1
|
Jiang X, Liang X, Li S, Yang Y, Xu X, Gu W, Meng W, Cheng F. The LINC00319 binding to STAT3 promotes the cell proliferation, migration, invasion and EMT process in oral squamous cell carcinoma. Arch Biochem Biophys 2024; 761:110170. [PMID: 39366629 DOI: 10.1016/j.abb.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Long non-coding RNA LINC00319 has been implicated in the progression of various cancers, including oral squamous cell carcinoma (OSCC). While our previous work has revealed some aspects of LINC00319's role in OSCC, including its upregulation and involvement in a competing endogenous RNA (ceRNA) mechanism, the full extent of its functions and regulatory mechanisms in OSCC progression remain to be fully elucidated. OBJECTIVE This study aimed to investigate the function of LINC00319 in OSCC and its potential interaction with the STAT3 signaling pathway, thus uncovering novel regulatory mechanisms and therapeutic targets. METHODS Bioinformatics analysis was performed using TCGA data to evaluate LINC00319 expression in OSCC tissues and its correlation with STAT3 signaling. The direct binding between LINC00319 and STAT3 was examined by RNA pull-down, FISH, and RIP assays. Functional experiments, including CCK-8, transwell migration and invasion assays, and western blot analysis of EMT markers and STAT3 pathway activation, were conducted to assess the effects of LINC00319 on OSCC cell behaviors and its interaction with the STAT3 signaling pathway. In vivo xenograft models were established to validate the role of LINC00319 in tumor growth and STAT3 activation. RESULTS LINC00319 expression was significantly upregulated in OSCC tissues compared to normal tissues, and high LINC00319 expression correlated with STAT3 signaling activation. Mechanistically, LINC00319 directly bound to STAT3 protein and promoted its phosphorylation at Tyr705. LINC00319 overexpression enhanced, while its knockdown suppressed, the proliferation, migration, invasion, and EMT of OSCC cells. These oncogenic effects were mediated through STAT3 activation and could be reversed by the STAT3 inhibitor stattic. In vivo experiments further confirmed that LINC00319 silencing inhibited tumor growth and STAT3 phosphorylation. CONCLUSION This study uncovers that LINC00319 promotes OSCC tumorigenesis by directly binding to and activating STAT3 signaling. These findings provide new insights into the regulatory mechanisms of STAT3 by long non-coding RNAs and highlight the potential of LINC00319 as a biomarker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Xiao Jiang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Xueyi Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Yinshen Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Xiaoheng Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Wenxia Meng
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| | - Fanping Cheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou 510280, Guangdong Province, China.
| |
Collapse
|
2
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
4
|
Su X, Yan L, Si J, Wang Z, Liang C, Peng K, Shen J, Duan S. LINC00319: Unraveling the spectrum from gene regulation to clinical applications in cancer progression. Gene 2024; 896:148044. [PMID: 38042213 DOI: 10.1016/j.gene.2023.148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
LncRNAs are RNA transcripts that exceed 200 nucleotides in length and do not encode proteins. LINC00319 is a type of lncRNA that is highly expressed in various cancers and is regulated by CCL18 and MYC. High levels of LINC00319 are associated with poorer prognosis and more malignant clinical features in cancer patients. LINC00319 can regulate the expression of downstream genes, including 2 protein-coding genes and 11 miRNAs. It participates in controlling three signaling pathways and various cellular behaviors. LINC00319 and its downstream genes are potential targets for cancer therapy and are associated with common cancer treatments. This article reviews the abnormal expression of LINC00319 in human cancers and related molecular mechanisms, providing clues for further diagnosis and treatment.
