1
|
Alcaide Martin A, Bauer R, Führer-Sakel D, Heuer H, Mayerl S. Increased seizure susceptibility in thyroid hormone transporter Mct8/Oatp1c1 knockout mice is associated with altered neurotransmitter systems development. Prog Neurobiol 2025; 247:102731. [PMID: 39986448 DOI: 10.1016/j.pneurobio.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Thyroid hormone (TH) transporters such as the monocarboxylate transporter Mct8 and the organic anion transporting protein Oatp1c1 facilitate TH transport into target cells. In humans, inactivating mutations in MCT8 result in Allan-Herndon-Dudley syndrome (AHDS), a severe psychomotor retardation with hallmarks of a central TH deficit and frequently observed seizures of unknown etiology. Here, we aimed to investigate seizure susceptibility in AHDS by using Mct8/Oatp1c1 double-knockout (Dko) mice, a well-established AHDS model. We tested seizure susceptibility using the pilocarpine model and observed a significantly faster occurrence of status epilepticus (SE) and more severe responses to seizure induction in Dko animals. We analyzed neuronal alterations in the hippocampus, an area central in seizure pathology, 12 h after SE by immuno-fluorescence and in situ hybridization (ISH). Dko mice presented increased cFos immunoreactivity, and ectopic expression of somatostatin in CA3 neurons. To unravel underlying mechanisms, we studied neurotransmitter systems in murine hippocampi during development at P12 and in adulthood. Employing immuno-fluorescence, ISH and qPCR analyses, we revealed an abnormal development of the inhibitory GABAergic, excitatory glutamatergic and cholinergic systems in Dko mice. Together, our data point to an altered inhibition/excitation balance in the Dko hippocampus that may explain the increased seizure susceptibility.
Collapse
Affiliation(s)
- Andrea Alcaide Martin
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Dagmar Führer-Sakel
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Heike Heuer
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Steffen Mayerl
- University of Duisburg-Essen, University Hospital Essen, Dept. of Endocrinology, Diabetes and Metabolism, Essen, Germany; Center for Translational Neuro-, and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Does the Use of Proton Pump Inhibitors Increase the Risk of Pancreatic Cancer? A Systematic Review and Meta-Analysis of Epidemiologic Studies. Cancers (Basel) 2020; 12:cancers12082220. [PMID: 32784492 PMCID: PMC7463819 DOI: 10.3390/cancers12082220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background: One of the most frequently used medications for treating gastrointestinal disorders is proton pump inhibitor (PPI), which reportedly has potential adverse effects. Although the relationship between the use of PPIs and the risk of pancreatic cancer has been extensively investigated, the results remain inconsistent. Hence, this meta-analysis aimed to evaluate such relationship. Methods: We searched for literature and subsequently included 10 studies (seven case–control and three cohort studies; 948,782 individuals). The pooled odds ratio (OR) and 95% confidence intervals (CI) for pancreatic cancer were estimated using a random-effects model. We also conducted sensitivity analysis and subgroup analysis. Results: The pooled OR of the meta-analysis was 1.698 (95% CI: 1.200–2.402, p = 0.003), with a substantial heterogeneity (I2 = 98.75%, p < 0.001). Even when studies were excluded one by one, the pooled OR remained statistically significant. According to the stratified subgroup analyses, PPI use, and pancreatic cancer incidence were positively associated, regardless of the study design, quality of study, country, and PPI type. Conclusion: PPI use may be associated with the increased risk of pancreatic cancer. Hence, caution is needed when using PPIs among patients with a high risk of pancreatic cancer.
Collapse
|
3
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
4
|
Selvik LKM, Rao S, Steigedal TS, Haltbakk I, Misund K, Bruland T, Prestvik WS, Lægreid A, Thommesen L. Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells. PLoS One 2014; 9:e112485. [PMID: 25384047 PMCID: PMC4226541 DOI: 10.1371/journal.pone.0112485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas.
Collapse
Affiliation(s)
- Linn-Karina M. Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Tonje S. Steigedal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ildri Haltbakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Misund
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wenche S. Prestvik
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Thommesen
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
- * E-mail:
| |
Collapse
|
5
|
A single-nucleotide polymorphism of human neuropeptide s gene originated from Europe shows decreased bioactivity. PLoS One 2013; 8:e83009. [PMID: 24386135 PMCID: PMC3873911 DOI: 10.1371/journal.pone.0083009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
Using accumulating SNP (Single-Nucleotide Polymorphism) data, we performed a genome-wide search for polypeptide hormone ligands showing changes in the mature regions to elucidate genotype/phenotype diversity among various human populations. Neuropeptide S (NPS), a brain peptide hormone highly conserved in vertebrates, has diverse physiological effects on anxiety, fear, hyperactivity, food intake, and sleeping time through its cognate receptor-NPSR. Here, we report a SNP rs4751440 (L6-NPS) causing non-synonymous substitution on the 6th position (V to L) of the NPS mature peptide region. L6-NPS has a higher allele frequency in Europeans than other populations and probably originated from European ancestors ∼25,000 yrs ago based on haplotype analysis and Approximate Bayesian Computation. Functional analyses indicate that L6-NPS exhibits a significant lower bioactivity than the wild type NPS, with ∼20-fold higher EC50 values in the stimulation of NPSR. Additional evolutionary and mutagenesis studies further demonstrate the importance of the valine residue in the 6th position for NPS functions. Given the known physiological roles of NPS receptor in inflammatory bowel diseases, asthma pathogenesis, macrophage immune responses, and brain functions, our study provides the basis to elucidate NPS evolution and signaling diversity among human populations.
