxytocin levels could depend on the type of sport in means of contact level, exercise intensity, and duration. The influence of oxytocin on athletes' performance and recovery could have been exploited due to its short half-life. Examining oxytocin's complex interactions with exercise paves the way for future research and application in sports science, psychology, and medical disciplines. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=512184, identifier CRD42024512184.
Collapse
Affiliation(s)
- Péter Szabó
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
- Faculty of Humanities, University of Pécs, Pécs, Hungary
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| | - Sara Bonet
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Roland Hetényi
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Dániel Hanna
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Zsófia Kovács
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Gyöngyvér Prisztóka
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Zuzana Križalkovičová
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, Department of Sport Science, Pécs, Hungary
| | - József Szentpéteri
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Huang X, Ao JP, Fu HY, Lu HL, Xu WX. Corticotropin-releasing factor receptor agonists decrease interstitial cells of Cajal in murine colon. Neurogastroenterol Motil 2023; 35:e14499. [PMID: 36377810 DOI: 10.1111/nmo.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral corticotropin-releasing factor (CRF) has been reported to affect gastrointestinal motility through corticotropin-releasing factor receptor located in enteric nervous system (ENS), but less is known about of the relationship between peripheral CRF and interstitial cells of Cajal (ICC). METHODS Mice were intraperitoneally injected with CRF receptor agonists to determine their effects on colonic ICC. Chronic heterotypic stress (CHeS) was applied to mice to determine endogenous CRF-CRF receptor signaling on colonic ICC. RESULTS We found that stressin1, a selective CRF receptor 1 (CRF1 ) agonist, significantly increased the expression of CRF1 but had no effect on the expression of CRF2 in the smooth muscles of murine colon. The protein expression of c-Kit, Anoctamin-1 (ANO1), and stem cell factor (SCF) in the colonic smooth muscles was significantly decreased in stressin1-treated mice. Accordingly, 2-(4-Chloro-2-methylphenoxy)-N'-(2-methoxybenzylidene) acetohydrazide (Ani 9), a selective ANO1 blocker, had a less significant inhibitory effect on CMMC in stressin1-treated mice compared to the saline-treated ones. Similarly, we also found that ICC and ANO1 were reduced in the colonic smooth muscles of mice by treatment with sauvagine (ip), a CRF2 agonist. However, different with stressin1, sauvagine decreased the expression of CRF2 besides increasing CRF1 expression in the colonic smooth muscles. Similar results of CRF1 and c-Kit expressions were also obtained from the colon of CHeS-treated mice. CONCLUSION All these results suggest that CRF may be involved in the abnormality of colonic motility through peripheral CRF1 to decrease the number and function of ICC, which provides a potential target for treating stress-induced gastrointestinal motility disorder.
Collapse
Affiliation(s)
- Xu Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Han-Yue Fu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Li Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kusumoto J, Ataka K, Iwai H, Oga Y, Yamagata K, Marutani K, Ishikawa T, Asakawa A, Miyawaki S. Malocclusion impairs cognitive behavior via AgRP signaling in adolescent mice. Front Neurosci 2023; 17:1156523. [PMID: 37168929 PMCID: PMC10164942 DOI: 10.3389/fnins.2023.1156523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Occlusal disharmony induced by deteriorating oral health conditions, such as tooth loss and decreased masticatory muscle due to sarcopenia, is one of the causes of cognitive impairment. Chewing is an essential oral function for maintaining cognitive function not only in the elderly but also in young people. Malocclusion is an occlusal disharmony that commonly occurs in children. The connection between a decline in cognitive function and malocclusion in children has been shown with chronic mouth breathing, obstructive sleep apnea syndrome, and thumb/digit sucking habits. However, the mechanism of malocclusion-induced cognitive decline is not fully understood. We recently reported an association between feeding-related neuropeptides and cognitive decline in adolescent mice with activity-based anorexia. The aim of the present study was to assess the effects of malocclusion on cognitive behavior and clarify the connection between cognitive decline and hypothalamic feeding-related neuropeptides in adolescent mice with malocclusion. Methods Four-week-old mice were randomly assigned to the sham-operated solid diet-fed (Sham/solid), sham-operated powder diet-fed (Sham/powder), or malocclusion-operated powder diet-fed (Malocclusion/powder) group. We applied composite resin to the mandibular anterior teeth to simulate malocclusion. We evaluated cognitive behavior using a novel object recognition (NOR) test, measured hypothalamic feeding-related neuropeptide mRNA expression levels, and enumerated c-Fos-positive cells in the hypothalamus 1 month after surgery. We also evaluated the effects of central antibody administration on cognitive behavior impairment in the NOR test. Results The NOR indices were lower and the agouti-related peptide (AgRP) mRNA levels and number of c-Fos-positive cells were higher in the malocclusion/powder group than in the other groups. The c-Fos-positive cells were also AgRP-positive. We observed that the central administration of anti-AgRP antibody significantly increased the NOR indices. Discussion The present study suggests that elevated cerebral AgRP signaling contributes to malocclusion-induced cognitive decline in adolescents, and the suppression of AgRP signaling can be a new therapeutic target against cognitive decline in occlusal disharmony.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Koji Ataka,
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Yamagata
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Kanako Marutani
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Takanori Ishikawa
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
4
|
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep 2020; 10:5913. [PMID: 32246073 PMCID: PMC7125123 DOI: 10.1038/s41598-020-62699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions.