Collapse
Affiliation(s)
- Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Lingtao Yan
- Medical Genetics Center, Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiahua Si
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenhao Liang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Kehao Peng
- The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Alizamir A, Amini MA, Karbasi A, Beyrami M. MiR-4492, a New Potential MicroRNA for Cancer Diagnosis and Treatment: A Mini Review. Chonnam Med J 2024; 60:21-26. [PMID: 38304137 PMCID: PMC10828084 DOI: 10.4068/cmj.2024.60.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
There is no doubt that the incidence of cancer sufferers is rising in the world, and it is estimated that in the next several decades, the number of people suffering from malignancies or the cancer rate will double. Diagnostic and therapeutic targeting of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represent an excellent approach for cancer diagnosis and treatment, as well as many other diseases. One of the latest miRNAs is miR-4492, upregulating some genes in tumor tissues including ROMO1, HLA-G, NKIRAS2, FOXK1, and UBE2C. It represents an attractant example of a miRNA acting at multiple levels to affect the same malignancy hallmark. Based on the studies, miR-4492 plays a key role in several cancers such as, breast cancer, bladder cancer, osteosarcoma, glioblastoma multiforme, hepatocellular carcinoma, colorectal cancer, and ovarian cancer. Putting it all together, identifying the precise mechanisms of miR-4492 in the pathogenesis of cancer, could pave the way to find better diagnostic and therapeutic strategies for cancer sufferers. For this reason, it might be a novel potential diagnostic biomarker and therapeutic target for neoplasms.
Collapse
Affiliation(s)
- Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Beyrami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Zhang X, Han T, Xu T, Wang H, Ma H. Uncovering Candidate mRNAs, Signaling Pathways and Immune Cells in Atherosclerotic Plaque and Ischemic Stroke. Int J Gen Med 2023; 16:2999-3012. [PMID: 37465552 PMCID: PMC10350412 DOI: 10.2147/ijgm.s418913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Background The specific molecular mechanistic link between atherosclerotic plaques and ischemic stroke (IS) is not clear. The aim of this study is to explore the potential molecular relationship between atherosclerotic plaques and IS. Methods All data were downloaded from the Gene Expression Omnibus (GEO) database. Key hub differentially expressed mRNAs (DEmRNAs) related to atherosclerotic plaques and IS were identified by differential expression analysis and least absolute shrinkage and selection operator (LASSO) analysis. Subsequently, a diagnostic model was established based on the expression of key hub DEmRNAs and logistic regression. In order to understand the molecular mechanism of key hub DEmRNAs, the transcription factor (TF) regulatory network and mRNA-miRNA-lncRNA regulatory network were also constructed. In addition, functional enrichment analysis and single-sample Gene Set Enrichment Analysis (ssGSEA) analysis were also performed. Results Four key hub DEmRNAs (ADCY3, CLDN7, PPM1B and RRAS2) were identified by differential expression analysis and LASSO analysis. Moreover, the diagnostic model based on four key hub DEmRNAs has excellent diagnostic accuracy. We also found that Type 1 T helper cell may be associated with IS caused by atherosclerosis based on ssGSEA analysis. In the mRNA-miRNA-lncRNA regulatory network, we found that multiple signaling axes such as RRAS2-hsa-miR-3150b-3p-ILF3-AS1, PPM1B-hsa-miR-541-5p-LINC00294, CLDN7-hsa-miR-184-LINC00467 and ADCY3-hsa-miR-488-3p-URB1-AS1 may play an important role in the progression of IS. In addition, some signaling pathways, including chemokine signaling pathway, MAPK signaling pathway and cAMP signaling pathway, may be involved in regulating IS. Conclusion The identified key molecules, signaling pathways and immune cells may help to provide a theoretical basis for exploring the relationship between atherosclerotic plaque and the progression of IS.