Collapse
|
6
|
Chueca E, Lanas A, Piazuelo E. Role of gastrin-peptides in Barrett's and colorectal carcinogenesis. World J Gastroenterol 2012; 18:6560-70. [PMID: 23236230 PMCID: PMC3516208 DOI: 10.3748/wjg.v18.i45.6560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/28/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
Gastrin is the main hormone responsible for the stimulation of gastric acid secretion; in addition, gastrin and its derivatives exert proliferative and antiapoptotic effects on several cell types. Gastrin synthesis and secretion are increased in certain situations, for example, when proton pump inhibitors are used. The impact of sustained hypergastrinemia is currently being investigated. In vitro experiments and animal models have shown that prolonged hypergastrinemia may be related with higher cancer rates; although, this relationship is less clear in human beings. Higher gastrin levels have been shown to cause hyperplasia of several cell types; yet, the risk for developing cancer seems to be the same in normo- and hypergastrinemic patients. Some tumors also produce their own gastrin, which can act in an autocrine manner promoting tumor growth. Certain cancers are extremely dependent on gastrin to proliferate. Initial research focused only on the effects of amidated gastrins, but there has been an interest in intermediates of gastrin in the last few decades. These intermediates aren’t biologically inactive; in fact, they may exert greater effects on proliferation and apoptosis than the completely processed forms. In certain gastrin overproduction states, they are the most abundant gastrin peptides secreted. The purpose of this review is to examine the gastrin biosynthesis process and to summarize the results from different studies evaluating the production, levels, and effects of the main forms of gastrin in different overexpression states and their possible relationship with Barrett’s and colorectal carcinogenesis.
Collapse
|
7
|
Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes. PLoS One 2012; 7:e39306. [PMID: 22761758 PMCID: PMC3382239 DOI: 10.1371/journal.pone.0039306] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/18/2012] [Indexed: 11/28/2022] Open
Abstract
In humans, successful pregnancy depends on a cascade of dynamic events during early embryonic development. Unfortunately, molecular data on these critical events is scarce. To improve our understanding of the molecular mechanisms that govern the specification/development of the trophoblast cell lineage, the transcriptome of human trophectoderm (TE) cells from day 5 blastocysts was compared to that of single day 3 embryos from our in vitro fertilization program by using Human Genome U133 Plus 2.0 microarrays. Some of the microarray data were validated by quantitative RT-PCR. The TE molecular signature included 2,196 transcripts, among which were genes already known to be TE-specific (GATA2, GATA3 and GCM1) but also genes involved in trophoblast invasion (MUC15), chromatin remodeling (specifically the DNA methyltransferase DNMT3L) and steroid metabolism (HSD3B1, HSD17B1 and FDX1). In day 3 human embryos 1,714 transcripts were specifically up-regulated. Besides stemness genes such as NANOG and DPPA2, this signature included genes belonging to the NLR family (NALP4, 5, 9, 11 and 13), Ret finger protein-like family (RFPL1, 2 and 3), Melanoma Antigen family (MAGEA1, 2, 3, 5, 6 and 12) and previously unreported transcripts, such as MBD3L2 and ZSCAN4. This study provides a comprehensive outlook of the genes that are expressed during the initial embryo-trophectoderm transition in humans. Further understanding of the biological functions of the key genes involved in steroidogenesis and epigenetic regulation of transcription that are up-regulated in TE cells may clarify their contribution to TE specification and might also provide new biomarkers for the selection of viable and competent blastocysts.
Collapse
|
8
|
Cayrol C, Bertrand C, Kowalski-Chauvel A, Daulhac L, Cohen-Jonathan-Moyal E, Ferrand A, Seva C. α V integrin: A new gastrin target in human pancreatic cancer cells. World J Gastroenterol 2011; 17:4488-95. [PMID: 22110279 PMCID: PMC3218139 DOI: 10.3748/wjg.v17.i40.4488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyse αV integrin expression induced by gastrin in pancreatic cancer models.
METHODS: αV integrin mRNA expression in human pancreatic cancer cells was analysed using a “cancer genes” array and confirmed by real-time reverse transcription-polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively. The role of αV integrin on gastrin-induced cell adhesion was examined using blocking anti-αV integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet.
RESULTS: Using a “cancer genes” array we identified αV integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αV integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αV integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αV integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion viaαV integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αV integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αV integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.
