1
|
Liu P, Zhang X, Zhao N, Dai J, Liang G. Effects of exogenous hydrogen sulfide and honokiol intervention on the proliferation, apoptosis, and calcium signaling pathway of rat enteric glial cells. Biomed Pharmacother 2024; 179:117290. [PMID: 39153433 DOI: 10.1016/j.biopha.2024.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.
Collapse
Affiliation(s)
- PengFei Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - XiaoDan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Nan Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - JiaLing Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - GuoGang Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
| |
Collapse
|
2
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
3
|
Mao S, Wang X, Li M, Liu H, Liang H. The role and mechanism of hydrogen sulfide in liver fibrosis. Nitric Oxide 2024; 145:41-48. [PMID: 38360133 DOI: 10.1016/j.niox.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Hydrogen sulfide (H2S) is the third new gas signaling molecule in the human body after the discovery of NO and CO. Similar to NO, it has the functions of vasodilation, anti-inflammatory, antioxidant, and regulation of cell formation. Enzymes that can produce endogenous H2S, such as CSE, CSB, and 3-MST, are common in liver tissues and are important regulatory molecules in the liver. In the development of liver fibrosis, H2S concentration and expression of related enzymes change significantly, which makes it possible to use exogenous gases to treat liver diseases. This review summarizes the role of H2S in liver fibrosis and its complications induced by NAFLD and CCl4, and elaborates on the anti-liver fibrosis effect of H2S through the mechanism of reducing oxidative stress, inhibiting inflammation, regulating autophagy, regulating glucose and lipid metabolism, providing theoretical reference for further research on the treatment of liver fibrosis with H2S.
Collapse
Affiliation(s)
- Shaoyu Mao
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Wang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Miaoqing Li
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanshu Liu
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongxia Liang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Zhang Y, Yan M, Xia Y, Yue Y, Wang S, Hu Y, Lai G, Wu Q, Liu Q, Ding X, Guo C. Glutaredoxin-1 modulates the NF-κB signaling pathway to activate inducible nitric oxide synthase in experimental necrotizing enterocolitis. Mol Ther Methods Clin Dev 2024; 32:101214. [PMID: 38496303 PMCID: PMC10940916 DOI: 10.1016/j.omtm.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Inducible nitric oxide synthase (iNOS), regulated by nuclear factor kappa B (NF-κB), is crucial for intestinal inflammation and barrier injury in the progression of necrotizing enterocolitis (NEC). The NF-κB pathway is inhibited by S-glutathionylation of inhibitory κB kinase β (IKKβ), which can be restored by glutaredoxin-1 (Grx1). Thus, we aim to explore the role of Grx1 in experimental NEC. Wild-type (WT) and Grx1-knockout (Grx1-/-) mice were treated with an NEC-inducing regimen. Primary intestinal epithelial cells (IECs) were subjected to LPS treatment. The production of iNOS, NO, and inflammation injuries were assessed. NF-κB and involved signaling pathways were also explored. The severity of NEC was attenuated in Grx1-/- mice. Grx1 ablation promoted IKKβ glutathionylation, NF-κB inactivation, and decreased iNOS, NO, and O2·- production in NEC mice. Furthermore, Grx1 ablation restrained proinflammatory cytokines and cell apoptosis, ameliorated intestinal barrier damage, and promoted proliferation in NEC mice. Grx1 ablation protected NEC through iNOS and NO inhibition, which related to S-glutathionylation of IKKβ to inhibit NF-κB signaling. Grx1-related signaling pathways provide a new therapeutic target for NEC.
Collapse
Affiliation(s)
- Yunfei Zhang
- Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
- Department of Gastrointestinal Surgery, Renshou People’s Hospital, Meishan, Sichuan, P.R. China
| | - Mei Yan
- Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yingying Xia
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
- Department of Psychiatry, Xinjin District Second People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Yingbin Yue
- Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Shuli Wang
- Department of Gastrointestinal Surgery, Renshou People’s Hospital, Meishan, Sichuan, P.R. China
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yuhui Hu
- Department of Gastrointestinal Surgery, Renshou People’s Hospital, Meishan, Sichuan, P.R. China
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Genjian Lai
- Department of Gastrointestinal Surgery, Renshou People’s Hospital, Meishan, Sichuan, P.R. China
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Quanjiang Wu
- Department of Gastrointestinal Surgery, Renshou People’s Hospital, Meishan, Sichuan, P.R. China
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Qianyang Liu
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xin Ding
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chunbao Guo
- Department of Pediatric Surgery, Women and Children’s Hospital, Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
5
|
Hunter CE, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Pecoraro AR, Hosfield BD, Markel TA. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J Pediatr Surg 2023; 58:2391-2398. [PMID: 37684170 PMCID: PMC10841167 DOI: 10.1016/j.jpedsurg.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been shown to improve outcomes in a murine model of necrotizing enterocolitis (NEC). There is evidence in humans that H2S relies on endothelial nitric oxide synthase (eNOS) to exert its protective effects, potentially through the persulfidation of eNOS at the Cysteine 443 residue. We obtained a novel mouse strain with a mutation at this residue (eNOSC440G) and hypothesized that this locus would be critical for GYY4137 (an H2S donor) to exert its protective effects. METHODS Necrotizing enterocolitis was induced in 5-day old wild type (WT) and eNOSC440G mice using intermittent exposure to hypoxia and hypothermia in addition to gavage formula feeds. On postnatal day 9, mice were humanely euthanized. Data collected included daily weights, clinical sickness scores, histologic lung injury, intestinal injury (macroscopically and histologically), and intestinal perfusion. During the NEC model, pups received daily intraperitoneal injections of either GYY4137 (50 mg/kg) or PBS (vehicle). Data were tested for normality and compared using t-test or Mann-Whitney, and a p-value <0.05 was considered significant. RESULTS In WT mice, the administration of GYY4137 significantly improved clinical sickness scores, attenuated intestinal and lung injury, and improved mesenteric perfusion compared to vehicle (p < 0.05). In eNOSC440G mice, the treatment and vehicle groups had similar clinical sickness scores, intestinal and lung injury scores, and intestinal perfusion. CONCLUSIONS GYY4137 administration improves clinical outcomes, attenuates intestinal and lung injury, and improves perfusion in a murine model of necrotizing enterocolitis. The beneficial effects of GYY4137 are dependent on the Cys440 residue of eNOS.