Collapse
Affiliation(s)
- Xianjing Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Tingting Han
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Tengxiao Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Huimin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People’s Republic of China
| | - Haijun Ma
- Department of Radiology, Taian Maternity and Child Health Care Hospital, Taian, 271000, People’s Republic of China
| |
Collapse
|
7
|
Asfa S, Toy HI, Arshinchi Bonab R, Chrousos GP, Pavlopoulou A, Geronikolou SA. Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6288. [PMID: 37444135 PMCID: PMC10341845 DOI: 10.3390/ijerph20136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Ewing sarcoma is a rare type of cancer that develops in the bones and soft tissues. Drug therapy represents an extensively used modality for the treatment of sarcomas. However, cancer cells tend to develop resistance to antineoplastic agents, thereby posing a major barrier in treatment effectiveness. Thus, there is a need to uncover the molecular mechanisms underlying chemoresistance in sarcomas and, hence, to enhance the anticancer treatment outcome. In this study, a differential gene expression analysis was conducted on high-throughput transcriptomic data of chemoresistant versus chemoresponsive Ewing sarcoma cells. By applying functional enrichment analysis and protein-protein interactions on the differentially expressed genes and their corresponding products, we uncovered genes with a hub role in drug resistance. Granted that non-coding RNA epigenetic regulators play a pivotal role in chemotherapy by targeting genes associated with drug response, we investigated the non-coding RNA molecules that potentially regulate the expression of the detected chemoresistance genes. Of particular importance, some chemoresistance-relevant genes were associated with the autonomic nervous system, suggesting the involvement of the latter in the drug response. The findings of this study could be taken into consideration in the clinical setting for the accurate assessment of drug response in sarcoma patients and the application of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - George P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Styliani A. Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
8
|
Wang H, Feng Y, Zheng X, Xu X. The Diagnostic and Therapeutic Role of snoRNA and lincRNA in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041007. [PMID: 36831352 PMCID: PMC9954389 DOI: 10.3390/cancers15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Although the means of diagnosis and treatment have continually improved in recent years, the recurrence rate of bladder cancer remains high, and patients with MIBC typically have an unfavourable prognosis and a low quality of life. Emerging evidence demonstrates that long noncoding RNAs play a crucial role in the carcinogenesis and progression of bladder cancer. Long intergenic noncoding RNAs (lincRNAs) are a subgroup of long noncoding RNAs (lncRNAs) that do not overlap protein-coding genes. The potential role of lincRNAs in the regulation of gene expression has been explored in depth in recent years. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNAs (ncRNAs) that mainly exist in the nucleolus, are approximately 60-300 nucleotides in length, and are hosted inside the introns of genes. Small nucleolar RNA host genes (SNHGs) have been associated with the origin and development of bladder cancer. In this review, we aim to comprehensively summarize the biological functions of these molecules in bladder cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanfei Feng
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| |
Collapse
|
9
|
Guo R, Liu T, Shasaltaneh MD, Wang X, Imani S, Wen Q. Targeting Adenylate Cyclase Family: New Concept of Targeted Cancer Therapy. Front Oncol 2022; 12:829212. [PMID: 35832555 PMCID: PMC9271773 DOI: 10.3389/fonc.2022.829212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.
Collapse
Affiliation(s)
- Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Xuan Wang
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| |
Collapse
|
10
|
miR-335-5p Inhibits Progression of Uterine Leiomyoma by Targeting ARGLU1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2329576. [PMID: 35082911 PMCID: PMC8786540 DOI: 10.1155/2022/2329576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Studies have demonstrated that miR-335-5p exhibits an essential role in the progress of multiple tumors, including thyroid cancer, pancreatic cancer, and non-small-cell lung cancer. However, the possible expression, the detailed role, and the underlying mechanisms of miR-335-5p in uterine leiomyoma (UL) still remained unclear. Therefore, the present study was designed to investigate the mechanism and function of miR-335-5p in UL. In our study, microRNA-335-5p (miR-335-5p) is significantly downregulated in UL tissues and UL cell lines, especially in HCC1688 and SK-UT-1 cells. Functionally, overexpression of miR-335-5p notably inhibits the viability of UL cell lines by CCK-8 assay. Besides, upregulation of miR-335-5p inhibits proliferation of UL cell lines by colony formation assay and decreases the protein levels of PCNA and Ki-67 detected by western blot assay. In addition, overexpression of miR-335-5p induces UL cell cycle arrest at G1 phase. Upregulation of miR-335-5p decreases the levels of Cyclin A1, Cyclin B1, and Cyclin D2 and upregulates the expression of p27 protein. Additionally, upregulation of miR-335-5p promotes the apoptosis of UL cell lines, increases the protein levels of Bax, Cleaved caspase-3, and Cleaved caspase-9, and decreases the protein expression of Bcl-2. Moreover, Arginine and Glutamate-Rich protein 1 (ARGLU1) is predicted as a target of miR-335-5p by ENCORI and miRDB and confirmed by dual-luciferase reporter assay. ARGLU1 is negatively associated with miR-335-5p. Furthermore, overexpression of ARGLU1 partly restores the effects of miR-335-5p mimic on the viability, proliferation, cell cycle, and apoptosis of UL cell lines. To conclude, miR-335-5p may play a repressive role in UL by targeting ARGLU1 and serve as a potential therapeutic target for the treatment of UL.