CONCLUSION: αV integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.
Collapse
|
9
|
Kraniak JM, Sun D, Mattingly RR, Reiners JJ, Tainsky MA. The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors. Mol Cell Biochem 2010; 344:267-76. [PMID: 20680410 DOI: 10.1007/s11010-010-0551-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 11/29/2022]
Abstract
Plexiform neurofibromas commonly found in patients with Neurofibromatosis type I (NF1) have a 5% risk of being transformed into malignant peripheral nerve sheath tumors (MPNST). Germline mutations in the NF1 gene coding for neurofibromin, which is a Ras GTPase activating protein (RasGAP) and a negative regulator of Ras, result in an upregulation of the Ras pathway. We established a direct connection between neurofibromin deficiency and downstream effectors of Ras in cell lines from MPNST patients by demonstrating that knockdown of NF1 expression using siRNA in a NF1 wild type MPNST cell line, STS-26T, activates the Ras/ERK1,2 pathway and increases AP-1 binding and activity. We believe this is the first time the transactivation of AP-1 has been linked directly to neurofibromin deficiency in a disease relevant MPNST cell line. Previously, we have shown that N-Ras is constitutively activated in cell lines derived from independent MPNSTs from NF1 patients. We therefore sought to analyze the role of the N-Ras pathway in deregulating AP-1 transcriptional activity. We show that STS-26T clones conditionally expressing oncogenic N-Ras show increased phosphorylated ERK1,2 and phosphorylated JNK expression concomitant with increased AP-1 activity. MAP kinase pathways (ERK1,2 and JNK) were further examined in ST88-14, a neurofibromin-deficient MPNST cell line. The basal activity of ERK1,2 but not JNK was found to increase AP-1 activity. These experiments further confirmed the link between the loss of neurofibromin and increased activity of Ras/MAP kinase pathways and the activation of downstream transcriptional mechanisms in MPNSTs from NF1 patients.
Collapse
Affiliation(s)
- Janice M Kraniak
- Programs in Molecular Biology and Genetics, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
10
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
11
|
Chao C, Han X, Ives K, Park J, Kolokoltsov AA, Davey RA, Moyer MP, Hellmich MR. CCK2 receptor expression transforms non-tumorigenic human NCM356 colonic epithelial cells into tumor forming cells. Int J Cancer 2010; 126:864-75. [PMID: 19697327 DOI: 10.1002/ijc.24845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Expression of gastrin and cholecystokinin 2 (CCK(2)) receptor splice variants (CCK(2)R and CCK(2i4sv)R) are upregulated in human colonic adenomas where they are thought to contribute to tumor growth and progression. To determine the effects of ectopic CCK(2) receptor variant expression on colonic epithelial cell growth in vitro and in vivo, we employed the non-tumorigenic colonic epithelial cell line, NCM356. Receptor expression was induced using a retroviral expression vector containing cDNAs for either CCK(2i4sv)R or CCK(2)R. RT-PCR and intracellular Ca(2+) ([Ca(2+)](i)) imaging of RIE/CCK(2)R cells treated with conditioned media (CM) from NCM356 revealed that NCM356 cells express gastrin mRNA and secrete endogenous, biologically active peptide. NCM356 cells expressing either CCK(2)R or CCK(2i4sv)R (71 and 81 fmol/mg, respectively) grew faster in vitro, and exhibited an increase in basal levels of phosphorylated ERK (pERK), compared with vector. CCK(2) receptor selective antagonist, YM022, partially inhibited the growth of both receptor-expressing NCM356 cells, but not the control cells. Inhibitors of mitogen activated protein kinase pathway (MEK/ERK) or protein kinase C (PKC) isozymes partially inhibited the elevated levels of basal pERK and in vitro growth of receptor-expressing cells. Vector-NCM356 cells did not form tumors in nude mice, whereas, either CCK(2) receptor-expressing cells formed large tumors. Autocrine activation CCK(2) receptor variants are sufficient to increase in vitro growth and tumorigenicity of non-transformed NCM356 colon epithelial cells through a pathway involving PKC and the MEK/ERK axis. These findings support the hypothesis that expression of gastrin and its receptors in human colonic adenomas contributes to tumor growth and progression.