Collapse
Affiliation(s)
- Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Manohar K, Hosfield BD, Mesfin FM, Colgate C, Shelley WC, Liu J, Zeng L, Brokaw JP, Markel TA. Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis. Physiol Rep 2023; 11:e15819. [PMID: 37697223 PMCID: PMC10495347 DOI: 10.14814/phy2.15819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) continues to be a devastating disease in preterm neonates and has a paucity of medical management options. Chondroitin sulfate (CS) is a naturally occurring glycosaminoglycan (GAG) in human breast milk (HM) and has been shown to reduce inflammation. We hypothesized that supplementation with CS in an experimental NEC model would alter microbial diversity, favorably alter the cytokine profile, and (like other sulfur compounds) improve outcomes in experimental NEC via the eNOS pathway. NEC was induced in 5-day-old pups. Six groups were studied (n = 9-15/group): (1) WT breastfed and (2) Formula fed controls, (3) WT NEC, (4) WT NEC + CS, (5) eNOS KO (knockout) NEC, and (6) eNOS KO NEC + CS. Pups were monitored for clinical sickness score and weights. On postnatal day 9, the pups were killed. Stool was collected from rectum and microbiome analysis was done with 16 s rRNA sequencing. Intestinal segments were examined histologically using a well-established injury scoring system and segments were homogenized and analyzed for cytokine profile. Data were analyzed using GraphPad Prism with p < 0.05 considered significant. CS supplementation in formula improved experimental NEC outcomes when compared to NEC alone. CS supplementation resulted in similar improvement in NEC in both the WT and eNOS KO mice. CS supplementation did not result in microbial changes when compared to NEC alone. Our data suggest that although CS supplementation improved outcomes in NEC, this protection is not conferred via the eNOS pathway or alteration of microbial diversity. CS therapy in NEC does improve the intestinal cytokine profile and further experiments will explore the mechanistic role of CS in altering immune pathways in this disease.
Collapse
Affiliation(s)
- Krishna Manohar
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Brian D. Hosfield
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Fikir M. Mesfin
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Cameron Colgate
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - William Christopher Shelley
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Jianyun Liu
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Lifan Zeng
- Department of Biochemistry and Molecular BiologyIUSMIndianapolisIndianaUSA
| | - John P. Brokaw
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| | - Troy A. Markel
- Department of SurgeryIndiana University School of Medicine (IUSM)IndianapolisIndianaUSA
- Riley Hospital for Children at Indiana University HealthIndianapolisIndianaUSA
| |
Collapse
|
7
|
Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. Int J Mol Sci 2023; 24:ijms24043518. [PMID: 36834928 PMCID: PMC9963309 DOI: 10.3390/ijms24043518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Ischemia-reperfusion injury (IRI), a pathological condition resulting from prolonged cessation and subsequent restoration of blood flow to a tissue, is an inevitable consequence of solid organ transplantation. Current organ preservation strategies, such as static cold storage (SCS), are aimed at reducing IRI. However, prolonged SCS exacerbates IRI. Recent research has examined pre-treatment approaches to more effectively attenuate IRI. Hydrogen sulfide (H2S), the third established member of a family of gaseous signaling molecules, has been shown to target the pathophysiology of IRI and thus appears to be a viable candidate that can overcome the transplant surgeon's enemy. This review discusses pre-treatment of renal grafts and other transplantable organs with H2S to mitigate transplantation-induced IRI in animal models of transplantation. In addition, ethical principles of pre-treatment and potential applications of H2S pre-treatment in the prevention of other IRI-associated conditions are discussed.
