1
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Chuang CL, Chang CC, Hsu SJ, Huang HC, Lee FY, Huang LJ, Lee SD. Endotoxemia-enhanced renal vascular reactivity to endothelin-1 in cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2018; 315:G752-G761. [PMID: 30095297 DOI: 10.1152/ajpgi.00302.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatorenal syndrome (HRS), a severe complication of advanced cirrhosis, is defined as hypoperfusion of kidneys resulting from intense renal vasoconstriction in response to generalized systemic arterial vasodilatation. Nevertheless, the mechanisms have been barely investigated. Cumulative studies demonstrated renal vasodilatation in portal hypertensive and compensated cirrhotic rats. Previously, we identified that blunted renal vascular reactivity of portal hypertensive rats was reversed after lipopolysaccharide (LPS). This study was therefore conducted to delineate the sequence of renal vascular alternation and underlying mechanisms in LPS-treated cirrhotic rats. Sprague-Dawley rats were randomly allocated to receive sham surgery (Sham) or common bile duct ligation (CBDL). LPS was induced on the 28th day after surgery. Kidney perfusion was performed at 0.5 or 3 h after LPS to evaluate renal vascular response to endothelin-1 (ET-1). Endotoxemia increased serum ET-1 levels ( P < 0.0001) and renal arterial blood flow ( P < 0.05) in both Sham and CBDL rats. CBDL rats showed enhanced renal vascular reactivity to ET-1 at 3 h after LPS ( P = 0.026). Pretreatment with endothelin receptor type A (ETA) antagonist abrogated the LPS-enhanced renal vascular response in CBDL rats ( P < 0.001). There were significantly lower inducible nitric oxide synthase (iNOS) expression but higher ETA and phosphorylated extracellular signal-regulated kinase (p-ERK) expressions in renal medulla of endotoxemic CBDL rats ( P < 0.05). We concluded that LPS-induced renal iNOS inhibition, ETA upregulation, and subsequent ERK signaling activation may participate in renal vascular hyperreactivity in cirrhosis. ET-1-targeted therapy may be feasible in the control of HRS. NEW & NOTEWORTHY Hepatorenal syndrome (HRS) occurred in advanced cirrhosis after large-volume paracentesis or bacterial peritonitis. We demonstrated that intraperitoneal lipopolysaccharide (LPS) enhanced renal vascular reactivity to endothelin-1 (ET-1) in cirrhotic rats, accompanied by inducible nitric oxide synthase inhibition, endothelin receptor type A (ETA) upregulation, and subsequent extracellular signal-regulated kinase activation in renal medulla. Pretreatment with ETA antagonist abrogated the LPS-enhanced renal vascular response in common bile duct ligation rats. These findings suggest that further clinical investigation of ET-1-targeted therapy may be feasible in the control of HRS.
Collapse
Affiliation(s)
- Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng-Hsin General Hospital , Taipei , Taiwan
| |
Collapse
|
3
|
Kaffarnik MF, Ahmadi N, Lock JF, Wuensch T, Pratschke J, Stockmann M, Malinowski M. Correlation between plasma endothelin-1 levels and severity of septic liver failure quantified by maximal liver function capacity (LiMAx test). A prospective study. PLoS One 2017; 12:e0178237. [PMID: 28542386 PMCID: PMC5441649 DOI: 10.1371/journal.pone.0178237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/28/2017] [Indexed: 12/26/2022] Open
Abstract
Aim To investigate the relationship between the degree of liver dysfunction, quantified by maximal liver function capacity (LiMAx test) and endothelin-1, TNF-α and IL-6 in septic surgical patients. Methods 28 septic patients (8 female, 20 male, age range 35–80y) were prospectively investigated on a surgical intensive care unit. Liver function, defined by LiMAx test, and measurements of plasma levels of endothelin-1, TNF-α and IL-6 were carried out within the first 24 hours after onset of septic symptoms, followed by day 2, 5 and 10. Patients were divided into 2 groups (group A: LiMAx ≥100 μg/kg/h, moderate liver dysfunction; group B: LiMAx <100 μg/kg/h, severe liver dysfunction) for analysis and investigated regarding the correlation between endothelin-1 and the severity of liver failure, quantified by LiMAx test. Results Group B showed significant higher results for endothelin-1 than patients in group A (P = 0.01, d5; 0.02, d10). For TNF-α, group B revealed higher results than group A, with a significant difference on day 10 (P = 0.005). IL-6 showed a non-significant trend to higher results in group B. The Spearman's rank correlation coefficient revealed a significant correlation between LiMAx and endothelin-1 (-0.434; P <0.001), TNF-α (-0.515; P <0.001) and IL-6 (-0.590; P <0.001). Conclusions Sepsis-related hepatic dysfunction is associated with elevated plasma levels of endothelin-1, TNF-α and IL-6. Low LiMAx results combined with increased endothelin-1 and TNF-α and a favourable correlation between LiMAx and cytokine values support the findings of a crucial role of Endothelin-1 and TNF-α in development of septic liver failure.