Collapse
Affiliation(s)
- Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pagliocca A, Hegyi P, Venglovecz V, Rackstraw SA, Khan Z, Burdyga G, Wang TC, Dimaline R, Varro A, Dockray GJ. Identification of ezrin as a target of gastrin in immature mouse gastric parietal cells. Exp Physiol 2008; 93:1174-89. [PMID: 18567601 DOI: 10.1113/expphysiol.2008.042648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The gastric acid-secreting parietal cell exhibits profound morphological changes on stimulation. Studies in gastrin null (Gas-KO) mice indicate that maturation of parietal cell function depends on the hormone gastrin acting at the G-protein-coupled cholecystokinin 2 receptor. The relevant cellular mechanisms are unknown. The application of differential mRNA display to samples of the gastric corpus of wild-type (C57BL/6) and Gas-KO mice identified the cytoskeletal linker protein, ezrin, as a previously unsuspected target of gastrin. Gastrin administered in vivo or added to gastric glands in vitro increased ezrin abundance in Gas-KO parietal cells. In parietal cells of cultured gastric glands from wild-type mice treated with gastrin, histamine or carbachol, ezrin was localized to vesicular structures resembling secretory canaliculi. In contrast, in cultured parietal cells from Gas-KO mice, ezrin was typically distributed in the cytosol, and this did not change after incubation with gastrin, histamine or carbachol. However, priming with gastrin for approximately 24 h, either in vivo prior to cell culture or by addition to cultured gastric glands, induced the capacity for secretagogue-stimulated localization of ezrin to large vesicular structures in Gas-KO mice. Similarly, in a functional assay based on measurement of intracellular pH, cultured parietal cells from Gas-KO mice were refractory to gastrin unless primed. The priming effect of gastrin was not attributable to the paracrine mediator histamine, but was prevented by inhibitors of protein kinase C and transactivation of the epidermal growth factor receptor. We conclude that in gastrin null mice there is reduced ezrin expression and a defect in ezrin subcellular distribution in gastric parietal cells, and that both can be reversed by priming with gastrin.
Collapse
Affiliation(s)
- Adelina Pagliocca
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carrillo J, García-Aragoncillo E, Azorín D, Agra N, Sastre A, González-Mediero I, García-Miguel P, Pestaña A, Gallego S, Segura D, Alonso J. Cholecystokinin Down-Regulation by RNA Interference Impairs Ewing Tumor Growth. Clin Cancer Res 2007; 13:2429-40. [PMID: 17438102 DOI: 10.1158/1078-0432.ccr-06-1762] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumors of the Ewing family are characterized by chromosomal translocations that yield chimeric transcription factors, such as EWS/FLI1, which regulate the expression of specific genes that contribute to the malignant phenotype. In the present study, we show that cholecystokinin (CCK) is a new target of the EWS/FLI1 oncoprotein and assess its functional role in Ewing tumor pathogenesis. EXPERIMENTAL DESIGN Relevant EWS/FLI1 targets were identified using a combination of cell systems with inducible EWS/FLI1 expression, Ewing tumors and cell lines, microarrays, and RNA interference with doxycycline-inducible small hairpin RNA (shRNA) vectors. A doxycycline-inducible CCK-shRNA vector was stably transfected in A673 and SK-PN-DW Ewing cell lines to assess the role of CCK in cell proliferation and tumor growth. RESULTS Microarray analysis revealed that CCK was up-regulated by EWS/FLI1 in HeLa cells. CCK was overexpressed in Ewing tumors as compared with other pediatric malignancies such as rhabdomyosarcoma and neuroblastoma, with levels close to those detected in normal tissues expressing the highest levels of CCK. Furthermore, EWS/FLI1 knockdown in A673 and SK-PN-DW Ewing cells using two different doxycycline-inducible EWS/FLI1-specific shRNA vectors down-regulated CCK mRNA expression and diminished the levels of secreted CCK, showing that CCK is a EWS/FLI1 specific target gene in Ewing cells. A doxycycline-inducible CCK-specific shRNA vector successfully down-regulated CCK expression, reduced the levels of secreted CCK in Ewing cell lines, and inhibited cell growth and proliferation in vitro and in vivo. Finally, we show that Ewing cell lines and tumors express CCK receptors and that the growth inhibition produced by CCK silencing can be rescued by culturing the cells with medium containing CCK. CONCLUSIONS Our data support the hypothesis that CCK acts as an autocrine growth factor stimulating the proliferation of Ewing cells and suggest that therapies targeting CCK could be promising in the treatment of Ewing tumors.
Collapse
Affiliation(s)
- Jaime Carrillo
- Laboratorio de Patología Molecular de Tumores Sólidos Infantiles, Departamento de Biología Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas A. Sols (CSIC-UAM), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Steigedal TS, Bruland T, Misund K, Thommesen L, Laegreid A. Inducible cAMP early repressor suppresses gastrin-mediated activation of cyclin D1 and c-fos gene expression. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1062-9. [PMID: 17185632 DOI: 10.1152/ajpgi.00287.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastric hormone gastrin and its precursors promote proliferation in several gastrointestinal cell types. Here we show that gastrin induces transcription of cell cycle gene cyclin D1 and protooncogene c-fos in the neuroendocrine pancreatic cell line AR42J and that this gastrin response is inhibited by endogenous inducible cAMP early repressor (ICER). The transcriptional repressor ICER is known to downregulate both its own expression and the expression of other genes containing cAMP-responsive elements (CREs). Using siRNA, we also show that CRE promoter elements are the targets of endogenous ICER in AR42J cells as well as in the neuroendocrine cell line RIN5F. Our results suggest that ICER plays an important role in molecular mechanisms governing gastrin-mediated growth by modulating gastrin's transcriptional activation of growth-related genes. Our finding that ICER modulates pituitary adenylate cyclase-activating polypeptide-activated gene expression also indicates a regulatory effect of ICER in the responses of neuroendocrine cells to peptides other than gastrin.