Collapse
|
8
|
Hosfield BD, Hunter CE, Li H, Drucker NA, Pecoraro AR, Manohar K, Shelley WC, Markel TA. A hydrogen-sulfide derivative of mesalamine reduces the severity of intestinal and lung injury in necrotizing enterocolitis through endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2022; 323:R422-R431. [PMID: 35912999 PMCID: PMC9512109 DOI: 10.1152/ajpregu.00229.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Necrotizing enterocolitis (NEC) remains a devastating disease that affects preterm infants. Hydrogen sulfide (H2S) donors have been shown to reduce the severity of NEC, but the optimal compound has yet to be identified. We hypothesized that oral H2S-Mesalamine (ATB-429) would improve outcomes in experimental NEC, and its benefits would be dependent on endothelial nitric oxide synthase (eNOS) pathways. NEC was induced in 5-day-old wild-type (WT) and eNOS knockout (eNOSKO) pups by formula feeding and stress. Four groups were studied in both WT and eNOSKO mice: 1) breastfed controls, 2) NEC, 3) NEC + 50 mg/kg mesalamine, and 4) NEC + 130 mg/kg ATB-429. Mesalamine and ATB-429 doses were equimolar. Pups were monitored for sickness scores and perfusion to the gut was measured by Laser Doppler Imaging (LDI). After euthanasia of the pups, intestine and lung were hematoxylin and eosin-stained and scored for injury in a blind fashion. TLR4 expression was quantified by Western blot and IL-6 expression by ELISA. P < 0.05 was significant. Both WT and eNOSKO breastfed controls underwent normal development and demonstrated milder intestinal and pulmonary injury compared with NEC groups. For the WT groups, ATB-429 significantly improved weight gain, reduced clinical sickness score, and improved perfusion compared with the NEC group. In addition, WT ATB-429 pups had a significantly milder intestinal and pulmonary histologic injury when compared with NEC. ATB-429 attenuated the increase in TLR4 and IL-6 expression in the intestine. When the experiment was repeated in eNOSKO pups, ATB-429 offered no benefit in weight gain, sickness scores, perfusion, intestinal injury, pulmonary injury, or decreasing intestinal inflammatory markers. An H2S derivative of mesalamine improves outcomes in experimental NEC. Protective effects appear to be mediated through eNOS. Further research is warranted to explore whether ATB-429 may be an effective oral therapy to combat NEC.
Collapse
Affiliation(s)
- Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongge Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Natalie A Drucker
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Riley Hospital for Children, Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
9
|
Ye C, Zhang Y, Ding X, Guo C. High-Mobility Group Box-1 Is Critical in the Pathogenesis of Mouse Experimental Necrotizing Enterocolitis. J Interferon Cytokine Res 2021; 41:319-328. [PMID: 34543127 DOI: 10.1089/jir.2021.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although high-mobility group box-1 (HMGB1) is related to the persistent intestinal inflammation in the development of necrotizing enterocolitis (NEC), the role of HMGB1 in the regulation of the intestinal microcirculation in NEC is not well understood. Therefore, we investigated the mechanism(s) by which HMGB1 regulates the generation of the following vasodilatory signals during the development of NEC: endothelial nitric oxide synthase (eNOS) and nitric oxide (NO). Experimental NEC was induced in full-term C57BL/6 mouse pups through the formula gavage and hypoxia technique. The blockade of HMGB1 was achieved with a subcutaneous injection of anti-HMGB1 antibody. Intestinal tissues and blood samples were collected at predetermined time points for the assessment of intestinal microcirculation, lipid peroxidation levels, and evaluation of eNOS activation. We found elevations in HMGB1 expression as early as 12 h after induction of NEC stress, which preceded intestinal injury. Treatment of mouse pups with HMGB1 neutralizing antibody attenuated the intestinal microvascular features and symptoms of NEC, but this improvement was not found in the eNOS knockout mice, suggesting that HMGB1 inhibition increased intestinal microcirculatory perfusion in an eNOS-dependent manner. Moreover, HMGB1 inhibition rescued NO production and eliminated O2•- production in experimental NEC mice through eNOS activation. These data indicate that excessive HMGB1 signaling is associated with the pathogenesis of NEC, suggesting that HMGB1 inhibition might be a promising strategy for NEC treatment.