Collapse
|
11
|
|
12
|
Tao W, Cao C, Ren G, Zhou D. Circular RNA circCPA4 promotes tumorigenesis by regulating miR-214-3p/TGIF2 in lung cancer. Thorac Cancer 2021; 12:3356-3369. [PMID: 34741437 PMCID: PMC8671903 DOI: 10.1111/1759-7714.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lung cancer is the most prevalent malignancy in adults. Circular RNA (circRNA) circCPA4 (hsa_circ_0082374) is highly expressed in non‐small cell lung cancer (NSCLC). The purpose of this study was to explore the role and mechanism of circCPA4 in lung cancer. Methods CircCPA4, linear CPA4, TGF‐β‐induced factor homeobox 2 (TGIF2), and microRNA‐214‐3p (miR‐214‐3p) levels were measured by real‐time quantitative polymerase chain reaction (RT‐qPCR). The protein levels of TGIF2, Beclin1, and p62 were assessed by western blot assay. Colony numbers, migration, invasion, apoptosis, and cell cycle progression were examined by colony formation, wound‐healing, transwell, and flow cytometry assays, respectively. The binding relationship between miR‐214‐3p and circCPA4 or TGIF2 was predicted by StarBase or TargetScan and then verified by a dual‐luciferase reporter, RNA immunoprecipitation (RIP), and RNA pulldown assays. The biological role of circCPA4 on lung tumor growth was assessed by a xenograft tumor model in vivo, and TGIF2 and ki‐67 expression was assessed by immunohistochemistry. Results We determined that CircCPA4 and TGIF2 were increased, and miR‐214‐3p was decreased in lung cancer tissues and cells. Functionally, circCPA4 knockdown could suppress colony formation, migration, invasion, cell cycle progression, and expedite apoptosis of lung cancer cells in vitro. Mechanically, circCPA4 could regulate TGIF2 expression by sponging miR‐214‐3p. In addition, circCPA4 deficiency inhibited the tumor growth in lung cancer in the mouse model. Conclusions CircCPA4 could act as a sponge of miR‐214‐3p to upregulate TGIF2 expression, thereby promoting the progression of lung cancer cells. These findings suggested underlying therapeutic targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Wenhu Tao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Cao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gaofei Ren
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Decun Zhou
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| |
Collapse
|
13
|
Wu J, Gao L, Chen H, Zhou X, Lu X, Mao Z. LINC02535 promotes cell growth in poorly differentiated gastric cancer. J Clin Lab Anal 2021; 35:e23877. [PMID: 34125981 PMCID: PMC8373362 DOI: 10.1002/jcla.23877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Abnormal long non‐coding RNA (lncRNA) expression plays important roles in gastric cancer. However, the functions of many lncRNAs in poorly differentiated gastric cancer (PDGC) remain unknown. Methods Three sets of paired tissues from patients with PDGC were used, and transcriptome sequencing was performed, followed by the construction and sequencing of a library and mapping of the reads. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein‐protein interaction (PPI) networks were analysed, and canonical pathway significance was calculated among the differentially expressed genes (DEGs; p < 0.05). Gene expression in 30 paired PDGC specimens and four cell lines was validated through quantitative PCR. Cell proliferation, migration, invasion, apoptosis, and wound healing were analysed. Results A total of 499 upregulated DEGs and 627 downregulated DEGs were identified between peritumoral and gastric cancer tissues. The proportions of positive and negative correlations between LINC02535 and the DEGs were 98.40% and 92.66%, respectively, while the Spearman's correlation coefficient was greater than 0.5. The PPI network showed that approximately 73.15% of the top five genes were directly correlated with LINC02535 according to the STRING database. Based on KEGG analysis, the functions of LINC02535 target genes were enriched in signalling pathways related to cancer cell growth. Furthermore, cell function studies showed that LINC02535 upregulation contributed to cell proliferation, migration, invasion, and wound healing and that its inhibition facilitated cell apoptosis. Conclusion LINC02535 expression was upregulated in PDGC and contributed to cell proliferation, migration, invasion and wound healing, whereas its inhibition in PDGC facilitated cell apoptosis.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology Surgery, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xialiang Lu