Collapse
Affiliation(s)
- Tonje S Steigedal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
15
|
Cao J, Yu JP, Liu CH, Zhou L, Yu HG. Effects of gastrin 17 on β-catenin/Tcf-4 pathway in Colo320WT colon cancer cells. World J Gastroenterol 2006; 12:7482-7. [PMID: 17167838 PMCID: PMC4087595 DOI: 10.3748/wjg.v12.i46.7482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of gastrin 17 (G17) on β-catenin/T cell factor-4 (Tcf-4) signaling in colonic cancer cell line Colo320WT.
METHODS: The pCR3.1/GR plasmid, which expresses gastrin receptor, cholecystokinin-2 receptor (CCK-2R), was transfected into a colonic cancer cell line Colo320 by Lipofectamine TM2000 and the stably expressing CCK-2R clones were screened by G418. The expression levels of gastrin receptor in the Colo320 and the transfected Colo320WT cell line were assayed by RT-PCR. Colo320WT cells were treated with G17 in a time-dependent manner (0, 1, 6, 12, 24 and 48 h), then with L365,260 (Gastrin17 receptor blocker) for 30 min, and with G17 again for 12 h or L365,260 for 12 h. Expression levels of β-catenin in a TX-100 soluble fraction and TX-100 insoluble fraction of Colo320WT cells treated with G17 were detected by co-immuniprecipation and Western blot. Immunocytochemistry was used to examine the distribution of β-catenin in CoLoWT320 cells. Expression levels of c-myc and cyclin D1 in Colo320WT cells treated with G17 were assayed by Western blot.
RESULTS: Expression levels of β-catenin in the TX-100 solution fraction decreased apparently in a time-dependent fashion and reached the highest level after G17 treatment for 12 h, while expression levels of β-catenin in the TX-100 insoluble fraction were just on the contrary. Immunocytochemistry showed that β-catenin was translocated from the cell membranes into the cytoplasm and nucleus under G17 treatment. Expression levels of c-myc and cyclin D1 in the G17-treated Colo320WT cells were markedly higher compared to the untreated Colo320WT cells. In addition, the aforementioned G17-stimulated responses were blocked by L365,260.
CONCLUSION: Gastrin17 activates β-catenin/Tcf-4 signaling in Colo320WT cells, thereby leading to over-expression of c-myc and cyclin D1.
Collapse
Affiliation(s)
- Jun Cao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei Province, China
| | | | | | | | | |
Collapse
|
16
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
17
|
Cayrol C, Clerc P, Bertrand C, Gigoux V, Portolan G, Fourmy D, Dufresne M, Seva C. Cholecystokinin-2 receptor modulates cell adhesion through beta 1-integrin in human pancreatic cancer cells. Oncogene 2006; 25:4421-8. [PMID: 16547500 DOI: 10.1038/sj.onc.1209484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several lines of evidence suggest that gastrin and the CCK-2 receptor (CCK2R) could contribute to pancreatic carcinogenesis by modulating processes such as proliferation, cell adhesion or migration. In the current study, we used a 'cancer gene array' and identified beta1-integrin subunit as a new gastrin-regulated gene in human pancreatic cancer cells. We also demonstrated that Src family kinases and the phosphatidylinositol-3-kinase (PI-3-kinase) pathway play a crucial role in the expression of beta1-integrin induced by gastrin. Our results also showed that gastrin modulates cell-substrate adhesion via beta1-integrin. Indeed, using blocking anti-beta1-integrin monoclonal antibodies, we completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we observed that in response to gastrin, beta1-integrin is tyrosine phosphorylated by Src family kinases and associates with paxillin, a scaffold protein involved in focal adhesion and integrin signalling. This mechanism might be involved in gastrin-induced cell adhesion. Moreover, we showed in vivo that targeted CCK2R expression in the pancreas of Elas-CCK2 mice leads to the overexpression of beta1-integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.