Collapse
Affiliation(s)
- Cuilian Ye
- The Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P.R. China.,Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yunfei Zhang
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xionghui Ding
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
10
|
Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H 2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021; 172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Smriti Juriasingani
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Abstract
PURPOSE Hydrogen sulfide (H2S) has many beneficial biological properties, including the ability to promote vasodilation. It has been shown to be released from stem cells and increased by hypoxia. Therefore, H2S may be an important paracrine factor in stem cell-mediated intestinal protection. We hypothesized that H2S created through conventional pathways would be a critical component of stem cell-mediated intestinal protection after ischemic injury. METHODS Human bone marrow-derived mesenchymal stem cells (BMSCs) were transfected with negative control siRNA (Scramble), or with siRNA to CBS, MPST, or CTH. Knockdown was confirmed with PCR and H2S gas assessed with AzMC fluorophore. Eight-week-old male mice then underwent intestinal ischemia for 60 min, after which time, perfusion was restored. BMSCs from each of the above groups were then placed into the mouse abdominal cavity before final closure. After 24 h, mice were reanesthetized and mesenteric perfusion was assessed by Laser Doppler Imaging (LDI). Animals were then sacrificed and intestines excised, placed in formalin, paraffin embedded, and stained with H & E. Intestines were then scored with a common mucosal injury grading scale. RESULTS PCR confirmed knockdown of conventional H2S-producing enzymes (CBS, MPST, CTH). H2S gas was decreased in MPST and CTH-transfected cells in normoxic conditions, but was not decreased compared with Scramble in any of the transfected groups in hypoxic conditions. BMSCs promoted increased mesenteric perfusion at 24 h postischemia compared with vehicle. Transfected stem cells provided equivalent protection. Histologic injury was improved with BMSCs compared with vehicle. CBS, MPST, and CTH knockdown cell lines did not have any worse histological injury compared with Scramble. CONCLUSIONS Knocking down conventional H2S-producing enzymes only impacted gas production in normoxic conditions. When cells were transfected in hypoxic conditions, as would be expected in the ischemic intestines, H2S gas was not depressed. These data, along with unchanged perfusion and histological injury parameters with conventional enzyme knockdown, would indicate that alternative H2S production pathways may be initiated during hypoxic and/or ischemic events.
Collapse
|
12
|
Zhao H, Qiu Y, Wu Y, Sun H, Gao S. Protective Effects of GYY4137 on Renal Ischaemia/Reperfusion Injury through Nrf2-Mediated Antioxidant Defence. Kidney Blood Press Res 2021; 46:257-265. [PMID: 33910212 DOI: 10.1159/000509933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION/AIMS Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H2S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. METHODS Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target -protein after renal IRI. RESULTS The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. CONCLUSIONS GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.
Collapse
Affiliation(s)
- Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yichen Wu
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
13
|
Miyake H, Koike Y, Seo S, Lee C, Li B, Ganji N, Pierro A. The effect of pre- and post-remote ischemic conditioning reduces the injury associated with intestinal ischemia/reperfusion. Pediatr Surg Int 2020; 36:1437-1442. [PMID: 33068141 DOI: 10.1007/s00383-020-04762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Midgut volvulus is associated with intestinal ischemia/reperfusion (IR) injury and can progress to severe intestinal damage. Remote ischemic conditioning (RIC) reduces IR-induced injury in distant organs. The aim of this study was to investigate whether RIC protects the intestine from IR injury. METHODS We investigated intestinal IR injury in 3 weeks old SD rats. Animals underwent: (i) sham laparotomy, (ii) intestinal IR injury, (iii) intestinal IR + RIC during ischemia, or (iv) intestinal IR + RIC after reperfusion. Intestinal IR injury was achieved by 45 min occlusion of superior mesenteric artery followed by de-occlusion. RIC was administered via four cycles of 5 min of hind limb ischemia followed by 5 min reperfusion. Animals were sacrificed 24 h after surgery and the ileum was harvested for evaluation. RESULTS Intestinal injury was present after IR. However, this injury was reduced in both IR + RIC groups. Expression of inflammatory cytokine IL6 was lower in IR + RIC groups compared to IR alone. Carbonyl protein was also significantly lower in IR + RIC compared to IR, indicating lower oxidative stress in both IR + RIC groups. CONCLUSION Remote ischemic conditioning attenuated intestinal injury, inflammation, and oxidative stress in experimental intestinal ischemia/reperfusion injury. Remote ischemic conditioning may be useful in children with midgut volvulus to reduce the intestinal injury. LEVEL OF EVIDENCE Experimental study. TYPE OF STUDY Animal experiment.
Collapse
Affiliation(s)
- Hiromu Miyake
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada.,Department of Pediatric Surgery, Shizuoka Children's Hospital, 860 Urushiyama, Aoi-ku, Shizuoka, 4208660, Japan
| | - Yuhki Koike
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Shogo Seo
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G1X8, Canada. .,University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Markel TA, Drucker NA, Jensen AR, Olson KR. Human Mesenchymal Stem Cell Hydrogen Sulfide Production Critically Impacts the Release of Other Paracrine Mediators After Injury. J Surg Res 2020; 254:75-82. [PMID: 32417499 DOI: 10.1016/j.jss.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/09/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) for treatment during ischemia is novel. Hydrogen sulfide (H2S) is an important paracrine mediator that is released from MSCs to facilitate angiogenesis and vasodilation. Three enzymes, cystathionine-beta-synthase (CBS), cystathionine-gamma-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase (MPST), are mainly responsible for H2S production. However, it is unclear how these enzymes impact the production of other critical growth factors and chemokines. We hypothesized that the enzymes responsible for H2S production in human MSCs would also critically regulate other growth factors and chemokines. MATERIALS AND METHODS Human MSCs were transfected with CBS, MPST, CSE, or negative control small interfering RNA. Knockdown of enzymes was confirmed by polymerase chain reaction. Cells were plated in 12-well plates at 100,000 cells per well and stimulated with tumor necrosis factor-α (TNF-α; 50 ng/mL), lipopolysaccharide (LPS; 200 ng/mL), or 5% hypoxia for 24 h. Supernatants were collected, and cytokines measured by multiplex beaded assay. Data were compared with the Mann-Whitney U-test, and P < 0.05 was significant. RESULTS TNF-α, LPS, and hypoxia effectively stimulated MSCs. Granulocyte colony-stimulating factor (GCSF), epidermal growth factor, fibroblast growth factor, granulocyte/monocyte colony-stimulating factor (GMCSF), vascular endothelial growth factor, and interferon gamma-inducible protein 10 were all significantly elevated when CSE was knocked down during TNF-α stimulation (P < 0.05). Knockdown of MPST during LPS stimulation more readily increased GCSF and epidermal growth factor but decreased GMCSF (P < 0.05). CBS knockdown decreased production of GCSF, fibroblast growth factor, GMCSF, and vascular endothelial growth factor (P < 0.05) after hypoxia. CONCLUSIONS The enzymes that produce H2S in MSCs are also responsible for the production of other stem cell paracrine mediators under stressful stimuli. Therefore, reprogramming MSCs to endogenously produce more H2S as a therapeutic intervention could also critically impact other paracrine mediators, which may alter the desired beneficial effects.