Collapse
|
5
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
6
|
Alcántara-Alonso V, Amaya MI, Matamoros-Trejo G, de Gortari P. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides 2017; 63:75-82. [PMID: 28162848 DOI: 10.1016/j.npep.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
Abstract
Early-life stress induces endocrine and metabolic alterations that increase food intake and overweight in adulthood. The stress response activates the corticotropin-releasing hormone (CRH) and urocortins' (Ucns) system in the hypothalamic paraventricular nucleus (PVN). These peptides induce anorexic effects through CRH-R2 receptor activation; however, chronic stressed animals develop hyperphagia despite of high PVN CRH expression. We analyzed this paradoxical behavior in adult rats subjected to maternal separation (MS) for 180min/daily during post-natal days 2-14, evaluating their body weight gain, food intake, serum corticosterone and vasopressin concentrations, PVN mRNA expression of CRH-R1, CRH-R2, CRH, Ucn2, Ucn3, vasopressin and CRH-R2 protein levels. MS adults increased their feeding, weight gain as well as circulating corticosterone and vasopressin levels, evincing chronic hyperactivity of the stress system. MS induced higher PVN CRH, Ucn2 and CRH-R2 mRNA expression and protein levels of CRH-R2 showed a tendency to decrease in the cellular membrane fraction. An intra-PVN injection of the CRH-R2 antagonist antisauvagine-30 in control adults increased receptor's mRNA expression, mimicking the observed PVN receptor's up-regulation of early-life MS adults. An injection of Ucn-2 directly into the PVN reduced food intake and increased PVN pCREB/CREB ratio in control animals; in contrast, Ucn-2 was unable to reduce food intake and enhance phosphorylated-CREB levels in PVN of MS rats. In conclusion, the chronic hyperactivity of the stress axis and PVN CRH-R2 resistance to Ucn2 effects, supported impaired receptor functionality in MS animals, probably due to its chronic stimulation by CRH or Ucn2, induced by early-life stress.
Collapse
Affiliation(s)
- V Alcántara-Alonso
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - M I Amaya
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - G Matamoros-Trejo
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
7
|
Bülbül M, Sinen O, Gemici B, İzgüt-Uysal VN. Opposite effects of central oxytocin and arginine vasopressin on changes in gastric motor function induced by chronic stress. Peptides 2017; 87:1-11. [PMID: 27829122 DOI: 10.1016/j.peptides.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023]
Abstract
Hypothalamic oxytocin (OXT) and arginine vasopressin (AVP) are known to act oppositely on hypothalamic-pituitary-adrenal (HPA) axis, stress response and gastrointestinal (GI) motility. In rodents, exposure to restraint stress (RS) delays gastric emptying (GE), however, repeated exposure to the same stressor (chronic homotypic stress (CHS)), the delayed GE is restored to basal level, while hypothalamic OXT is upregulated. In contrast, when rats are exposed to chronic heterotypic stress (CHeS), these adaptive changes are not observed. Although the involvement of central OXT in gastric motor adaptation is partly investigated, the role of hypothalamic AVP in CHeS-induced maladaptive paradigm is poorly understood. Using in-vivo brain microdialysis in rats, the changes OXT and AVP release from hypothalamus were monitored under basal non-stressed (NS) conditions and in rats exposed to acute stress (AS), CHS and CHeS. To investigate the involvement of central endogenous OXT or AVP in CHS-induced habituation and CHeS-induced maladaptation, chronic central administration of selective OXT receptor antagonist L-371257 and selective AVP V1b receptor antagonist SSR-149415 was performed daily. OXT was measured higher in AS and CHS group, but not in CHeS-loaded rats, whereas AVP significantly increased in rats exposed to AS and CHeS. Additionally, the response of the hypothalamic OXT- and AVP-producing cells was amplified following CHS and CHeS, respectively. In rats exposed to AS for 90min solid GE significantly delayed. The delayed-GE was completely restored to the basal level following CHS, however, it remained delayed in CHeS-loaded rats. The CHS-induced restoration was prevented by L-371257, whereas SSR-149415 abolished the CHeS-induced impaired GE. A significant correlation was observed between GE and (i) OXT in CHS-loaded rats (rho=0.61, p<0.05, positively), (ii) AVP in CHeS-loaded rats (rho=0.69, p<0.05, negatively). Under long term stressed conditions, the release of AVP and OXT from hypothalamus may vary depending on the content of the stressors. Central AVP appears to act oppositely to OXT by mediating CHeS-induced gastric motor maladaptation. Long term central AVP antagonism might be a pharmacological approach for the treatment of stress-related gastric motility disorders.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Osman Sinen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
8
|
Yeh C, Ting CH, Doong ML, Chi CW, Lee SD, Chen CY. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3281-3290. [PMID: 27757017 PMCID: PMC5055120 DOI: 10.2147/dddt.s113195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. Methods We examined the differential effects of central O-n-octanoylated ghrelin, des-Gln14-ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV) catheters. The functional importance of corticotropin-releasing factor (CRF) receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin2-B. Results ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O-n-octanoylated ghrelin and des-Gln14-ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2 pathway. Conclusion ICV-infused urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Our results clearly showed that enhancing ghrelin and blocking CRF receptor 2 signaling in the brain accelerated gastric emptying, which provided important clues for a new therapeutic avenue in ameliorating anorexia and gastric ileus found in various chronic wasting disorders.