Collapse
Affiliation(s)
- C Cayrol
- INSERM U 531, IFR 31, Institut Louis Bugnard, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cheng ZJ, Harikumar KG, Ding WQ, Holicky EL, Miller LJ. Analysis of the cellular and molecular mechanisms of trophic action of a misspliced form of the type B cholecystokinin receptor present in colon and pancreatic cancer. Cancer Lett 2005; 222:95-105. [PMID: 15837546 DOI: 10.1016/j.canlet.2004.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/05/2004] [Accepted: 09/02/2004] [Indexed: 11/20/2022]
Abstract
Gastrin and cholecystokinin (CCK) have trophic action on cells expressing wild type A or B CCK receptors. Potential relevance to pancreatic and colonic cancers was raised by the demonstration of a misspliced type B CCK receptor that, when expressed in Balb3T3 cells, had constitutive activity to stimulate intracellular calcium. We attempted to confirm and extend this observation in CHO cells by establishing lines expressing similar densities of variant or wild type B CCK receptor. While both were capable of normal binding and agonist-induced signaling, neither expressed constitutive signaling and both had similar basal growth. Agonist stimulation of cells expressing misspliced receptor had greater increases in calcium and greater growth rates than control cells despite similar MAP kinase phosphorylation responses. Thus, this variant receptor can potentiate peptide-stimulated signaling and trophic action and may contribute to the proliferation of neoplasms expressing it.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- Mayo Clinic Cancer Center, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Scottsdale, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | | | | | |
Collapse
|
19
|
Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2004; 449:344-55. [PMID: 15480747 DOI: 10.1007/s00424-004-1347-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.
Collapse
Affiliation(s)
- Graham Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
20
|
Stepan V, Ramamoorthy S, Pausawasdi N, Logsdon CD, Askari FK, Todisco A. Role of small GTP binding proteins in the growth-promoting and antiapoptotic actions of gastrin. Am J Physiol Gastrointest Liver Physiol 2004; 287:G715-25. [PMID: 15331357 DOI: 10.1152/ajpgi.00169.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G17 has growth promoting and antiapoptotic effects on the AR4-2J pancreatic acinar cell line. We previously reported that whereas MAPK regulates G17-stimulation of AR4-2J cell proliferation, Akt mediates the antiapoptotic action of G17. We examined the signal-transduction pathways mediating G17 stimulation of AR4-2J cell growth and survival. G17 activated the small GTP binding proteins Ras, Rac, Rho, and Cdc42. Transduction of the cells with adenoviral vectors expressing dominant negative Akt, Ras, Rho, and Cdc42 but not dominant negative Rac inhibited AR4-2J cell proliferation and survival. Both exoenzyme C3 from Clostridium botulinum (C3), a toxin known to inactivate Rho, and PD98059, a MAPK inhibitor, reversed G17 inhibition of AR4-2J cell apoptosis. G17 induction of Akt activation was reduced by >60% by both dominant negative Ras and Rho and by 30% by dominant negative Cdc42. In contrast, G17-stimulated MAPK activation was blocked by >80% by dominant negative Ras but not by dominant negative Rho and Cdc42. Similar results were observed in the presence of C3. Dominant negative Rac failed to affect G17 induction of both Akt and MAPK, whereas it inhibited sorbitol by almost 50% but not G17-stimulated activation of p38 kinase. Thus G17 promotes AR4-2J cell growth and survival through the activation of multiple GTP binding proteins, which, in turn, regulate different protein kinase cascades. Whereas Ras activates Akt and MAPK, Rho and Cdc42 appear to regulate Akt and possibly other as yet unidentified kinases mediating the growth-stimulatory actions of G17.
Collapse
Affiliation(s)
- Vinzenz Stepan
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682, USA
| | | | | | | | | | | |
Collapse
|
21
|
Raychowdhury R, Fleming JV, McLaughlin JT, Bulitta CJ, Wang TC. Identification and characterization of a third gastrin response element (GAS-RE3) in the human histidine decarboxylase gene promoter. Biochem Biophys Res Commun 2002; 297:1089-95. [PMID: 12372397 DOI: 10.1016/s0006-291x(02)02345-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In human gastric cancer cells the human histidine decarboxylase gene is regulated by gastrin through two overlapping cis-acting elements known as gastrin response elements 1&2 (GAS-RE1, GAS-RE2) [J. Biol. Chem. 274 (1999) 20961]. Here, we report the identification and characterization of a third element GAS-RE3 that was localized to a region +28 to +48 downstream of the transcriptional start site (+1). Gastrin stimulation induced a rapid increase in binding to the element of a novel nuclear factor named gastrin response element-binding protein 3 (GAS-REBP3). Block mutations in the GAS-RE3 sequence (+38GTGCG(+42) to +38TAAGT(+42)) led to reduced promoter activity and decreased binding in EMSA. UV cross-linking studies and Southwestern blot analysis with wildtype and mutant GAS-RE3 showed that GAS-REBP3 was a approximately 110kDa protein. Thus, gastrin-mediated regulation of HDC gene expression appears to be mediated by a complex cis-acting element, which binds at least three distinct nuclear factors.