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhongqi Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Long Noncoding RNA HCG11 Acts as a Tumor Suppressor in Gastric Cancer by Regulating miR-942-5p/BRMS1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:9961189. [PMID: 34054958 PMCID: PMC8131154 DOI: 10.1155/2021/9961189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
The functions of long noncoding RNAs (lncRNAs) have been widely investigated in human cancers, including gastric cancer (GC). The purpose of this study was to elucidate the role of lncRNA HCG11 in GC. In this study, mRNA and protein expressions were detected by quantitative real-time polymerase chain reaction assays (RT-qPCR) and Western blot analysis. The proliferation ability of GC cells was examined by (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide) MTT assays. The invasion and migration abilities of GC cells were evaluated by Transwell assays. The binding sites between miR-942-5p and HCG11/BRMS1 were confirmed by dual-luciferase reporter assays. Results showed that LncRNA HCG11 was downregulated in GC cells. Functionally, overexpression of HCG11 inhibited GC cell proliferation, migration, and invasion. In addition, lncRNA HCG11 was found to act as a molecular sponge of miR-942-5p. Furthermore, miR-942-5p promoted GC progression by suppressing lncRNA HCG11 expression. Besides that, BRMS1 was confirmed as a direct target of miR-942-5p. More importantly, breast cancer metastasis suppressor 1 (BRMS1) inhibited GC progression by upregulating lncRNA HCG11 and downregulating miR-942-5p. In conclusion, LncRNA HCG11 inhibited cell proliferation, migration, and invasion in GC by sponging miR-942-5p and upregulating BRMS1.
Collapse
|
15
|
Li G, Zhang L. miR-335-5p aggravates type 2 diabetes by inhibiting SLC2A4 expression. Biochem Biophys Res Commun 2021; 558:71-78. [PMID: 33901926 DOI: 10.1016/j.bbrc.2021.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/27/2022]
Abstract
Globally, type 2 diabetes (T2D) is the most common chronic disease. It affects approximately 500 million people worldwide. Dysregulation of the solute carrier family 2 member 4 (SLC2A4) gene and miR-335-5p has been associated with T2D progression. However, the mechanisms underlying this dysregulation are unclear. The levels of miR-335-5p and SLC2A4 in blood samples collected from patients with T2D (T2D blood samples) and pancreatic cell lines were measured by Real Time quantitative PCR (RT-qPCR). The relationship between miR-335-5p and SLC2A4 was investigated using a luciferase assay. The role of the miR-335-5p-SLC2A4 axis was detected by CCK8, BrdU, and caspase-3 assays in pancreatic cells treated with 25 mM glucose. Increased miR-335-5p and decreased SLC2A4 expression was observed in both T2D blood samples and pancreatic cell lines. The miR-335-5p mimic markedly suppressed proliferation and elevated apoptosis in glucose-treated pancreatic cells. SLC2A4 overexpression significantly enhanced proliferation but inhibited apoptosis in glucose-treated pancreatic cells. Moreover, miR-335-5p inhibited the expression of SLC2A4 in the pancreatic cells and suppressed the growth of these cells. The data indicated that miR-335-5p targeting of SLC2A4 could hamper the growth of T2D cell model by inhibiting their proliferation and elevating apoptosis. Collectively, our findings implicate miR-335-5p and SLC2A4 as potentially effective therapeutic targets for patients with T2D.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiology, Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, 430300, Hubei, China
| | - Linghui Zhang
- Department of Endocrinology, Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, 430300, Hubei, China.