Collapse
Affiliation(s)
- Chun Yeh
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital
| | | | | | - Chin-Wen Chi
- Institute of Pharmacology, National Yang-Ming University School of Medicine; Department of Medical Research, Taipei Veterans General Hospital
| | - Shou-Dong Lee
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan
| |
Collapse
|
9
|
Ataka K, Asakawa A, Nagaishi K, Kaimoto K, Sawada A, Hayakawa Y, Tatezawa R, Inui A, Fujimiya M. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS One 2013; 8:e81744. [PMID: 24303068 PMCID: PMC3841189 DOI: 10.1371/journal.pone.0081744] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022] Open
Abstract
Background Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS) induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. Methods and Findings Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN) of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1lowCCR2+CXCR4high, as distinct from CX3CR1highCCR2-CXCR4low resident microglia, and express higher levels of interleukin-1β (IL-1β) but lower levels of tumor necrosis factor-α (TNF-α). Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1) in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1) in the bone marrow and increases the frequency of CXCR4+ monocytes in peripheral circulation. And then a chemokine (C-C motif) receptor 2 (CCR2) or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. Conclusion Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.
Collapse
Affiliation(s)
- Koji Ataka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kanna Nagaishi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kaori Kaimoto
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Atsushi Sawada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuko Hayakawa
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryota Tatezawa
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| |
Collapse
|
10
|
Mastropaolo M, Zizzo MG, Auteri M, Mulè F, Serio R. Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon. ACTA ACUST UNITED AC 2013; 187:29-34. [DOI: 10.1016/j.regpep.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
|
11
|
Liu Y, Luo H, Liang C, Xia H, Xu W, Chen J, Chen M. Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress. PLoS One 2013; 8:e55853. [PMID: 23405222 PMCID: PMC3566119 DOI: 10.1371/journal.pone.0055853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the potential role of hydrogen sulphide (H(2)S) and ATP-sensitive potassium (K(ATP)) channels in chronic stress-induced colonic hypermotility. METHODS Male Wistar rats were submitted daily to 1 h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Organ bath recordings, H(2)S production, immunohistochemistry and western blotting were performed on rat colonic samples to investigate the role of endogenous H(2)S in repeated WAS-induced hypermotility. Organ bath recordings and western blotting were used to detect the role of K(ATP) channels in repeated WAS. RESULTS Repeated WAS increased the number of fecal pellets per hour and the area under the curve of the spontaneous contractions of colonic strips, and decreased the endogenous production of H(2)S and the expression of H(2)S-producing enzymes in the colon devoid of mucosa and submucosa. Inhibitors of H(2)S-producing enzymes increased the contractile activity of colonic strips in the SWAS rats. NaHS concentration-dependently inhibited the spontaneous contractions of the strips and the NaHS IC(50) for the WAS rats was significantly lower than that for the SWAS rats. The inhibitory effect of NaHS was significantly reduced by glybenclamide. Repeated WAS treatment resulted in up-regulation of Kir6.1 and SUR2B of K(ATP) channels in the colon devoid of mucosa and submucosa. CONCLUSION The colonic hypermotility induced by repeated WAS may be associated with the decreased production of endogenous H(2)S. The increased expression of the subunits of K(ATP) channels in colonic smooth muscle cells may be a defensive response to repeated WAS. H(2)S donor may have potential clinical utility in treating chronic stress-induced colonic hypermotility.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| | - Chengbo Liang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjuan Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jihong Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|