Collapse
Affiliation(s)
- Magnus F. Kaffarnik
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
- * E-mail:
| | - Navid Ahmadi
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
| | - Johan F. Lock
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
- University Hospital of Wuerzburg, Department of General-, Visceral-, Vascular- and Paediatric Surgery, Wuerzburg, Germany
| | - Tilo Wuensch
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
| | - Johann Pratschke
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
| | - Martin Stockmann
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
| | - Maciej Malinowski
- Charité–Universitätsmedizin Berlin, Department of General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany
- University Hospital of Homburg, Department of General-, Visceral-, Vascular- and Paediatric Surgery, Homburg, Germany
| |
Collapse
|
4
|
McKenna S, Gossling M, Bugarini A, Hill E, Anderson AL, Rancourt RC, Balasubramaniyan N, El Kasmi KC, Wright CJ. Endotoxemia Induces IκBβ/NF-κB-Dependent Endothelin-1 Expression in Hepatic Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 195:3866-79. [PMID: 26342031 DOI: 10.4049/jimmunol.1501017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
Elevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed. Using pharmacologic inhibitors, ET-1 promoter luciferase assays, and by silencing and overexpressing NF-κB inhibitory protein IκB expression, we demonstrate that LPS-induced ET-1 expression occurs via an NF-κB-dependent pathway. Finally, the specific role of the cRel/p65 inhibitory protein IκBβ was evaluated. Although cytoplasmic IκBβ inhibits activity of cRel-containing NF-κB dimers, nuclear IκBβ stabilizes NF-κB/DNA binding and enhances gene expression. Using targeted pharmacologic therapies to specifically prevent IκBβ/NF-κB signaling, as well as mice genetically modified to overexpress IκBβ, we show that nuclear IκBβ is both necessary and sufficient to drive LPS-induced ET-1 expression. Together, these results mechanistically link the innate immune response mediated by IκBβ/NF-κB to ET-1 expression and potentially reveal therapeutic targets for patients with Gram-negative septic shock.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045
| | - Megan Gossling
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045
| | - Alejandro Bugarini
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045
| | - Elizabeth Hill
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045
| | - Aimee L Anderson
- Hepatology and Nutrition, Digestive Health Institute, Section of Gastroenterology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Raymond C Rancourt
- Pediatric Airway Research Center, Section of Pulmonology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Natarajan Balasubramaniyan
- Hepatology and Nutrition, Digestive Health Institute, Section of Gastroenterology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Karim C El Kasmi
- Hepatology and Nutrition, Digestive Health Institute, Section of Gastroenterology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
5
|
Lu YY, Wang CP, Zhou L, Chen Y, Su SH, Feng YY, Yang YP. Synthesis of platelet-activating factor and its receptor expression in Kupffer cells in rat carbon tetrachloride-induced cirrhosis. World J Gastroenterol 2008; 14:764-70. [PMID: 18205269 PMCID: PMC2684006 DOI: 10.3748/wjg.14.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the platelet-activating factor (PAF) synthesis and its receptor expression in Kupffer cells in rat carbon tetrachloride-induced cirrhosis.
METHODS: Kupffer cells, isolated from the livers of control and CCl4-induced cirrhotic rats, were placed in serum-free medium overnight. PAF saturation binding, ET-1 saturation and competition binding were assayed. ET-1 induced PAF synthesis, mRNA expression of PAF, preproendothelin-1, endothelin A (ETA) and endothelin B (ETB) receptors were also determined.
RESULTS: A two-fold increase of PAF synthesis (1.42 ± 0.14 vs 0.66 ± 0.04 pg/&mgr;g DNA) and a 1.48-fold increase of membrane-bound PAF (1.02 ± 0.06 vs 0.69 ± 0.07 pg/&mgr;g DNA) were observed in activated Kupffer cells of cirrhotic rats. The application of ET-1 to Kupffer cells induced PAF synthesis in a concentration-dependent manner in both cirrhotic and normal rats via ETB receptor, but PAF synthesis in the activated Kupffer cells was more effective than that in the normal Kupffer cells. In activated Kupffer cells, PAF receptor expression and PAF binding capacity were markedly enhanced. Activated Kupffer cells raised the [125I]-ET-1 binding capacity, but changed neither the affinity of the receptors, nor the expression of ETA receptor.