Collapse
Affiliation(s)
- Raktima Raychowdhury
- Harvard Medical School and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
22
|
Pagliocca A, Wroblewski LE, Ashcroft FJ, Noble PJ, Dockray GJ, Varro A. Stimulation of the gastrin-cholecystokinin(B) receptor promotes branching morphogenesis in gastric AGS cells. Am J Physiol Gastrointest Liver Physiol 2002; 283:G292-9. [PMID: 12121875 DOI: 10.1152/ajpgi.00056.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial organization is maintained by cell proliferation, migration, and differentiation. In the case of the gastric epithelium, at least some of these events are regulated by the hormone gastrin. In addition, gastric epithelial cells are organized into characteristic tubular structures (the gastric glands), but the cellular mechanisms regulating the organization of tubular structures (sometimes called branching morphogenesis) are uncertain. In the present study, we examined the role of the gastrin-cholecystokinin(B) receptor in promoting branching morphogenesis of gastric epithelial cells. When gastric cancer AGS-G(R) cells were cultured on plastic, gastrin and PMA stimulated cell adhesion, formation of lamellipodia, and extension of long processes in part by activation of protein kinase C (PKC) and phosphatidylinositol (PI)-3 kinase. Branching morphogenesis was not observed in these circumstances. However, when cells were cultured on artificial basement membrane, the same stimuli increased the formation of organized multicellular arrays, exhibiting branching morphogenesis. These effects were reversed by inhibitors of PKC but not of PI-3 kinase. We conclude that, in the presence of basement membrane, activation of PKC by gastrin stimulates branching morphogenesis.
Collapse
Affiliation(s)
- A Pagliocca
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Zanner R, Hapfelmeier G, Gratzl M, Prinz C. Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. Am J Physiol Cell Physiol 2002; 282:C374-82. [PMID: 11788349 DOI: 10.1152/ajpcell.00366.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of G(q) protein-coupled receptors usually causes a biphasic increase in intracellular calcium concentration ([Ca(2+)](i)) that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to a prompt biphasic calcium response followed by histamine secretion. This study investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP(3)R) subtypes 1-3. The IP(3)R antagonist 2-aminoethoxydiphenyl borate abolished both gastrin-induced elevation of [Ca(2+)](i) and histamine release. Thapsigargin increased [Ca(2+)](i), however, without inducing histamine secretion. In thapsigargin-pretreated cells, gastrin increased [Ca(2+)](i) through calcium influx across the plasma membrane. Both nimodipine and SKF-96365 inhibited gastrin-induced histamine release. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate induced histamine secretion, an effect that was prevented by nimodipine. In summary, gastrin-stimulated histamine release depends on IP(3)R activation and plasmalemmal calcium entry. Gastrin-induced calcium influx was mediated by dihydropyridine-sensitive calcium channels that appear to be L-type channels activated through a pathway involving activation of PKC.
Collapse
|
24
|
Thommesen L, Hofsli E, Paulssen RH, Anthonsen MW, Laegreid A. Molecular mechanisms involved in gastrin-mediated regulation of cAMP-responsive promoter elements. Am J Physiol Endocrinol Metab 2001; 281:E1316-25. [PMID: 11701448 DOI: 10.1152/ajpendo.2001.281.6.e1316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we explore the role of cAMP-responsive (CRE) promoter elements in gastrin-mediated gene activation. By using the minimal CRE promoter reporter plasmid, pCRELuc, we show that gastrin can activate CRE. This activation is blocked by H-89 and GF 109203x, which inhibit protein kinases A and C, respectively. Moreover, Ca(2+)-activated pathways seem to be involved, because the calmodulin inhibitor W-7 reduced gastrin-mediated activation of pCRELuc. Deletion of CRE from the c-fos promoter rendered this promoter completely unresponsive to gastrin, indicating that CRE plays a central role in c-fos transactivation. Interestingly, gastrin-induced expression of the inducible cAMP early repressor (ICER), a gene that is known to be regulated by CRE promoter elements, was not reduced by H-89, W-7, or GF 109203x. Furthermore, bandshift analyses indicated that the region of the ICER promoter containing the CRE-like elements CARE 3-4 binds transcription factors that are not members of the CRE-binding protein-CRE modulator protein-activating transcription factor, or CREB/CREM/ATF-1, family. Our results underline the significance of the CRE promoter element in gastrin-mediated gene regulation and indicate that a variety of signaling mechanisms are involved, depending on the CRE promoter context.