Collapse
Affiliation(s)
- Troy A Markel
- Section of Pediatric Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Physiology, Indiana University School of Medicine, South Bend, Indiana.
| | - Natalie A Drucker
- Section of Pediatric Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Department of Physiology, Indiana University School of Medicine, South Bend, Indiana
| | - Amanda R Jensen
- Section of Pediatric Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Department of Physiology, Indiana University School of Medicine, South Bend, Indiana
| | - Kenneth R Olson
- Section of Pediatric Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Physiology, Indiana University School of Medicine, South Bend, Indiana
| |
Collapse
|
15
|
Gentle SJ, Tipple TE, Patel R. Neonatal comorbidities and gasotransmitters. Nitric Oxide 2020; 97:27-32. [PMID: 32014495 DOI: 10.1016/j.niox.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023]
Abstract
Hydrogen sulfide, nitric oxide, and carbon monoxide are endogenously produced gases that regulate various signaling pathways. The role of these transmitters is complex as constitutive production of these molecules may have anti-inflammatory, anti-microbial, and/or vasodilatory effects whereas induced production or formation of secondary metabolites may lead to cellular death. Given this fine line between friend and foe, therapeutic attenuation of these molecules' production has involved both inhibition of endogenous formation and therapeutic supplementation. All three gases have been implicated as regulators of critical aspects of neonatal physiology, and in turn, comorbidities including necrotizing enterocolitis, hypoxic ischemic encephalopathy, and pulmonary hypertension. In this review, we present current perspectives on these associations, highlight areas where insights remain sparse, and identify areas for potential for future investigations.
Collapse
Affiliation(s)
- Samuel J Gentle
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trent E Tipple
- Section of Neonatal-Perinatal Medicine, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Rakesh Patel
- Department of Pathology and Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10:1568. [PMID: 32038245 PMCID: PMC6985156 DOI: 10.3389/fphar.2019.01568] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells are important constituents of blood vessels that play critical roles in cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone, angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas abnormality of vascular endothelium is a major contributor to a plethora of cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory response in the development of cardiovascular diseases. As such, abrogation of endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through acting on various targeted signaling pathways. Within the cardiovascular system, the formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we will summarize recent advances about the roles of H2S in endothelial cell homeostasis, especially under pathological conditions, and discuss its putative therapeutic applications in endothelial inflammation-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
17
|
Maassen H, Hendriks KDW, Venema LH, Henning RH, Hofker SH, van Goor H, Leuvenink HGD, Coester AM. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One 2019; 14:e0225152. [PMID: 31743376 PMCID: PMC6863563 DOI: 10.1371/journal.pone.0225152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Since the start of organ transplantation, hypothermia-forced hypometabolism has been the cornerstone in organ preservation. Cold preservation showed to protect against ischemia, although post-transplant injury still occurs and further improvement in preservation techniques is needed. We hypothesize that hydrogen sulphide can be used as such a new preservation method, by inducing a reversible hypometabolic state in human sized kidneys during normothermic machine perfusion. Methods Porcine kidneys were connected to an ex-vivo isolated, oxygen supplemented, normothermic blood perfusion set-up. Experimental kidneys (n = 5) received a 85mg NaHS infusion of 100 ppm and were compared to controls (n = 5). As a reflection of the cellular metabolism, oxygen consumption, mitochondrial activity and tissue ATP levels were measured. Kidney function was assessed by creatinine clearance and fractional excretion of sodium. To rule out potential structural and functional deterioration, kidneys were studied for biochemical markers and histology. Results Hydrogen sulphide strongly decreased oxygen consumption by 61%, which was associated with a marked decrease in mitochondrial activity/function, without directly affecting ATP levels. Renal biological markers, renal function and histology did not change after hydrogen sulphide treatment. Conclusion In conclusion, we showed that hydrogen sulphide can induce a controllable hypometabolic state in a human sized organ, without damaging the organ itself and could thereby be a promising therapeutic alternative for cold preservation under normothermic conditions in renal transplantation.