CONCLUSION: Kupffer cells in the course of CCl4-induced cirrhosis are the main source of increased PAF. ET-1 is involved endogenously in stimulating the PAF synthesis in activated Kupffer cells via ETB receptor by paracrine. ETA receptor did not appear in activated Kupffer cells, which may exacerbate the hepatic and extrahepatic complications of cirrhosis.
Collapse
|
6
|
Shao R, Shi Z, Gotwals PJ, Koteliansky VE, George J, Rockey DC. Cell and molecular regulation of endothelin-1 production during hepatic wound healing. Mol Biol Cell 2003; 14:2327-41. [PMID: 12808033 PMCID: PMC194882 DOI: 10.1091/mbc.02-06-0093] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During hepatic wound healing, activation of key effectors of the wounding response known as stellate cells leads to a multitude of pathological processes, including increased production of endothelin-1 (ET-1). This latter process has been linked to enhanced expression of endothelin-converting enzyme-1 (ECE-1, the enzyme that converts precursor ET-1 to the mature peptide) in activated stellate cells. Herein, we demonstrate up-regulation of 56- and 62-kDa ECE-1 3'-untranslated region (UTR) mRNA binding proteins in stellate cells after liver injury and stellate cell activation. Binding of these proteins was localized to a CC-rich region in the proximal ECE-1 3' UTR base pairs (the 56-kDa protein) and to a region between 60 and 193 base pairs in the ECE-1 3' UTR mRNA (62 kDa). A functional role for the 3' UTR mRNA/protein interaction was established in a series of reporter assays. Additionally, transforming growth factor-beta1, a cytokine integral to wound healing, stimulated ET-1 production. This effect was due to ECE-1 mRNA stabilization and increased ECE-1 expression in stellate cells, which in turn was a result of de novo synthesis of the identified 56- and 62-kDa ECE-1 3' UTR mRNA binding proteins. These data indicate that liver injury and the hepatic wound healing response lead to ECE-1 mRNA stabilization in stellate cells via binding of 56- and 62-kDa proteins, which in turn are regulated by transforming growth factor-beta. The possibility that the same or similar regulatory events are present in other forms of wound healing is raised.
Collapse
Affiliation(s)
- Rong Shao
- Duke University Liver Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gandhi CR, Uemura T, Kuddus R. Endotoxin causes up-regulation of endothelin receptors in cultured hepatic stellate cells via nitric oxide-dependent and -independent mechanisms. Br J Pharmacol 2000; 131:319-27. [PMID: 10991926 PMCID: PMC1572329 DOI: 10.1038/sj.bjp.0703577] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 07/03/2000] [Accepted: 07/03/2000] [Indexed: 01/14/2023] Open
Abstract
Hepatic stellate cells (HSC) and their transformed phenotype found in the chronically injured liver play important roles in hepatic physiology and pathology. HSC produce and react to a potent contractile peptide endothelin-1 (ET-1) and also synthesize a vasorelaxant nitric oxide (NO) upon stimulation with endotoxin. However, whether endotoxin affects ET-1 system of HSC and if this is a mechanism of endotoxin-induced hepatic injury is not known. We characterized synthesis of ET-1 and NO and ET-1 receptors in cultured quiescent and transformed HSC subjected to endotoxin treatment. Endotoxin (1 - 1000 ng ml(-1)) stimulated synthesis of ET-1 and NO and up-regulated ET-1 receptors in both cell types. Inhibition of NO synthesis by N(G)-monomethyl-L-homoarginine strongly inhibited endotoxin-induced increase in ET-1 receptors in transformed HSC but produced small additional increase in quiescent HSC. Inhibition of soluble guanylyl cyclase by 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one blocked the effect of endotoxin on ET-1 receptors in both cell types. Moreover, ET-1 receptors were increased in both cell types during earlier time points (1 - 4 h) of endotoxin treatment in the absence of the stimulation of NO synthesis. These results demonstrate that endotoxin up-regulates ET-1 receptors in HSC by NO-dependent and -independent mechanisms. Such effects of endotoxin can be of importance in acute endotoxemia and during chronic injury of the liver.
Collapse
Affiliation(s)
- C R Gandhi
- Department of Surgery, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, Pennsylvania, PA 15213, USA.
| | | | | |
Collapse
|