1
|
Luchetti F, Carloni S, Nasoni MG, Reiter RJ, Balduini W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J Pineal Res 2022; 73:e12800. [PMID: 35419879 PMCID: PMC9540876 DOI: 10.1111/jpi.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Maria G. Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Russel J. Reiter
- Department of Cell Systems and AnatomyLong School of Medicine, UT HealthSan AntonioTexasUSA
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
2
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Li T, Liu X, Riederer B, Nikolovska K, Singh AK, Mäkelä KA, Seidler A, Liu Y, Gros G, Bartels H, Herzig KH, Seidler U. Genetic ablation of carbonic anhydrase IX disrupts gastric barrier function via claudin-18 downregulation and acid backflux. Acta Physiol (Oxf) 2018; 222:e12923. [PMID: 28748627 PMCID: PMC5901031 DOI: 10.1111/apha.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/21/2016] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
Aim This study aimed to explore the molecular mechanisms for the parietal cell loss and fundic hyperplasia observed in gastric mucosa of mice lacking the carbonic anhydrase 9 (CAIX). Methods We assessed the ability of CAIX‐knockout and WT gastric surface epithelial cells to withstand a luminal acid load by measuring the pHi of exteriorized gastric mucosa in vivo using two‐photon confocal laser scanning microscopy. Cytokines and claudin‐18A2 expression was analysed by RT‐PCR. Results CAIX‐knockout gastric surface epithelial cells showed significantly faster pHi decline after luminal acid load compared to WT. Increased gastric mucosal IL‐1β and iNOS, but decreased claudin‐18A2 expression (which confer acid resistance) was observed shortly after weaning, prior to the loss of parietal and chief cells. At birth, neither inflammatory cytokines nor claudin‐18 expression were altered between CAIX and WT gastric mucosa. The gradual loss of acid secretory capacity was paralleled by an increase in serum gastrin, IL‐11 and foveolar hyperplasia. Mild chronic proton pump inhibition from the time of weaning did not prevent the claudin‐18 decrease nor the increase in inflammatory markers at 1 month of age, except for IL‐1β. However, the treatment reduced the parietal cell loss in CAIX‐KO mice in the subsequent months. Conclusions We propose that CAIX converts protons that either backflux or are extruded from the cells rapidly to CO2 and H2O, contributing to tight junction protection and gastric epithelial pHi regulation. Lack of CAIX results in persistent acid backflux via claudin‐18 downregulation, causing loss of parietal cells, hypergastrinaemia and foveolar hyperplasia.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - X. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
- Department of Department of Gastroenterology; Affiliated Hospital of Zunyi Medical College; Zunyi China
| | - B. Riederer
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. Nikolovska
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - A. K. Singh
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. A. Mäkelä
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - A. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - Y. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - G. Gros
- Department of Physiology; Hannover Medical School; Hannover Germany
| | - H. Bartels
- Department of Anatomy; Hannover Medical School; Hannover Germany
| | - K. H. Herzig
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - U. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| |
Collapse
|
4
|
Sun X, Fu X, Du M, Zhu MJ. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells. Open Biol 2018; 8:170256. [PMID: 29643147 PMCID: PMC5936714 DOI: 10.1098/rsob.170256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- School of Food Science, University of Idaho, Moscow, ID 83844, USA
| | - Xing Fu
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Ballweg R, Schozer F, Elliott K, Kuhn A, Spotts L, Aihara E, Zhang T. Multiscale positive feedbacks contribute to unidirectional gastric disease progression induced by helicobacter pylori infection. BMC SYSTEMS BIOLOGY 2017; 11:111. [PMID: 29166909 PMCID: PMC5700561 DOI: 10.1186/s12918-017-0497-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
Background Helicobacter Pylori (HP) is the most common risk factor for gastric cancer. Nearly half the world’s population is infected with HP, but only a small percentage of those develop significant pathology. The bacteria itself does not directly cause cancer; rather it promotes an environment that is conducive to tumor formation. Upon infection, HP induces transcriptional changes in the host, leading to enhanced proliferation and host immune response. In addition, HP causes direct damage to gastric epithelial cells. Results We present a multiscale mechanistic model of HP induced changes. The model includes four modules representing the host transcriptional changes in response to infection, gastric atrophy, the Hedgehog pathway response, and the restriction point that controls cell cycle. This model was able to recapture a number of literature reported observations and was used as an “in silico” representation of the biological system for further analysis. Dynamical analysis of the model revealed that HP might induce the activation of multiple interplayed positive feedbacks, which in turn might result in a “ratchet ladder” system that promotes a unidirectional progression of gastric disease. Conclusions The current multiscale model is able to recapitulate the observed experimental features of HP host interactions and provides dynamic insights on the epidemiologically observed heterogeneity in disease progression. This model provides a solid framework that can be further expanded and validated to include additional experimental evidence, to understand the complex multi-pathway interactions characterizing HP infection, and to design novel treatment protocols for HP induced diseases. Electronic supplementary material The online version of this article (10.1186/s12918-017-0497-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Ballweg
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Frederick Schozer
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander Kuhn
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Logan Spotts