| |
Collapse
|
16
|
Iacobas D, Wen J, Iacobas S, Schwartz N, Putterman C. Remodeling of Neurotransmission, Chemokine, and PI3K-AKT Signaling Genomic Fabrics in Neuropsychiatric Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:251. [PMID: 33578738 PMCID: PMC7916450 DOI: 10.3390/genes12020251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction and mood changes are prevalent and especially taxing issues for patients with systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the cortices of MRL/+, MRL/lpr (that manifest lupus-like phenotype) and MRL/lpr-Fn14 knockout (Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on cortical gene expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level, variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine signaling. Dysregulation of the Phosphoinositide 3-kinase (PI3K)-AKT pathway in the MRL/lpr lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and, therefore, promising as a potential therapeutic target, although the complexity of the transcriptomic fabric highlights important considerations in in vivo experimental models.
Collapse
Affiliation(s)
- Dumitru Iacobas
- Center for Computational Systems Biology, Personalized Genomics Laboratory, Roy G. Perry College of Engineering, Prairie View A & M University, Prairie View, TX 77446, USA;
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jing Wen
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Noa Schwartz
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Chaim Putterman
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 52100, Israel
- Galilee Medical Center, Research Institute, Nahariya 22100, Israel
| |
Collapse
|
17
|
Sun F, Yu Z, Wu B, Zhang H, Ruan J. LINC00319 promotes osteosarcoma progression by regulating the miR-455-3p/NFIB axis. J Gene Med 2020; 22:e3248. [PMID: 32621625 DOI: 10.1002/jgm.3248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Numerous studies have shown that aberrant expression of long non-coding RNAs (lncRNAs) is associated with the development and metastasis of osteosarcoma (OS). However, the role and function of LINC00319 with respect to regulating OS progression is unknown. The present study aimed to reveal the function and related mechanism of LINC00319 in OS. METHODS The expression of LINC00319, miR-455-3p and nuclear factor IB (NFIB) in OS cells and tissues was determined using a reverse transcriptase-polymerase chain reaction (PCR). The sublocalization of LINC00319 was predicted by the lncATLAS database (http://lncatlas.crg.eu) and RNA fluorescence in situ hybridization (FISH) was further performed to detect the subcellular localization of LINC00319. LINC00319, miR-455-3p and NFIB target sites were predicted by StarBase (http://starbase.sysu.edu.cn/index.php) and validated using a dual luciferase reporter gene assay. We subsequently performed LINC00319 gain- and loss-of-function studies to define the role of LINC00319 in OS cell migration. RESULTS PCR results showed that lncRNA LINC00319 exhibited high expression in tumor cells and tissue. Moreover, LINC00319 was positioned in the cytoplasm, which was identified by FISH. Knockdown of lncRNA LINC00319/NFIB or overexpression of miR-455-3p blocked the migration of OS cells. In addition, the inhibitory effect of migration with the knockdown of lncRNA LINC00319 was partially blocked by administration of miR-455-3p inhibitor. CONCLUSIONS lncRNA LINC00319 may promote OS progression by regulating the miR-455-3p/NFIB axis, which probably serves as an innovative potential indicator of prognosis and a target of therapy for OS.
Collapse
Affiliation(s)
- Farui Sun
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Ziliang Yu
- School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bingbing Wu
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haiping Zhang
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Ruan
- Department of Psychology, Huangshi Psychiatric Hospital, Huangshi, Hubei, China
| |
Collapse
|