Collapse
Affiliation(s)
- Hanno Maassen
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, UMCG, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Koen D. W. Hendriks
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
- Department of Clinical Pharmacy and Pharmacology, UMCG, University of Groningen, Groningen, the Netherlands
| | - Leonie H. Venema
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, UMCG, University of Groningen, Groningen, the Netherlands
| | - Sijbrand H. Hofker
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, UMCG, University of Groningen, Groningen, the Netherlands
| | | | - Annemieke M. Coester
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Te Winkel J, John QE, Hosfield BD, Drucker NA, Das A, Olson KR, Markel TA. Mesenchymal stem cells promote mesenteric vasodilation through hydrogen sulfide and endothelial nitric oxide. Am J Physiol Gastrointest Liver Physiol 2019; 317:G441-G446. [PMID: 31343254 PMCID: PMC6842994 DOI: 10.1152/ajpgi.00132.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric ischemia is a devastating process that can result in intestinal necrosis. Mesenchymal stem cells (MSCs) are becoming a promising treatment modality. We hypothesized that 1) MSCs would promote vasodilation of mesenteric arterioles, 2) hydrogen sulfide (H2S) would be a critical paracrine factor of stem cell-mediated vasodilation, 3) mesenteric vasodilation would be impaired in the absence of endothelial nitric oxide synthase (eNOS) within the host tissue, and 4) MSCs would improve the resistin-to-adiponectin ratio in mesenteric vessels. H2S was measured with a specific fluorophore (7-azido-3-methylcoumarin) in intact MSCs and in cells with the H2S-producing enzyme cystathionine β synthase (CBS) knocked down with siRNA. Mechanical responses of isolated second- and third-order mesenteric arteries (MAs) from wild-type and eNOS knockout (eNOSKO) mice were monitored with pressure myography, after which the vessels were snap frozen and later analyzed for resistin and adiponectin via multiplex beaded assay. Addition of MSCs to the myograph bath significantly increased vasodilation of norepinephrine-precontracted MAs. Knockdown of CBS in MSCs decreased H2S production by MSCs and also decreased MSC-initiated MA dilation. MSC-initiated vasodilation was further reduced in eNOSKO vessels. The MA resistin-to-adiponectin ratio was higher in eNOSKO vessels compared with wild-type. These results show that MSC treatment promotes dilation of MAs by an H2S-dependent mechanism. Furthermore, functional eNOS within the host mesenteric bed appears to be essential for maximum stem cell therapeutic benefit, which may be attributable, in part, to modifications in the resistin-to-adiponectin ratio.NEW & NOTEWORTHY Stem cells have been shown to improve survival, mesenteric perfusion, and histological injury scores following intestinal ischemia. These benefits may be due to the paracrine release of hydrogen sulfide. In an ex vivo pressure myography model, we observed that mesenteric arterial dilation improved with stem cell treatment. Hydrogen sulfide release from stem cells and endothelial nitric oxide synthase within the vessels were critical components of optimizing stem cell-mediated mesenteric artery dilation.
Collapse
Affiliation(s)
- Jan Te Winkel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Quincy E. John
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian D. Hosfield
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Natalie A. Drucker
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Amitava Das
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,3Indiana Center for Regenerative Medicine and Engineering, Indianapolis, Indiana
| | - Ken R. Olson
- 4Indiana University School of Medicine, South Bend, Indiana
| | - Troy A. Markel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,5Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
19
|
Hendriks KD, Maassen H, van Dijk PR, Henning RH, van Goor H, Hillebrands JL. Gasotransmitters in health and disease: a mitochondria-centered view. Curr Opin Pharmacol 2019; 45:87-93. [PMID: 31325730 DOI: 10.1016/j.coph.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
Gasotransmitters fulfill important roles in cellular homeostasis having been linked to various pathologies, including inflammation and cardiovascular diseases. In addition to the known pathways mediating the actions of gasotransmitters, their effects in regulating mitochondrial function are emerging. Given that mitochondria are key organelles in energy production, formation of reactive oxygen species and apoptosis, they are important mediators in preserving health and disease. Preserving or restoring mitochondrial function by gasotransmitters may be beneficial, and mitigate pathogenetic processes. In this review we discuss the actions of gasotransmitters with focus on their role in mitochondrial function and their therapeutic potential.
Collapse
Affiliation(s)
- Koen Dw Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter R van Dijk
- Department of Internal Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
20
|
Wetzel MD, Wenke JC. Mechanisms by which hydrogen sulfide attenuates muscle function following ischemia-reperfusion injury: effects on Akt signaling, mitochondrial function, and apoptosis. J Transl Med 2019; 17:33. [PMID: 30665344 PMCID: PMC6340183 DOI: 10.1186/s12967-018-1753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 01/24/2023] Open
Abstract
Ischemia–reperfusion injury is caused by a period of ischemia followed by massive blood flow into a tissue that had experienced restricted blood flow. The severity of the injury is dependent on the time the tissue was restricted from blood flow, becoming more severe after longer ischemia times. This can lead to many complications such as tissue necrosis, cellular apoptosis, inflammation, metabolic and mitochondrial dysfunction, and even organ failure. One of the emerging therapies to combat ischemic reperfusion injury complications is hydrogen sulfide, which is a gasotransmitter that diffuses across cell membranes to exert effects on various signaling pathways regulating cell survival such as Akt, mitochondrial activity, and apoptosis. Although commonly thought of as a toxic gas, low concentrations of hydrogen sulfide have been shown to be beneficial in promoting tissue survival post-ischemia, and modulate a wide variety of cellular responses. This review will detail the mechanisms of hydrogen sulfide in affecting the Akt signaling pathway, mitochondrial function, and apoptosis, particularly in regards to ischemic reperfusion injury in muscle tissue. It will conclude with potential clinical applications of hydrogen sulfide, combinations with other therapies, and perspectives for future studies.
