1
|
Mellinger AL, Garrard KP, Khodjaniyazova S, Rabbani ZN, Gamcsik MP, Muddiman DC. Multiple Infusion Start Time Mass Spectrometry Imaging of Dynamic SIL-Glutathione Biosynthesis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization. J Proteome Res 2021; 21:747-757. [PMID: 34807624 DOI: 10.1021/acs.jproteome.1c00636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to the high association of glutathione metabolism perturbation with a variety of disease states, there is a dire need for analytical techniques to study glutathione kinetics. Additionally, the elucidation of microenvironmental effects on changes in glutathione metabolism would significantly improve our understanding of the role of glutathione in disease. We therefore present a study combining a multiple infusion start time protocol, stable isotope labeling technology, infrared matrix-assisted laser desorption electrospray ionization, and high-resolution accurate mass-mass spectrometry imaging to study spatial changes in glutathione kinetics across in sectioned mouse liver tissues. After injecting a mouse with the isotopologues [2-13C,15N]-glycine, [1,2-13C2]-glycine, and [1,2-13C2,15N]-glycine at three different time points, we were able to fully resolve and spatially map their metabolism into three isotopologues of glutathione and calculate their isotopic enrichment in glutathione. We created a tool in the open-source mass spectrometry imaging software MSiReader to accurately compute the percent isotope enrichment (PIE) of these labels in glutathione and visualize them in heat-maps of the tissue sections. In areas of high flux, we found that each label enriched an approximate median of 1.6%, 1.8%, and 1.5%, respectively, of the glutathione product pool measured in each voxel. This method may be adapted to study the heterogeneity of glutathione flux in diseased versus healthy tissues.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zahid N Rabbani
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Agostini F, Dalla Libera L, Rittweger J, Mazzucco S, Jurdana M, Mekjavic IB, Pisot R, Gorza L, Narici M, Biolo G. Effects of inactivity on human muscle glutathione synthesis by a double-tracer and single-biopsy approach. J Physiol 2010; 588:5089-104. [PMID: 20962001 PMCID: PMC3036199 DOI: 10.1113/jphysiol.2010.198283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is often associated to inactivity-mediated skeletal muscle atrophy. Glutathione is one of the major antioxidant systems stimulated, both at muscular and systemic level, by activation of oxidative processes. We measured changes in glutathione availability, oxidative stress induction and the extent of atrophy mediated by 35 days of experimental bed rest in vastus lateralis muscle of healthy human volunteers. To assess muscle glutathione synthesis, we applied a novel single-biopsy and double-tracer ([(2)H(2)]glycine and [(15)N]glycine) approach based on evaluation of steady-state precursor incorporation in product. The correlations between the traditional (multiple-samples, one-tracer) and new (one-sample, double-tracer infusion) methods were analysed in erythrocytes by Passing-Bablok and Altman-Bland tests. Muscle glutathione absolute synthesis rate increased following bed rest from 5.5 ± 1.1 to 11.0 ± 1.5 mmol (kg wet tissue)(-1) day(-1) (mean ± S.E.M.; n = 9; P = 0.02) while glutathione concentration failed to change significantly. Bed rest induced vastus lateralis muscle atrophy, as assessed by pennation angle changes measured by ultrasonography (from 18.6 ± 1.0 to 15.3 ± 0.9 deg; P = 0.01) and thickness changes (from 2.3 ± 0.2 to 1.9 ± 0.1 cm; P < 0.001). Moreover, bed rest increased protein oxidative stress, as measured by muscle protein carbonylation changes (from 0.6 ± 0.1 to 1.00 ± 0.1 Oxydized-to-total protein ratio; P < 0.04). In conclusion, we developed in erythrocytes a new minimally invasive method to determine peptide synthesis rate in human tissues. Application of the new method to skeletal muscle suggests that disuse atrophy is associated to oxidative stress induction as well as to compensatory activation of the glutathione system.
Collapse
Affiliation(s)
- Francesco Agostini
- Clinica Medica, Ospedale di Cattinara, Strada di Fiume 447, Trieste 34149, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Affiliation(s)
- Teresa A Davis
- U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
4
|
Zhang XJ, Chinkes DL, Wolfe RR. Measurement of muscle protein fractional synthesis and breakdown rates from a pulse tracer injection. Am J Physiol Endocrinol Metab 2002; 283:E753-64. [PMID: 12217893 DOI: 10.1152/ajpendo.00053.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a new method to determine the fractional synthesis rate (FSR) and breakdown rate (FBR) of muscle protein. This method involves a pulse tracer injection and measurement of enrichment in the arterial blood and muscle at three time points. The calculations of FSR and FBR are based on the precursor-product principle. To test this method, we gave a pulse injection of L-[ring-(13)C(6)]phenylalanine of 4-6 mg/kg in five rabbits. The measured FBR value (0.233 +/- 0.060%/h) was almost identical (P = 0.35) to that (0.217 +/- 0.078%/h) estimated from a leg arteriovenous balance model (Biolo G, Chinkes D, Zhang X-J, and Wolfe RR. J Parenter Enteral Nutr 16: 305-315, 1992). The measured FSR value tended to be lower than that estimated from the leg model (0.125 +/- 0.036 vs. 0.185 +/- 0.086%/h; P = 0.14), possibly because the new method measures only muscle FSR, whereas the leg balance model also includes skin and bone contributions. The pulse tracer injection did not affect muscle protein kinetics as measured by leucine and phenylalanine kinetics in the leg. In another five rabbits, we demonstrated that sampling could be reduced to either one or two muscle biopsies when multiple pulse injections were used. This method can be completed in 1 h with one muscle biopsy and has technical advantages over currently used methods.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Metabolism Unit, Shriners Hospitals for Children, and Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, Texas 77550, USA
| | | | | |
Collapse
|
5
|
Dudley MA, Schoknecht PA, Dudley AW, Jiang L, Ferraris RP, Rosenberger JN, Henry JF, Reeds PJ. Lactase synthesis is pretranslationally regulated in protein-deficient pigs fed a protein-sufficient diet. Am J Physiol Gastrointest Liver Physiol 2001; 280:G621-8. [PMID: 11254488 DOI: 10.1152/ajpgi.2001.280.4.g621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The in vivo effects of protein malnutrition and protein rehabilitation on lactase phlorizin hydrolase (LPH) synthesis were examined. Five-day-old pigs were fed isocaloric diets containing 10% (deficient, n = 12) or 24% (sufficient, n = 12) protein. After 4 wk, one-half of the animals in each dietary group were infused intravenously with [(13)C(1)]leucine for 6 h, and the jejunum was analyzed for enzyme activity, mRNA abundance, and LPH polypeptide isotopic enrichment. The remaining animals were fed the protein-sufficient diet for 1 wk, and the jejunum was analyzed. Jejunal mass and lactase enzyme activity per jejunum were significantly lower in protein-deficient vs. control animals but returned to normal with rehabilitation. Protein malnutrition did not affect LPH mRNA abundance relative to elongation factor-1alpha, but rehabilitation resulted in a significant increase in LPH mRNA relative abundance. Protein malnutrition significantly lowered the LPH fractional synthesis rate (FSR; %/day), whereas the FSR of LPH in rehabilitated and control animals was similar. These results suggest that protein malnutrition decreases LPH synthesis by altering posttranslational events, whereas the jejunum responds to rehabilitation by increasing LPH mRNA relative abundance, suggesting pretranslational regulation.
Collapse
Affiliation(s)
- M A Dudley
- Department of Pharmacology and Physiology, New Jersey School of Medicine and Dentistry, Newark 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|