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
7
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
8
|
Orciani M, Sorgentoni G, Olivieri F, Mattioli-Belmonte M, Di Benedetto G, Di Primio R. Inflammation by Breast Implants and Adenocarcinoma: Not Always a Bad Company. Clin Breast Cancer 2017; 17:286-292. [PMID: 28188107 DOI: 10.1016/j.clbc.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/05/2016] [Accepted: 01/08/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Inflammation and tumor are now an inseparable binomial. Inflammation may also derive by the use of breast implants followed by the formation of a periprosthetic capsule. It is known that tumor cells, in an inflamed microenvironment, can profit by the paracrine effect exerted also by mesenchymal stem cells (MSCs). Here we evaluated the role of inflammation on the immunobiology of MSCs before and after cocultures with cells derived from breast adenocarcinoma. METHODS MSCs derived from both inflamed (I-MSCs) and control (C-MSCs) tissues were isolated and cocultured with MCF7 cells derived from breast adenocarcinoma. Before and after cocultures, the proliferation rate of MCF7 cells and the expression/secretion of cytokines related to inflammation were tested. RESULTS Before cocultures, higher levels of cytokine related to chronic inflammation were detected in I-MSCs than in C-MSCs. After cocultures with MCF7, C- and I-MSCs show a variation in cytokine production. In detail, IL-2, IL-4, IL-5, IL-10, IL-13, TGF-β and G-CSF were decreased, whereas IL-6, IL-12, IFN-γ, and IL-17 were oversecreted. Proliferation of MCF7 was significantly increased after cocultures with I-MSCs. CONCLUSIONS Inflammation at the site of origin of MSCs affects their immunobiology. Even if tumor cells increased their proliferation rate after cocultures with I-MSCs, the analysis of the cytokines, known to play a role in the interference of tumor cells with the host immune system, absolves completely the breast implants from the insult to enforce the risk of adenocarcinoma.
Collapse
Affiliation(s)
- Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy.
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences-Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Di Benedetto
- Department of Experimental and Clinical Medicine-Clinic of Plastic and Reconstructive Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Konstantinou D, Bertaux-Skeirik N, Zavros Y. Hedgehog signaling in the stomach. Curr Opin Pharmacol 2016; 31:76-82. [PMID: 27750091 PMCID: PMC5154826 DOI: 10.1016/j.coph.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease.
Collapse
Affiliation(s)
- Daniel Konstantinou
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Marlicz W, Sielatycka K, Serwin K, Kubis E, Tkacz M, Głuszko R, Białek A, Starzyńska T, Ratajczak MZ. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood. Oncol Rep 2016; 36:3635-3642. [DOI: 10.3892/or.2016.5179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
|
12
|
Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8916534. [PMID: 27088093 PMCID: PMC4764721 DOI: 10.1155/2016/8916534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo.
Collapse
|
13
|
Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:441-78. [PMID: 27573785 DOI: 10.1007/978-3-319-41388-4_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the various experimental models to study gastric cancer pathogenesis, with the role of genetically engineered mouse models (GEMMs) used as the major examples. We review differences in human stomach anatomy compared to the stomachs of the experimental models, including the mouse and invertebrate models such as Drosophila and C. elegans. The contribution of major signaling pathways, e.g., Notch, Hedgehog, AKT/PI3K is discussed in the context of their potential contribution to foregut tumorigenesis. We critically examine the rationale behind specific GEMMs, chemical carcinogens, dietary promoters, Helicobacter infection, and direct mutagenesis of relevant oncogenes and tumor suppressor that have been developed to study gastric cancer pathogenesis. Despite species differences, more efficient and effective models to test specific genes and pathways disrupted in human gastric carcinogenesis have yet to emerge. As we better understand these species differences, "humanized" versions of mouse models will more closely approximate human gastric cancer pathogenesis. Towards that end, epigenetic marks on chromatin, the gut microbiota, and ways of manipulating the immune system will likely move center stage, permitting greater overlap between rodent and human cancer phenotypes thus providing a unified progression model.
Collapse
|
14
|
Abstract
Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. GC is a heterogeneous disease and the endpoint of a long multistep process largely influenced by Helicobacter pylori infection, genetic susceptibility, and environmental factors. In a subset of GC cases, infection with the Epstein-Barr virus (EBV) may also be involved. The development of GC is the consequence of the accumulation of multiple epi/genetic changes during the patient's lifetime that will result in oncogenic activation and/or tumor suppressor pathways' inactivation. This review will focus on the most recent updates on the characterization of the molecular phenotypes of sporadic and hereditary GC. This article will also update the most recent findings on the relationship between H. pylori infection and stem cells at the origin of GC. The understanding of the molecular genetics underlying gastric carcinogenesis is of paramount importance to identify novel potential targets for the development of screening and prognostic markers that can be clinically valuable for the management of GC patients and for the design of clinical trials.
Collapse
Affiliation(s)
- Ceu Figueiredo
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Susana Costa
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andreas Karameris
- Department of Pathology, Veterans Administration Hospital (NIMTS), Athens, Greece
| | - Jose Carlos Machado
- Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Stavely R, Sakkal S, Stojanovska V, Nurgali K. Mesenchymal stem cells for the treatment of inflammatory bowel disease: from experimental models to clinical application. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|