Collapse
Affiliation(s)
- Michael D Wetzel
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass BLDG 3611, Ft. Sam Houston, San Antonio, TX, 78234, USA
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, 3698 Chambers Pass BLDG 3611, Ft. Sam Houston, San Antonio, TX, 78234, USA.
| |
Collapse
|
21
|
Drucker NA, Jensen AR, Te Winkel JP, Markel TA. Hydrogen Sulfide Donor GYY4137 Acts Through Endothelial Nitric Oxide to Protect Intestine in Murine Models of Necrotizing Enterocolitis and Intestinal Ischemia. J Surg Res 2018; 234:294-302. [PMID: 30527488 DOI: 10.1016/j.jss.2018.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/01/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide, a gasotransmitter that is protective against intestinal injury in experimental NEC, likely through protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated through endothelial nitric oxide synthase-dependent pathways. METHODS NEC was induced in C57BL/6 wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily intraperitoneal injections of 50 mg/kg GYY4137 or phosphate buffered saline vehicle. In separate groups, adult male WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 min. Before abdominal closure, 50 mg/kg GYY4137 or phosphate buffered saline vehicle was administered into the peritoneal cavity. Laser doppler imaging was used to assess mesenteric perfusion of pups at baseline and on postnatal day 9, and the adult mice at baseline and 24 h after ischemic insult. After euthanasia, the terminal ileum of each animal was fixed, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Sections were blindly graded using published injury scores. Intestinal tissue was homogenized and cytokines measured by ELISA. Data were compared using Mann-Whitney U test, and P-values <0.05 were significant. RESULTS After NEC and ischemia reperfusion (I/R) injury, GYY4137 improved perfusion in WT mice compared to vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences noted in Interleukin 6 and vascular endothelial growth factor. CONCLUSIONS GYY4137, a long-acting donor of hydrogen sulfide, has potential as a therapeutic compound for NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jan P Te Winkel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
22
|
Drucker NA, Jensen AR, Ferkowicz M, Markel TA. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 2018; 53:1692-1698. [PMID: 29338840 DOI: 10.1016/j.jpedsurg.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) continues to be a morbid surgical condition among preterm infants. Novel therapies for this condition are desperately needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has been found to have beneficial properties. We therefore hypothesized that intraperitoneal injection of various H2S donors would improve clinical outcomes, increase intestinal perfusion, and reduce intestinal injury in an experimental mouse model of necrotizing enterocolitis. METHODS NEC was induced in five-day-old mouse C57BL/6 mouse pups through maternal separation, formula feeding, and intermittent hypoxic and hypothermic stress. The control group (n=10) remained with their mother and breastfed ad lib. Experimental groups (n=10/group) received intraperitoneal injections of phosphate buffered saline (PBS) vehicle or one of the following H2S donors: (1) GYY4137, 50mg/kg daily; (2) Sodium sulfide (Na2S), 20mg/kg three times daily; (3) AP39, 0.16mg/kg daily. Pups were monitored for weight gain, clinical status, and intestinal perfusion via transcutaneous Laser Doppler Imaging (LDI). After sacrifice on day nine, intestinal appearance and histology were scored and cytokines were measured in tissue homogenates of intestine, liver, and lung. Data were compared with Mann-Whitney and p<0.05 was considered significant. RESULTS Clinical score and weight gain were significantly improved in all three H2S-treated groups as compared to vehicle (p<0.05 for all groups). Intestinal perfusion of the vehicle group was 22% of baseline while the GYY4137 group was 38.7% (p=0.0103), Na2S was 47.0% (p=0.0040), and AP39 was 43.0% (p=0.0018). The vehicle group had a median histology score of 2.5, while the GYY4137 group's was 1 (p=0.0013), Na2S was 0.5 (p=0.0004), and AP39 was 0.5 (p=0.0001). Cytokine analysis of the intestine of the H2S-treated groups revealed levels closer to breastfed pups as compared to vehicle (p<0.05 for all groups). CONCLUSION Intraperitoneal administration of H2S protects against development of NEC by improving mesenteric perfusion, and by limiting mucosal injury and altering the tissue inflammatory response. Further experimentation is necessary to elucidate downstream mechanisms prior to clinical implementation.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Michael Ferkowicz
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
23
|
Bertoni S, Ballabeni V, Barocelli E, Tognolini M. Mesenteric ischemia-reperfusion: an overview of preclinical drug strategies. Drug Discov Today 2018; 23:1416-1425. [DOI: 10.1016/j.drudis.2018.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
|
24
|