Collapse
Affiliation(s)
- L Thommesen
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
25
|
Abstract
Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
Collapse
Affiliation(s)
- E Rozengurt
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
26
|
Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001; 63:77-97. [PMID: 11181949 DOI: 10.1146/annurev.physiol.63.1.77] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
Collapse
Affiliation(s)
- J A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
27
|
Todisco A, Ramamoorthy S, Witham T, Pausawasdi N, Srinivasan S, Dickinson CJ, Askari FK, Krametter D. Molecular mechanisms for the antiapoptotic action of gastrin. Am J Physiol Gastrointest Liver Physiol 2001; 280:G298-307. [PMID: 11208554 DOI: 10.1152/ajpgi.2001.280.2.g298] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin (G17) has a CCK-B receptor-mediated growth-promoting effect on the AR42J rat acinar cell line. We examined whether G17 inhibits apoptosis induced by serum withdrawal of AR42J cells and CHO-K1 cells stably expressing CCK-B receptors (CHO-K1/CCK-B cells). Cellular apoptosis was measured by flow cytometry and the terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end-labeling method. Serum withdrawal induced AR42J and CHO-K1/CCK-B cell apoptosis. Addition of 10 nM G17 reversed these effects. We examined the action of G17 (10 nM) on phosphorylation and activation of protein kinase B/Akt, a kinase known to promote cell survival. Akt phosphorylation and activation were measured by kinase assays and Western blots with an anti-phospho-Akt antibody. G17 stimulated Akt phosphorylation and activation. G17 induction of Akt phosphorylation was inhibited by the phosphoinositide 3-kinase (PI 3-kinase) inhibitors LY-294002 (10 microM) and wortmannin (200 nM) but not by the mitogen-activated protein kinase kinase 1 inhibitor PD-98059 (50 microM). To study the role of p38 kinase in G17 signaling to Akt, we examined the effect of G17 on p38 kinase activation and phosphorylation using kinase assays and Western blots with an anti-phospho-p38 kinase antibody. G17 induced p38 kinase activity at doses and with kinetics similar to those observed for Akt induction. The p38 kinase inhibitor SB-203580 inhibited G17 induction of Akt phosphorylation and activation at a concentration (10 microM) 10-fold higher than necessary to block p38 kinase (1 microM), suggesting the possible involvement of kinase activities other than p38 kinase. Transduction of AR42J cells with the adenoviral vector Adeno-dn Akt, which overexpresses an inhibitor of Akt, reversed the antiapoptotic action of G17. In conclusion, G17 promotes AR42J cell survival through the induction of Akt via PI 3-kinase and SB-203580-sensitive kinase activities.
Collapse
Affiliation(s)
- A Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
He SW, Shen KQ, He YJ, Xie B, Zhao YM. Regulatory effect and mechanism of gastrin and its antagonists on colorectal carcinoma. World J Gastroenterol 1999; 5:408-416. [PMID: 11819478 PMCID: PMC4688610 DOI: 10.3748/wjg.v5.i5.408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect and mechanism of gastrin and its an tagonists proglumide and somatostatin on colorectal carcinoma and their clinical significance.
METHODS: A model of transplanted human colonic carcinoma was established from SW480 cell line in gymnomouse body. The volume and weight of transplanted carcinoma was observed under the effect of pentagatrin (PG), proglumide (PGL) and octapeptide somotostatin (SMS201-995, SMS). The cAMP content of carcinoma cell was determined by radioimmunoassay and the DNA, protein content and cell cycle were determined by flow-cytometry. The amount of viable cells was determined by MTT colorimetric analysis, IP3 content was determined by radioimmuno assay, Ca2+ concentration in cell by fluorometry and PKC activity by isotopic enzymolysis. The expression of gastrin, c-myc, c-fos and rasP21 in 48 case s of colorectal carcinoma tissue was detected by the immuno-cytochemistry SP method. Argyrophilia nucleolar organizer regions was determined with argyrophilia stain.
RESULTS: The volume, weight, cAMP, DNA and protein content in carcinoma cell, cell amount and proliferation index of S and G2M phase in PG group were all significantly higher than those of control group. When PG was at the concentration of 25 mg/L, the amount of viable cells, IP3 content and Ca2+ concentration in cell and membrane PKC activity in PG group were significantly higher than those in control group; when PGL was at a concentration of 32 mg/L, they dropped to the lowest level in PG (25 mg/L) + PGL group, but without significant difference from the control group. The positive expression rate of gastrin, c-myc, c-fos and rasP21 in carcinoma tissue was 39.6%, 54.2%, 47.9% and 54.2% respectively and significantly higher than that in mucosa 3 cm and 6 cm adjacent to carcinoma tissue and normal colorectal mucosa. The positive expression rate of gastrin of highly-differentiated adenocarcinoma group was significantly higher than that of poorly-differentiated and mucinous adenoc arcinoma groups. The AgNORs count of carcinoma tissue was significantly higher than that in mucosa 3 cm and 6 cm adjacent to carcinoma tissue and norm al colorectal mucosa; and the positive expression of c-myc and c-fos and the A gNORs count in gastrin-positive group was significantly higher than those in gastrin-negative group.
CONCLUSION: Pentagastrin has a promoting effect on the growth of transplanted human colonic carcinoma from SW480 cell line. PGL has no obvious effect on the growth of human colonic carcinoma SW480 cell line, but could inhibit the growth promoting effect of PG on transplanted carcinoma. Somatostatin can not only inhibit the growth of transplanted human colonic carcinoma from SW480 cell line directly but also depress the growth-promoting effect of gastrin on the transplanted carcinoma. Some colorectal carcinoma cells can produce and secrete gastrin through autocrine, highly-differentiated adenocarcinoma express the highest level gastrin. Endogenous gastrin can stimulate the cell division and proliferation of carcinoma cell and promote the growth of colorectal carcinoma regulating the expression of oncogene c-myc, c-fos. Our study has provided experimental basis for the adjuvant treatment using gastrin antagonist such as PGL, so matostatin of patients with colorectal carcinoma.
Collapse
|