Jensen AR, Drucker NA, te Winkel JP, Ferkowicz MJ, Markel TA. The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury. J Pediatr Surg 2018; 53:1111-1117. [PMID: 29622397 PMCID: PMC5994359 DOI: 10.1016/j.jpedsurg.2018.02.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Hydrogen sulfide (H2S) has many beneficial properties and may serve as a novel treatment in patients suffering from intestinal ischemia-reperfusion injury (I/R). The purpose of this study was to examine the method of delivery and timing of administration of H2S for intestinal therapy during ischemic injury. We hypothesized that 1) route of administration of hydrogen sulfide would impact intestinal recovery following acute mesenteric ischemia and 2) preischemic H2S conditioning using the optimal mode of administration as determined above would provide superior protection compared to postischemic application. METHODS Male C57BL/6J mice underwent intestinal ischemia by temporary occlusion of the superior mesenteric artery. Following ischemia, animals were treated according to one of the following (N=6 per group): intraperitoneal or intravenous injection of GYY4137 (H2S-releasing donor, 50mg/kg in PBS), vehicle, inhalation of oxygen only, inhalation of 80ppm hydrogen sulfide gas. Following 24-h recovery, perfusion was assessed via laser Doppler imaging, and animals were euthanized. Perfusion and histology data were assessed, and terminal ileum samples were analyzed for cytokine production following ischemia. Once the optimal route of administration was determined, preischemic conditioning with H2S was undertaken using that route of administration. All data were analyzed using Mann-Whitney. P-values <0.05 were significant. RESULTS Mesenteric perfusion following intestinal I/R was superior in mice treated with intraperitoneal (IP) GYY4137 (IP vehicle: 25.6±6.0 vs. IP GYY4137: 79.7±15.1; p=0.02) or intravenous (IV) GYY4137 (IV vehicle: 36.3±5.9 vs. IV GYY4137: 100.7±34.0; p=0.03). This benefit was not observed with inhaled H2S gas (O2 vehicle: 66.6±11.4 vs. H2S gas: 81.8±6.0; p=0.31). However, histological architecture was only preserved with intraperitoneal administration of GYY4127 (IP vehicle: 3.4±0.4 vs. IP GYY4137: 2±0.3; p=0.02). Additionally, IP GYY4137 allowed for significant attenuation of inflammatory chemokine production of IL-6, IP-10 and MIP-2. We then analyzed whether there was a difference between pre- and postischemic administration of IP GYY4137. We found that preconditioning of animals with intraperitoneal GYY4137 only added minor improvements in outcomes compared to postischemic application. CONCLUSION Therapeutic benefits of H2S are superior with intraperitoneal application of an H2S donor compared to other administration routes. Additionally, while intraperitoneal treatment in both the pre- and postischemic period is beneficial, preischemic application of an H2S donor was found to be slightly better. Further studies are needed to examine long term outcomes and further mechanisms of action prior to widespread clinical application. TYPE OF STUDY Basic science. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Amanda R. Jensen
- Department of Surgery, Section of Pediatric Surgery,The Indiana University School of Medicine Indianapolis, IN
| | - Natalie A. Drucker
- Department of Surgery, Section of Pediatric Surgery,The Indiana University School of Medicine Indianapolis, IN
| | - Jan P. te Winkel
- Department of Surgery, Section of Pediatric Surgery,The Indiana University School of Medicine Indianapolis, IN
| | - Michael J. Ferkowicz
- Department of Surgery, Section of Pediatric Surgery,The Indiana University School of Medicine Indianapolis, IN
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery,Riley Hospital for Children at Indiana University Health,The Indiana University School of Medicine Indianapolis, IN
| |
Collapse
|
25
|
Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y, Wu Y. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Exp Biol Med (Maywood) 2017; 242:1831-1841. [PMID: 28971696 DOI: 10.1177/1535370217732325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reductions in hydrogen sulfide (H2S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in Nω-nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dtmax and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and dysfunction. The cardioprotective effects of NaHS were counteracted by Gli which inhibited the Akt/eNOS/NO pathway. This suggests that the effects of hydrogen sulfide were mediated by the activation of the KATP channels. In conclusion, hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease via the activation of the Akt/eNOS/NO pathway, which was mediated by KATP channels. Impact statement 1. We found that H2S ameliorated L-NAME-induced cardiac remodeling and dysfunction, and played a protective role in L-NAME-induced hypertensive heart disease, which the existing studies have not reported. 2. H2S activated the Akt/eNOS/NO pathway, thereby playing a cardioprotective role in L-NAME-induced hypertensive heart disease. 3. The cardioprotective effect of H2S was mediated by ATP-sensitive potassium channels.
Collapse
Affiliation(s)
- Sheng Jin
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qi Guo
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xiaocui Duan
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuhong Chen
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China.,2 Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050017, China.,3 Key Laboratory of Vascular Medicine of Hebei Province, Hebei 050017, China
| |
Collapse
|